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RADICAL PAIRS 

N. DIVINSKY AND A. SULINSKI 

The search for new radicals goes on. Recently R. L. Snider ([6], see page 216) 
introduced the following notion. Let a and fi be any two radicals. A ring R will 
be said to be an (a : 13) ring if for any ideal A of R, we have a(R/A) ^ fi(R/A). 

In the special case when a ^ 0, the class (a : ft) consists of all rings R for 
which the a radical coincides with the /3 radical in all homomorphic images of R. 
If a is the Baer radical and /3 the Jacobson radical then (a : /3) rings are known 
as Jacobson rings. When a is Baer and /3 is the Brown-McCoy radical then 
(a : jff) rings are known as Brown-McCoy rings. Jacobson rings play an 
impor tan t role in commuta t ive ring theory (see [4]). Noncommuta t ive 
Jacobson rings and noncommutat ive Brown-McCoy rings have been studied by 
Procesi [5] and Wat t e r s [7; 8]. T h u s (a : (3) generalizes well known notions and 
in fact leads to new radical properties. 

I t is clear t ha t (a : ($) is a homomorphically closed class and tha t a ^ (a : /3). 
If we let 1 represent the radical for which all rings are radical then it is clear 
tha t (a : 1) = a. Fur thermore if /3 S a then (a : j3) = 1. T h u s (a : /3) is a 
homomorphically closed class of rings t ha t lies somewhere between the class of 
all a rings and the class of all rings. 

Two obvious questions arise. When is (a : /3) a radical and wrhen is (a : /3) an 
hereditary class? Snider [6] proved: 

T H E O R E M 1. If a and (3 are both hereditary radicals then (a : /3) is itself a 
radical. 

Snider characterized this radical in the following way: 

T H E O R E M 2. If a and $ are both hereditary radicals then the radical (a : f3) is 
the largest radical such that (a : 13) (R) C\ P(R) ^ OL(R) for every ring R. 

He also gave the following 

Example 1. Let a be the torsion (re addit ion) radical, i.e. a(R) = the addit ive 
torsion subgroup of R. Then a is an hereditary radical. Let 0 represent the 
trivial radical, i.e. {0} is the only radical ring. Then 0 is hereditary and (0 : a) 
is a radical. Now (0 : a) is the class of all strongly a-semi simple rings i.e. a-semi 
simple rings which remain a-semi simple under all homomorphisms. T h e point 
of this example is t ha t (0 : a) is itself not an heredi tary radical. T o see this, 
let A be a two dimensional algebra over the rationals Q with basis 1 and a, 
where a2 = 0. Then A has the ideal Aa which is isomorphic to the addit ive 

Received November 5, 1976 and in revised form, March 10, 1977. 

1086 

https://doi.org/10.4153/CJM-1977-107-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-107-1


RADICAL PAIRS 1087 

group of Q, with zero multiplication. Now a (A) = 0 , (0 : a) (A) = A bu t 

(0 : a)(Aa) = 0. T h u s the radical (0 : a) is not hereditary. 

In general, (a : 0) is not a radical. To this end we consider 

Example 2. Let /3 be the upper radical determined by all nilpotent rings i.e. 
all nilpotent rings are /3-semi simple. This /3 is not an hereditary radical. Then 
(0 : |8) is not a radical. To see this, consider (see [2, pages 19/20, example 3]) 
the well known algebra R with basis {xa : 0 < a < 1} where multiplication is 
defined by 

xaXp = xa+/3 if a + j8 < 1 

= 0 if a + 0 è 1. 

Then i? is a union of nilpotent ideals i.e. of (0 : fi) rings. Now if (0 : P) was a 
radical property then R would have to be in (0 : /3). However since R2 — R, it 
is clear tha t fi(R) = R and thus R is not in (0 : 0) . 

We can say something about (0 : (3) in general i.e. even if 13 is not hereditary. 

LEMMA 1. If both R/I and I are in (0 : /3) then R is in (0 : /3). 

Proof. If i? is not in (0 : f$) then some homomorphic image R/A has a nonzero 
(5 radical say K/A. li I ^ A then i?/^4 = R/I/A/I is /3-semi simple because 
R/I is strongly £-semi simple. This forces I % A. In tha t case {A -\-I)/A = 
1/ (A C) I) is nonzero. This is /3-semi simple since / is strongly /3-semi simple. 
Consider R/(I + A) = (R/I)/[(A + / ) / / ] . This is 0-semi simple since R/I 
is strongly 0-semi simple. Also R/(I + A) = (R/A)/[(A + I)/A] is /3-semi 
simple. Therefore K/A ^ (A + I)/A. But (A + I)/A is /3-semi simple. T h u s 
K/A = 0 and the lemma is proved. 

T o gain more information about (a : /3) we make the following 

Definition. Let a be a radical and let A be an ideal of R. Then by \/A we shall 
mean the ideal of R such tha t y/~K/A = a(R/A). We shall call \ ^ 4 the radical 
closure of A. 

Definition. An ideal A oi R will be called an â ideal if a(i^/^4) = 0. 

Definition. A radical a will be called superior if every «-semi simple ring can be 
expressed as a subdirect sum of subdirectly irreducible rings Rt where each Rt 

is itself a-semi simple. 

Remark. I t is easy to check tha t the Brown-McCoy radical is superior. 
Neither the Baer radical nor the Jacobson radical nor any radical between 
them is superior (see [2, pages 113-115]). 

Definition. A class V of rings will be called regular is every nonzero ideal of a 
ring mJV can be homomorphically mapped onto a nonzero ring in JV. 

LEMMA 2. If a is a superior radical and 0 an hereditary radical then the class ^ 
of all a-semi simple subdirectly irreducible rings with ft radical hearts is regular. 
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Proof: Let A be a nonzero ideal of R where R is in ^é. Since R is a-semi 
simple, A must be a-semi simple. Since a is superior, A is equal to a subdirect 
sum J2t A t where a (A t) = 0 and where each A t is subdirectly irreducible. Let 
H(At) be the heart of A t for each /. Now A contains H(R), the heart of R, 
which is a nonzero /3 radical ring. Thus /3(A) ^ 0 and 13 (A t) ^ 0 for some t, for 
otherwise A would be a subdirect sum of /3-semi simple rings and such a sum is 
known to be /3-semi simple. Then 0 ^ H(At) ^ fi(At). Since (3 is hereditary, 
H (A t) is a /3 ring. Thus 4̂ ^ is an a-semi simple, subdirectly irreducible ring with 
a ]8 radical heart, and certainly A can be homomorphically mapped onto this A t. 
Thus <y$ is regular. 

LEMMA 3. If a is superior, f3 hereditary and if A is an ideal of R, then if y/A 
can be represented as an intersection of à ideals It of R such that each R/It is 
subdirectly irreducible with (3-semi simple heart, we can conclude that 
a(R/A) ^ P(R/A). 

Proof. Suppose that $(R/\/H) j£ 0. By assumption R/yfA is a subdirect 
sum YjtR/It where the R/It are a-semi simple and subdirectly irreducible 
with /3-semi simple hearts. There must exist a t for which (3(R/It) 7̂  0. Then 
0 5* H(R/It) ^ P(R/It). Since 0 is hereditary, H(R/It) is a 0 ring which is 
impossible. Thus p(R/&Z) = 0 = /3((R/A)/(^A/A)). Therefore P(R/A) Û 
VÂ/A = a(R/A). 

Lemma 2 tells us that the class *Jt is regular and thus it easily defines an 
upper radical %^. 

THEOREM 3. If a is superior and /3 is hereditary then (a : /3) = °ttjt, and in 
particular, (a : /3) is a radical. 

Proof. Take R in (a : (3). If R is not in °UM then some nonzero homomorphic 
image R/A must be in ^# . Let H(R/A) be the heart of R/A. Then we have 
0 = a(R/A) ^ fi (R/A) ^ H(R/A) ^ 0. This is impossible and thus R is in 
°llJI. Note that this half of the theorem, (a : (3) ^ & ji, holds for arbitrary 
radicals a and 0. 

Conversely suppose that R is in tflM. Let yl be any ideal of R. Since a: is 
superior, y/~A is the intersection of â ideals 11 of R such that the R/It are 
subdirectly irreducible. If for one of these I3(R/It) ^ 0 then 0 3̂  H(R/It) ^ 
/3(R/It) and the heart is /3 radical since (3 is hereditary. Thus R/It is in ,^#. 
This cannot happen since R is in °Ujt. Thus each 13 (R/It) = 0 and each heart 
H(R/It) is 0-semi simple. By Lemma 3, a(R/A) è P(R/A) and thus 2? is in 
(a : 0). 

THEOREM \. If a is superior and /3 is hereditary then R is in (a : f3) if and only 
if for every ideal A of R, \f~A can be represented as an intersection of à ideals 11 

of R such that the R/It are subdirectly irreducible with /3-semi simple hearts. 

Proof. Let R be in (a : ft) and let A be an ideal of R. Since a is superior \f~Â 
can be represented as an intersection of â ideals ItoiR such that the R/I t are 

https://doi.org/10.4153/CJM-1977-107-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-107-1


RADICAL PAIRS 1089 

subdirectly irreducible. For each It, 0 = a(R/It) ^ /3(R/It) and thus each 
heart H(R/It) is 0-semi simple. The converse follows from Lemma 3. 

T H E O R E M 5. If a is superior and /3 is hereditary then R is in (a : ft) if and only 
if for any ideal A of R, R/y/Â can be represented as a subdirect sum of a-semi 
simple, subdirectly irreducible rings with (3-semi simple hearts. 

Proof. This is immediate from Theorem 4. 

Theorems 3, 4 and 5 generalize the following result known to Andrunakievic 

COROLLARY. Let fi be an hereditary radical. Then the following are equivalent: 
(i) Ris in (0 : 0) . 

(ii) Every homomorphic image of R can be represented as a subdirect sum of 
subdirectly irreducible rings with (3-semi simple hearts. 

(iii) Every ideal A of R can be represented as an intersection of ideals 11 of R 
such that the rings R/It are subdirectly irreducible with fi-semi simple hearts. 

(iv) R is in °U'M where ^Jé is the class of all subdirectly irreducible rings with 
/3 radical hearts. 

Proof. We note tha t the trivial radical 0 is superior since every ring can be 
represented as a subdirect sum of subdirectly irreducible rings. Fur thermore we 
note t ha t for any ideal A of R, tyA = A. 

Now we wish to consider when (a : ft) is an hereditary class. To this end we 
wish to consider radicals tha t contain or are equal to the Baer radical. Un­
fortunately the word supernilpotent is used to mean an hereditary radical 
which contains or equals the Baer radical. So we shall use the term weakly 
supernilpotent to mean a radical which is not necessarily hereditary but which 
does contain or is equal to the Baer radical. 

LEMMA 4. Let a be a radical and let A be an ideal of R such that a (A) = A. 
Then a(R/A) = a(R)/A. 

Proof. First we note tha t A = a (A) C a(R). Then a(R)/A is an a ring and 
it is an ideal of R/A. Therefore it is C a(R/A). On the other hand a(R/A) = 
K/A for some ideal K of R. Now K/A is an a ring and so is A and thus K 
itself is an a ring and therefore K Çza{R). Thus a(R/A) Ç a(R)/A. This 
proves the lemma. 

T H E O R E M 6. If a is an hereditary radical and if ($ is a weakly supernilpotent 
radical then (a : (3) is an hereditary class. 

Proof. Take R in (a : 0 ) , let A be an ideal of R and suppose tha t A is not in 
(a : 13). Then there exists an ideal W of A such tha t 0 (A / W) < a {A / W). Then 
P(A/W) is not an a ring. Let W be the ideal of R generated by W. Then we 
know tha t W* ^ W ^ W ^ A ^ R. We know tha t R/Wis in (a : j3) and thus 
a{R/W) ^ fi{R/W)- Also i ^ / ^ 3 is in (a : 0) and thus a(R/ Ws) ^ /3(R/W3). 
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Consider p(A/W) = P((A/W)/(W/W)). Since W/W is nilpotent it is a 0 
ring. Then by Lemma 4, (3((A/W)/(W/W)) = (3(A/W)/(W/W). This is a 0 
ring and an ideal of R/W and thus it is ^ /3(P/1/F) ^ «(P/W'). Since a is 
hereditary, /3(A/W)/(W/W) is an a ring. 

Next we show that W/W is an a ring. To see this we note that W/W* is 
nilpotent and thus a 0 ring and it is ^ (3(R/W*) ^ a (P / I^ 3 ) . Since a is 
hereditary, W/W' is an a ring. Then JT/W = (W/W*)/(W/W*)) is an a ring 
since it is a homomorphic image of an a ring. Thus both (/3 (T / FT) ) / ( W/ W) and 
W/W are a rings and therefore (3(A/W) is an a ring. But it is not. This con­
tradiction proves the theorem. 

COROLLARY 1. If a is hereditary and $ is super nilpotent then (a : 0) is an 
hereditary radical. 

COROLLARY 2. If a is hereditary and /3 is super nilpotent then ((a : /3) : (3) = 

(« : 0). 
Proo/. ((a : 0) : 0)(P) H /3(P) g (a : 13) (R) and it is in p(R) and thus it is 

in (a : 13) (R) P /3(P) ^ a(P) by Theorem 2. Since (a : /3) is maximal with 
respect to this property, we must have ((a : 13) : (3) ^ (a : (3). However 
(a : 0) S ((a •' 0) : /5) and thus they are equal. 

Some well behaved radicals are hereditary. Many radicals are not hereditary 
and some are very far from being hereditary. We wish to select those radicals 
which are extremely far away. To this end we make the following 

Definition. A radical a will be called mutagenic if there exists a ring R such 
that 

(i) R is the union of an ascending chain of ideals Iu 

0 < h< h< . . . < It< . . . < R= U It 
t 

where each It is in (0 : a), and 

(ii) ct(R) 9e 0 i.e. R is not only not in (0 : a) but it is not even a-semi simple. 

THEOREM 7. (0 :a) is a radical if and only if a is not mutagenic. 

Proof. If a is mutagenic then the given ring R is not in (0 : a). However 
every nonzero homomorphic image of R contains a nonzero ideal in (0 : a) 
namely a homomorphic image of some In. Therefore (0 : a) is not a radical. 

Conversely suppose that (0 : a) is not a radical. Since we know that (0 : a) 
is homomorphically closed, there must exist a ring R which is not in (0 : a) and 
yet every nonzero homomorphic image of R contains a nonzero ideal in (0 : a). 
Since R is not in (0 : a) there must exist a nonzero homomorphic image of R 
which is not a-semi simple. Thus we may assume without loss of generality that 
a(R) y£ 0. 

Now R itself must have a nonzero ideal 7\ in (0 : a). Since R is not in (0 : a) , 
Ii 9e R. Then R/Ii must have a nonzero ideal I2/I1 in (0 : a). By Lemma 1, 12 
is in (0 : a). We continue in this way and obtain 0<I1<I2<...<In< 
. . . < U In, where each In is in (0 : a). If U In = R we are done. If not, then 
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either U In is in (0 : a) and we carry on extending the chain of ideals, or U In 

is not in (0 : a). In this lat ter case we can use U In if « ( U In) ^ 0 or we can 
use some homomorphic image of U In which is not a-semi simple. Thus a is 
mutagenic and the theorem is established. 

In the case when a is weakly supernilpotent, the definition of mutagenic can 
be made neater. 

T H E O R E M 8. / / a is a weakly supernilpotent radical then a is mutagenic if and 
only if there exists an a ring R such that 

0 < Ji < J2 < ...< Jt< ...< R = U J i 
t 

where each Jt is in (0 : a). 

Proof. One direction is trivial. For the other direction suppose a is mutagenic. 
Then there exists a ring R = U tit, 0 < I\ < . . . < It < . . . , each It is in 
(0 : a) and a(R) * 0. Now a(R) = R Pi a(R) = U [It C\ a(R)]. Let Jt = 
11 C\ a(R). Theorem 6 tells us tha t (0 : a) is an hereditary class. Therefore Jt 

must be in (0 : a). Therefore the ring a(R) = U Jt with each Jt in (0 : a), and 
of course a(R) is an a ring. 

COROLLARY. If a is a weakly supernilpotent radical and if there does not exist an 
a ring which is the union of an ascending chain of (0 : a) ideals then (0 : a) is an 
hereditary radical. 

Example 3. To find an example of a mutagenic radical we can use Example E 
in [3, page 688]. Let a be the lower radical determined by 5 ^ 0 - Then every ideal 
Sf\ is in (0 : a) basically because ff W{) has no maximal ideals where every 
subideal of Sf\ does have a maximal ideal. This a is mutagenic but is not weakly 
supernilpotent. We can extend a to say /3, the lower radical determined by 
S^WQ and by all nilpotent rings. Then 5 ^ 0 is a /3 ring and all the ideals $f n are in 
(0 : 13). T h u s fi is a mutagenic, weakly supernilpotent radical. In particular of 
course, (3 is not hereditary. 
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