The hidden injustices of advancing solar geoengineering research

Jennie C. Stephens\(^1\) and Kevin Surprise\(^2\)

\(^1\)School of Public Policy & Urban Affairs, Civil & Environmental Engineering, Global Resilience Institute, Northeastern University, 360 Huntington Ave, RP 360C, Boston, MA 02115, USA and \(^2\)Environmental Studies, Mount Holyoke College, South Hadley, MA, USA

Abstract

Advancing solar geoengineering research is associated with multiple hidden injustices that are revealed by addressing three questions: Who is conducting and funding solar geoengineering research? How do those advocating for solar geoengineering research think about social justice and social change? How is this technology likely to be deployed? Navigating these questions reveals that solar geoengineering research is being advocated for by a small group of primarily white men at elite institutions in the Global North, funded largely by billionaires or their philanthropic arms, who are increasingly adopting militarized approaches and logics. Solar geoengineering research advances an extreme, expert–elite technocratic intervention into the global climate system that would serve to further concentrate contemporary forms of political and economic power. For these reasons, we argue that it is unethical and unjust to advance solar geoengineering research.

Social media summary

Solar geoengineering research is rooted in and perpetuates the unjust concentration of political and economic power.

1. Introduction

Once relegated to the fringes of climate policy, solar geoengineering is now gaining traction in a range of influential institutions. Internationally, the Intergovernmental Panel on Climate Change (IPCC) included solar geoengineering in the special report on 1.5°C (Watts, 2018), and the United Nations Environment Programme recently debated a resolution to explore geoengineering research (Chemnick, 2019). In the USA there is momentum as well, with the Harvard Solar Geoengineering Research Program (HSGRP) establishing an external advisory board to legitimize their plans for outdoor field experiments (Tollefson, 2019), and the US National Academies of Science, Medicine and Engineering (NAS) convening its second committee charged with examining ‘climate intervention strategies’ (Showstack, 2019). The NAS report, scheduled to be released in mid-2020, is expected to propose a research agenda and suggest research governance approaches laying the groundwork for US federal funding of solar geoengineering research.\(^4\)

As the global impacts of climate change become more severe, solar geoengineering has increasing appeal because it offers the possibility of cooling the planet relatively quickly at a comparatively low cost, without drastic near-term cuts in carbon dioxide emissions (Morton, 2016; Shepherd, 2009). The primary approach, stratospheric aerosol injection (SAI), would aim to reduce Earth’s temperature by continually spraying sulphate aerosols (e.g., sulphur dioxide) into the lower stratosphere to reflect a percentage of shortwave solar radiation back into space (Keith, 2013; National Research Council, 2015). At this critical time, when interest in solar geoengineering is growing, it is important to elevate the public debate regarding the risks of funding research to advance this approach to climate management.

We recognize that robust scientific inquiry is a vital aspect of democratic societies and that technological innovation has an important role to play in solving social and ecological problems. Yet, the social and political implications of solar geoengineering research and funding demand closer scrutiny. In our view, the current structures of solar geoengineering research serve to reinforce existing systems that concentrate wealth and power and perpetuate global inequities and injustices. As climate chaos increases around the world, clearly bold action is desperately needed. Momentum is rapidly building for transformative social change that addresses the root causes of climate change and related injustices by redistributing wealth and power through the transition away from fossil fuels towards a just, democratic, renewable-based society (Aronoff et al., 2019; Burke & Stephens, 2018; Bozuwa, 2018; Claey & Delgado Pugley, 2017; Mercado, 2019; Smith & Patterson, 2019). Advancing solar geoengineering as a...
technological fix that only addresses the symptoms of the climate crisis detracts from and reduces the transformative potential of these growing movements for climate justice. In this way, solar geoengineering research is not merely a form of scientific inquiry; rather, it is a political project rife with multiple power imbalances that produce ‘hidden injustices’ that have not yet been widely acknowledged.

To expose these hidden injustices, we first review the leading justifications and critiques of advancing solar geoengineering research, and then we address three simple questions: Who is conducting and funding solar geoengineering research? How do those advocating for solar geoengineering research think about social justice and social change? How is this technology likely to be deployed? Navigating these questions reveals that solar geoengineering research is being advocated for by a small group of primarily white men at elite institutions in the Global North, funded largely by billionaires or their philanthropic arms, who are increasingly adopting militarized approaches and logics. Solar geoengineering research advances an extreme, expert–elite technocratic intervention into the global climate system that would serve to further concentrate contemporary forms of political and economic power. For these reasons, we argue that it is unethical and unjust to advance solar geoengineering research.

2. Solar geoengineering justifications and critiques

The complex sensitivities of advancing solar geoengineering research, specifically SAI, are increasingly being recognized by those with divergent perspectives on this controversial approach to climate change. Several initiatives focused on the global governance challenges argue that SAI research should proceed cautiously, transparently and cooperatively, with governance mechanisms established prior to large-scale experimentation (Chhetri et al., 2018). Leading scenarios suggest that SAI should not be utilized to offset all climatic warming, but rather to slow the rate of climate change or to reduce the total global temperature rise. For example, Keith and MacMartin (2015) argue that SAI deployment should be moderate (utilized to slow the rate of change), temporary (gradually reducing its impact as other climate mitigation strategies ramp up) and responsive (adjusted as new information becomes available). A more recent model projects that significant reductions in climate risks could be achieved even if SAI was only deployed with a goal of cutting in half the warming produced by a doubling of preindustrial CO₂ (Irvine et al., 2019).

Assuming the ‘limited deployment scenario’ of halving the rate of warming, the first 15 years of full-scale deployment of a potential SAI programme are estimated to require 95 aircraft flying 41 flights per day (60,109 flights per year) from four ‘bases’ to deliver 1.5 million tons of sulphur to the lower stratosphere (Smith & Wagner, 2018, p. 5). The total cost for this programme is projected to be approximately US$36 billion. Several other scenarios envision cooperative SAI deployment, with governments coordinating an intentional reduction in global mean temperature in order to reduce near-term climate risks while buying time for other mitigation approaches to scale up (Low, 2017; MacMartin et al., 2018; Reynolds, 2019b). Given this potential for reducing climate impacts, leading advocates for geoengineering research have used a social justice lens to frame their justification, arguing that SAI deployment could provide a form of humanitarian relief for the most vulnerable people in the world, including the poor in the Global South (Horton & Keith, 2016).

Multiple risks of advancing SAI have been identified by scholars and activists (Frumhoff & Stephens, 2018). The potential for experimentation or deployment to create drastically uneven and unpredictable regional changes in climate, weather and biodiversity is a major concern (Proctor, 2018; Trisos, 2018). The risks associated with solar geoengineering enabling the expansion of fossil fuels represent another category of concern (Gunderson et al., 2018; Hamilton, 2013; Malm, 2016). Solar geoengineering also portends a highly concentrated, technocratic approach to climate politics (Hulme, 2014; Szerszynski et al., 2013; Wainwright & Mann, 2018) and sits on top of an extremely slippery slope (i.e., how can research be supported and advanced without legitimizing this technological approach and increasing the likelihood of it being deployed?) (Cairns, 2014; Frumhoff & Stephens, 2018). Many of those advocating for solar geoengineering research acknowledge these dangers (Horton et al., 2018; Keith, 2013, 2017), but nevertheless believe the worsening climate crisis necessitates SAI research to potentially minimize the risks of worst-case climate scenarios. In addition to these critiques and concerns, expanding solar geoengineering research at this time has other dangers related to perpetuating injustices that have so far received minimal attention. That is, while there is a rich debate on geoengineering research ethics (see Flegal et al., 2019, for an overview), much of this work is focused on designing future programmes rather than examining the power dynamics of current research. A future research programme will not emerge in a vacuum. The current power imbalances, sources of funding, and links to highly concentrated power that we identify are likely to shape the development of the technology and its governance.

3. Who is conducting and funding solar geoengineering research?

Solar geoengineering research is being conducted primarily by scientists in the Global North, although some research is occurring in other parts of the world (Biermann & Möller, 2019). The leading effort in terms of funding, scientific research, governance development and experimental preparation is Harvard’s HSGRP. The expansive influence of the HSGRP represents the power imbalances in solar geoengineering research. The HSGRP is largely composed of white men at an elite institution advocating research into planetary-scale climate manipulation on behalf of the poor in the Global South (Horton & Keith, 2016). This well-meaning approach does not appear to recognize the structural power imbalances invoked in this stance or the colonial legacies of paternalistic, technocratic humanitarianism flowing from the Global North to the Global South (Escobar, 2011; McCarthy, 2009; Mitchell, 2002). Privileged scientists are justifying their research by making claims that they might be able to fix injustices for the global poor in a way that does nothing to address the root causes of either climate vulnerability or global inequality, amounting to a form of ‘expert imperialism’ (see Flegal & Gupta, 2018; Hourdequin, 2018; McLaren, 2018; Surprise, 2019).

That solar geoengineering has the potential to reduce climate vulnerability without addressing the structural injustices of global power and inequities makes it an attractive ‘philanthropic’ venture for billionaires and other wealthy elites concerned with climate change. Major funders of solar geoengineering research include, for example, Bill Gates, whose Fund for Innovative Climate and Energy Research (FICER) authorizes Harvard University Professor David Keith and Ken Caldeira (of the Carnegie Institution for Science) to distribute millions of dollars to solar...
geoengineering researchers (FICER, 2019). In addition to Gates, Harvard’s research programme is supported by an array of other technology billionaires, hedge fund managers and boutique foundations that serve as philanthropic arms of wealthy individuals (Surprise, 2019). For example, the Open Philanthropy Project, founded by Cari Tuna, billionaire Dustin Moskovitz (a co-founder of Facebook) and Holden Karnofsky (formerly of hedge fund Bridgewater Associates), is another major supporter of SAI research at Harvard and around the world. Although some of these billionaire philanthropists invest in a range of climate change initiatives, solar geoengineering plays a specific role in their climate investment portfolios. Given its capacity to slow the rate of change and reduce the urgency of decarbonization, SAI enables wealthy, corporate-connected philanthropists to support moderate climate policies rather than more transformative, systemic changes that would directly threaten their own concentrations of wealth and power.

In addition to the solar geoengineering research occurring in the USA and Europe, the Solar Radiation Management Governance Initiative (SRMGI) has launched the DECIMALS Project, a strategic initiative to provide funding to encourage geoengineering research at Global South institutions. Although this project diversifies and broadens who is involved in solar geoengineering research, it is funded by the same philanthropies that fund research in the Global North (e.g., Open Philanthropy Project, FICER and other billionaire-connected philanthropies such as Zennström and Carbon War Room; see Necheles et al., 2018). Expanding the global distribution of SAI researchers does not address the structural power imbalances associated with who is advancing solar geoengineering research. In addition, it is well recognized that creating mechanisms for the inclusive ‘participation’ of Global South organizations in transnational policy networks has often been used as a vehicle to generate consent for policy prescriptions that flow from the Global North (Banerjee, 2003; Goldman, 2007; Peet, 2002; see Frumhoff & Stephens, 2018, on participation in geoengineering).

4. Among those advocating for geoengineering research, how are they conceptualizing social justice and social change?

Given the power and influence of who is currently conducting and funding solar geoengineering research, it is important to consider how they are conceptualizing social justice and social change. What kinds of futures do these researchers envision in their models and scenarios? Solar geoengineering is often considered a mechanism to reduce climate vulnerabilities while ‘buying time’ for mitigation measures to scale up and energy transformations to occur (Surprise, 2018). If a potentially dangerous, planetary-scale intervention is being advocated to ‘buy time’ for other solutions, it is important to consider how solar geoengineering researchers envision current global injustices and future social change, including the potential for political and economic shifts. Although the research community is not uniform, few solar geoengineering researchers appear to be advocating strongly for urgent and transformative climate policy. Several influential researchers in the field have expressed alignment with moderate approaches centred on a mix of incremental market mechanisms, policy prescriptions and technological innovations (e.g., Horton et al., 2016; Keith, 2013; Wagner & Weitzman, 2015). Moderation and incrementalism keep the core structures of political and economic power in place.

Indeed, solar geoengineering may appeal to many wealthy climate philanthropists explicitly because it offers an alternative to the growing recognition that responding to climate change will require transformative measures that directly challenge free-market capitalism (Foster et al., 2011; Klein, 2014; Wainwright & Mann, 2018). The idea that confronting climate change demands a rapid, just and fundamental transformation away from our current fossil fuel-dominated capitalist political economies that are concentrating wealth and power seems to be untenable to many wealthy individuals, corporations and elite technocratic managers that profit from current systems that perpetuate inequities (Kenner, 2019; Lynch et al., 2019). For those that feel threatened by the call for radical, social, political and economic change, technological solutions, market mechanisms and moderate policies are appealing, even though they are inadequate responses to the scale of the emergent climate crisis (Huber, 2019). By investing in extreme technical solutions to climate change, those advocating for solar geoengineering research are avoiding extreme (and necessary) social changes that are rapidly gaining political traction.

As to the ‘humanitarian’ social justice rationale, we have already questioned the ethical implications of a small group of privileged researchers from wealthy and powerful institutions propagating dangerous techno-fixes in the name of the global poor. Another problematic aspect of this relates to who gets to declare when the climate crisis is bad enough to justify SAI deployment. Climate change is already causing extreme suffering for millions of people around the world, but most solar geoengineering researchers are not yet advocating for deployment. Most solar geoengineering models do not anticipate deployment in the next decade, so those advocating for solar geoengineering research seem to be more concerned about future rather than current climate impacts and climate injustices. Emergencies are not merely objective circumstances – they are determined by political calculations and power dynamics (Agamben, 2005; Schmitt, 2005; Sillmann et al., 2015). Who will decide when conditions are bad enough to declare a planetary-scale emergency justifying intervention in the climate system? It is unlikely to be poor countries, vulnerable populations or the hundreds of millions – if not billions – of people already living in ‘emergency’ conditions of poverty and climate vulnerability (Ehrenreich, 2019; Tahir, 2019). Solar geoengineering research diverts attention and funding away from immediate systemic changes that could meaningfully address current inequalities and injustices.

The primary political effect of advancing solar geoengineering research is, therefore, to blunt the urgent, transformative proposals emanating from the climate justice movement. In so doing, solar geoengineering research – independent of the desires of individual researchers – maintains contemporary systems of power, which we define as systems of colonial capitalism that thrive on fossil fuels and the perpetuation of inequality, exploitation and domination buttressed by patriarchal white supremacy (Faber et al., 2017; Federici, 2004; Pulido, 2016; Watts, 2006; Whyte, 2016).

5. How and by whom is solar geoengineering likely to be deployed?

An additional set of hidden injustices are revealed when we explore how and by whom solar geoengineering technology is likely to be deployed. These questions have been central to recent geoengineering social science research and governance debates, with a focus on the potential for inappropriate unilateral
deployment by a powerful state or group of states, a corporation or even a wealthy individual (Rabitz, 2016; Victor et al., 2009). The scope of unilateral deployment has been narrowed in recent literature, with consensus emerging that only a few major nation-states are likely to have both the technological capacity and political legitimacy to deploy SAI (Parker & Irvine, 2018; Parker et al., 2018; Rabitz, 2016; Smith & Wagner, 2018), and that, given this possibility, solar geoengineering deployment should ideally be coordinated through international institutions. Despite growing attention being given to governance challenges, the potential injustices associated with the likely militarization of solar geoengineering has received minimal consideration. For example, a recent authoritative survey of solar geoengineering governance provides minimal discussion of SAI and militaries, noting only that while military involvement should ideally be restricted, militaries have necessary technological and logistical expertise and so should not be shut out of research and development, and regardless, no practical mechanisms currently exist to prevent military involvement in research and potential deployment (Reynolds, 2019a, p. 207).

Concern about the militarization of solar geoengineering is based on three core points: first, military and security institutions have been involved in advancing solar geoengineering research in recent years, from the Central Intelligence Agency funding the first National Academies reports (Liebelson & Mooney, 2013) to the Defense Advanced Research Projects Agency funding SAI research at the Pacific Northwest National Laboratory (Kravitz et al., 2017). Second, leading deployment scenarios explicitly integrate assumptions about militarization and rely on military discourse and the technological expertise of defence contractors. For example, Parker et al. (2018) explore the possibility of so-called ‘counter-geoengineering’ measures (i.e., deploying warming agents to counteract or neutralize an SAI programme) in the context of geopolitical brinkmanship and ‘grey-zone conflict’, and Smith and Wager (2018) consult with major aerospace and defence corporations to inform their cost-technology analysis. Third, the assumption that solar geoengineering cannot be tactically deployed or weaponized avoids the potentially strategic role that solar geoengineering could play in the interlinkages among geopolitics, energy and climate change. For example, the US military – the most powerful military force in the world – both runs on and plays a fundamental role in securing the fossil fuels that undergird US geopolitical power (Belcher et al., 2019; Foster & Clark, 2018; Jones, 2012; Lehmann, 2019).

Yet, the US military also considers climate change a threat to national security and global stability (Hagel, 2014; Roberts, 2018). It is therefore entirely possible that the US security establishment could expand its involvement in solar geoengineering development in order to achieve the dichotomous strategic objectives of managing the threat of climate change while simultaneously furthering the expansion of fossil fuels – even if temporarily (Surprise, forthcoming). International governance would likely have few tools to prevent this scenario if the USA deemed it in its strategic interest (Chomsky, 2003; McCoy, 2017; Miéville, 2005). Given recent turns away from multilateral cooperation and the global rise of authoritarian leaders employing militarized violence to protect narrowly defined national interests while dismissing individual rights and social justice (Lutz, 2002; Robinson, 2018), the potential for militarized interventions into the climate system seems like too great a risk to continue advancing social geoengineering research.

6. Conclusion
Solar geoengineering is the ultimate ‘technological fix’ in that it aims to address the primary symptom of climate change (global warming) without addressing the root causes (Markusson et al., 2017). The three questions we address here reveal dangerous, hidden injustices of advancing solar geoengineering research, where a few elite actors could gain the power to manipulate the Earth’s climate. The exacerbation of global injustices perpetuated by solar geoengineering research should not be tolerated by anyone who is committed to advancing social justice in the world today. We believe that supporting solar geoengineering research is dangerous and unethical, and we call on governments, philanthropists and scientists to speak up about the risks of supporting this research.

Paying attention to who is supporting solar geoengineering research and how they envision social justice and social change is critically important to informing the public discourse and societal debate about how best to invest in confronting climate injustices (Stephens, forthcoming). Advocates of solar geoengineering research seem to view the changing climate as a narrow, isolated, discrete problem. Rather than recognizing the social, economic and political complexities of how human systems interact with the climate, many scientists, engineers and others are engaging in a form of ‘climate isolationism’ (Stephens, forthcoming). Yet climate science and social science tell us that transformative social change is desperately needed in order to ensure a just and livable planet. Transformation requires challenging, not reinforcing, current power structures that have made it all too easy for billionaires and technocratic elites to focus on altering the climate system rather than altering our social and economic systems. Investing in solar geoengineering research not only detracts from efforts to accelerate transformation, but also creates new pathways for the rich and powerful to have additional control as climate impacts worsen. We believe this to be unjust.

Acknowledgements. We thank many colleagues and our students who have engaged with us on these challenging issues. We also appreciate the feedback from Bert de Vries and several anonymous reviewers that strengthened this piece.

Author contributions. JCS and KS contributed equally to the design and writing of the paper.

Financial support. This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Conflicts of interest. None.

Ethical standards. This research and article complies with Global Sustainability’s publishing ethics guidelines.

Note
i This information comes from JCS’s personal communication with a member of the study committee and KS’s interview with an NAS officer.

References

Downloaded from https://www.cambridge.org/core, IP address: 35.160.27.221, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/sus.2019.28

