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In this paper, we analyze the end-to-end delay performance of a tandem queueing system
with mobile queues. Due to state-space explosion, there is no hope for a numerical exact
analysis for the joint-queue-length distribution. For this reason, we present an analytical
approximation that is based on queue-length analysis. Through extensive numerical val-
idation, we find that the queue-length approximation exhibits excellent performance for
light traffic load.

1. INTRODUCTION

The model considered in this paper, originated from the study of ad hoc networks, in which
the end-to-end connectivity is not always guaranteed. For instance, nodes in the network
may vary their transmission power, they may move, they may enter the sleep mode, or they
may suffer from hardware failures. As a result, the network structure changes dynamically
and this may lead to undesired situations of nodes becoming disconnected from parts of
the network. The traditional store-and-forward routing protocols cannot be employed in
highly disconnected ad hoc networks. A solution for this problem is to exploit the mobility
of nodes present in the network. Such an approach has been proposed in the pioneering
paper of Grossglauser and Tse [12] as an alternative to the store-and-forward paradigm
and it is now known as the store-carry-and-forward paradigm in the context of delay-
tolerant networking [8]. As a first step toward the analysis of this system, we consider a
very simple scenario with a one-way stream of messages over a fixed route of relay nodes
with a restricted mobility. We model this situation as a tandem-queueing model where
each queue randomly switches between two positions. We focus on approximations for the
end-to-end delay performance.
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The network model of our interest is reminiscent of a multi-queue tandem model with
multiple alternating servers, which move among the queues autonomously. In the literature,
it is usually assumed that the server can be controlled. Tandem models with controlled
servers have been analyzed under various servicing strategies in the special case of a sin-
gle server (see, e.g., [18]). In a two-queue setting, [5] analyzes the model via boundary
value techniques. Unfortunately, the analysis along these lines for more than two queues
appears intractable. Time-limited service models with server control have also been studied
in the context of polling systems (see, e.g., [10,11,13]), where the server moves to another
queue when it becomes empty. In the mobility-driven model of our interest, the server is
autonomous and there is no possibility to control its movement.

An important step toward understanding the impact of mobility on the end-to-end
delay, is the study in [1] of a model comprising a fixed source and destination queue, and
a single mobile queue operating as a relaying device. Modeling this network as a tandem
of queues, we performed an exact analysis for the joint queue length by extending the
techniques developed in [2,7,13]. Due to the state-space explosion, the computation time of
the joint queue-length probabilities may grow large for certain model parameters. Therefore,
as a complementary tool, we presented an analytical approximation for the case that the
service requirements at each queue are exponential. In this paper, we are interested in the
model comprising multiple mobile queues. Unfortunately, the exact analysis carried out
in [1] is numerically intractable in this model due to the increase in the number of queues.
For this reason, we will focus on the approximation. As a generalization, we will allow the
distribution of the service requirements at the different queues to be general.

Our main interest is in the end-to-end delay in the network described above. The main
complexity in our model is the correlation between the queue lengths at different queues. A
numerically efficient approximation will be presented. The main idea is to relate the sojourn
time at a mobile queue and its queue-length process at specific embedded epochs. The queue-
length process at these embedded epochs is then analyzed in isolation as a discrete-time
queue with geometric batch arrivals. The key element is to approximate the batch arrival
process with correlated batch sizes with a batch process of independent batch size. This
approximation is referred to as queue-length approximation.

Note that the arrivals to a queue are the departures of the upstream queue in the
tandem. Therefore, to derive the queue length of queue i, it is required to first analyze
queue i — 1, and so on. Thus, our approximation is based on an iterative scheme that derives
the delay at queue one first, then at queue two, and so on. A similar iterative scheme was
used recently in [17] for the analysis of multi-server tandem queues with finite buffers and
blocking.

The rest of the paper is organized as follows. Section 2 presents our model. The stability
condition of the system is derived in Section 3. In Section 4, we present exact results for
the sojourn time in the source queue. Section 5 proposes and analyzes the approximation
for the sojourn time in the mobile queue via queue lengths. In Section 6, we numerically
validate the accuracy of the approximations and present additional results which give insight
in the delay of the network. Section 7 concludes the paper. Proofs of our results are given
in the Appendix.

2. MODEL

We consider a tandem model consisting of N first-in-first-out (FIFO) systems with unlimited
queue, Q;, ¢ =1,..., N, in which customers arrive to @)1 and subsequently require service
at @2, Qs, ..., and Qyx—_1 before reaching their destination at Q). The special feature of

https://doi.org/10.1017/50269964814000059 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964814000059

DELAY IN A TANDEM QUEUEING MODEL WITH MOBILE QUEUES 365

. TIO" el
- o o
Lo mo
- Iomo"

FIGURE 1. Possible locations of Q; and Q;41.

the model is that @;, ¢ = 2,..., N — 1, alternates between positions L;_; and L; such that
Qi—1’s server is available for service (i.e., customers at ;1 are served) only when both
Qi—1 and Q; are at L;_; and Q;’s server is available for service when both @; and Q;;1 are
at L;. The servers of ;1 and @Q; are two different servers that cannot be serving at the
same time. @1 and QQn are fixed and they remain at location L; and Ly_; respectively.
Qn is a sink and will not be included in our analysis.

Customers arrive to )7 according to a Poisson process with arrival rate . The
service requirement B; at (); has general distribution B;(t) with mean b;. We assume
that the service requirements are independent and identically distributed (i.i.d.) random
variables (rvs).

The queues Q;,7 = 2, ..., N — 1, move autonomously. Q; remains at location L;_1 (resp.
L;) a random duration Xii;ll (resp. X7 ,,) before it migrates to L; (resp. L;_1) during its nth
visit, see Figure 1. The location of (); is driven by an underlying continuous-time, discrete-
state, process {L;(t) : ¢ > 0} with state-space {0, 1} with L;(¢) = 1 (L;(¢t) = 0) when Q; is at
L;—1 (resp. L;) at time t. Without loss of generality, let L;(0) = 1. We assume {Xf;ll, X .}
i.i.d. and mutually independent, and also independent of the inter-arrival times and service
requirements. We further assume that Xf;bl (X},) is an iid. sequence of exponentially
distributed rvs with rate a; (ay).

We will refer to the time period during which the server is available for service at @;
as ; service period. Due to the tandem structure, the Q); service period represents the
Qiy1 arrival period, that is, the period of time during which @; 1 receives customers that
completed their service at Q;. The Q; service period occurs when the process (Li (t), Lita (t))
is in state (0, 1), see Case 4 in Figure 1. The duration of the nth Q; service period, denoted by
Yi.n, is the minimum of the exponentially distributed rvs X}, and X7, , ;, for some m and [.
That is, Y, is an i.i.d. sequence of exponentially distributed rvs with rate &; := o + agﬂ.
Let Y; denote the generic rv of Y; ,,. During a @; service period, the server alternates between
service and idle states depending on whether or not customers are present at ;. When the
server is serving a customer at the end of a server visit to @;, service will be preempted.
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At the beginning of the next visit to @;, the service time will be re-sampled according to
B;(+). This discipline is commonly referred to as preemptive-repeat-random.

In the following, given a continuous rv X, X (¢) will denote its distribution function,
X (s) its Laplace—Stieltjes transform (LST) and x its expectation. Similarly, given a discrete
rv Y, Y (n) will denote its distribution function, Y (z) its probability generating function
(p.g.f.) and y its expectation.

The preemptive-repeat-random discipline induces that the amount of work generated
by a customer to @Q);, referred to as generalized work, can be written as

L
Bzg :B: +Z i:kla (1)
=1

where B is the conditional @); service time given that it is smaller than ); service period, L
is the total number of interruptions during the customer’s service, and Y;", is the conditional
Q; service period given that it is smaller than @); service time. Since a (Q; service period is
exponentially distributed, it is easily seen that the distribution of L is geometric with mean
(P[B; > Y;])~" = (B;(&))~*. Conditioning on L, the LST of generalized work is

B9(s) = (s +&)Bi(s +&)
' s+&Bi(s+&)

Re(s) >0, (2)

where Re(s) denotes the real part of s. In particular, its expectation reads

1— Bi(&
E[By] = L=Bi&), (3)
§iBi(&:)

Let N;(t) denote the number of customers in Q;, 7 =1,..., N, at time ¢. Assume that
N;(0) =0,i=1,...,N. Let D; denote the sojourn time of an arbitrary customer in Q;,
i=1,...,N — 1. In the following, we will study D;(s), the LST of the sojourn time in Q);,
i=1,...,N—1.

3. STABILITY

Stability is considered on a per-queue basis as service capacity cannot be exchanged between
the queues. The system is stable if and only if all the queues in the system are stable.

For an individual queue to be stable, we must have that the average work per unit time
brought by a customer to the queue, AE[BY], is strictly smaller than the average fraction
of time the queue server is available for service. In the following, we will derive the average
fraction of time the @; server is available for service, which corresponds to the probability
that the @; server is available. At time ¢, the Q; server is available when both @; and Q;;
are at location L;, that is, when (L;(t), L;+1(t)) = (0,1). By a renewal reward argument,

we have that
al 7k
P(L;(t) = k) = ———, k=0,1, 4
(L) =) = 7o (4)

and since the mobility processes of @; and Q);41 are independent, we obtain that

P((L;(t), Li+1(t)) = (0,1)) =P(L;(t) = 0)P(Lis1(t) = 1)

1.0
Qg

B (0%1 + a?)(azl—i-l + O‘?—i—l).

(5)
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Note that @1, the source node, remains always at location L;, that is, Li(t) =0, t > 0.
This can be included in (5) by letting al — oo and o = 0. Moreover, since Q y remains at
location Ly, we let ak; =0 and o9, — oo, so that (5) is valid for i = 1,..., N.

3.1. Stability Condition
Q; is stable iff
AE[BY]
P((Li(t), Liy1(t)) = (0,1))
_ /\1 _~Bi(€i) ((%‘1 +af) (e +a?+1)) <1
§iBi(&) ajadi, ,

where p; is referred to as the generalized load at @;.
Note that under stability the arrival rates to ;41 and @Q; are equal.

Pi =

(6)

4. EXACT ANALYSIS OF QUEUE ONE

The server visit process is autonomous and the service is according to the preemptive-repeat-
random discipline. It is then easily seen that @)y in isolation is an M/G/1 queue with on-off
server with arrival rate \, mean service time by, exponential on-period X4 with rate o, and
off-period R°% equal to the Qo sojourn time at Ly, that is, R°f = X2. By a renewal reward
argument, Py, the probability that the server is on, satisfies P,, = IP’(LQ(t) = 1) which is
given in (4), and Pog := 1 — Pyy,.

The M/G/1 queue with on-off server has extensively been studied in the literature (see,
e.g., [9,15]). Let us state here only the results that are relevant for our analysis. The LST
of the sojourn time of a customer is denoted by D;(s) and follows from a decomposition
argument, [15]

Di(s) = Wi(s)Bi"(s), (7)
where W1 (s) and BT (s) denote the LST of the waiting time of a customer (until it is taken
into service for the first time) and the effective service time (including possible service

interruptions), respectively. Note that Bt includes the service interruption time and is
therefore not equal to BY. The LSTs Wi (s) and B$®(s) are given by [1]

Wi(s) = Warjc/1(s)(Pon + PoprROT(5)), (8)
(a3 +5)(0f +5) - Ba(0} +5) ()
(0d + 5)(a9 + 5) — 03al(1 = By(af +5))’

By (s) =

where Re(s) >0, R°f(s) denotes the LST of the residual time of an off-period, and
W /c1(8) is the LST of the waiting time in the corresponding M/G/1 queue with service
time with LST B¢ (s).

It follows that N; (2), the p.g.f. of the Q1 queue length, can be expressed as function of
D (s), using the so-called functional form of Little’s law, as follows (see, e.g., [19])

Ni(z) = Di(A1—2)), || <1. (10)

Let us denote by N¥(z) the p.g.f. of Q; queue length at the start time of its service period.
It can then be shown using Eq. (10), the PASTA property and conditioning on the position

https://doi.org/10.1017/50269964814000059 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964814000059

368 A. Al Hanbali et al.
of the server, that

NY(2) = Warzan (ML= 2)) - BST(M1 - 2)) - REF (AN (1 - 2)). (11)
Moreover, let K3, denote the total number of arrivals to ()2 during its nth arrival period.
Since in our tandem model two successive queues cannot be on service at the same time,

the results derived for the p.g.f. of the joint queue length in a time-limited polling model
in [2,6] can be used to find that

1
1-— ZBl(Oé%)

a3Bi(ag)(1 ~ 2)
od + A1 — p(ad, 2)

KQ,n(Z) = 1- Bl(a%) + )N{’ (,u(oé, Z)) > (12)

where u(al, z) is the smallest root of z = 2B (a3 + A1 —2)) with [p(ad,2)] < 1. Kon(2)
will be required later in the approximative analysis for Q2. We note that the related asymp-
totic results of the variance of departures in critically loaded single-server queues is analyzed
in [3]. In the following, we will study each mobile queue in isolation.

5. SOJOURN TIME APPROXIMATION VIA QUEUE LENGTH

In this section, we present an approximation for the LST of the sojourn time of a customer
in @;, denoted by l~)l(s)7 1=2,...,N —1, via queue lengths. We refer to this approxi-
mation as the queue-length approximation. We consider the queue-length process of Q);
when (L;(t), Li+1(t)) = (0,1), that is, during a @; service period. It turns out that this
queue-length process corresponds to the waiting time in a Geo/G/1 discrete-time queue
with geometric inter-arrival time distribution and general service requirement distribution.
The delay D; follows from adding the total time a customer spends in service to the latter
waiting time.

5.1. Queue Length of Q;

Consider the queue-length process of @; only during its service periods. This is done by
removing the time intervals where the (); server is not present, that is, during @); off-periods.
This new process can be seen as the queue length in a batch arrival queue with inter-arrival
times distributed as @Q); service period. Let y,, n =0,1,..., denote the ending times of Q;
service periods. Let Nf, denote the queue length of @; at epoch y,,. Assume that the queue
length is left-continuous, that is, arriving batches are not counted as being in the system
until (just) after they arrive.

Let M, denote the total number of @Q; arrival periods that occur between the nth
and (n+ 1)-st Q; service period. Note that due to the tandem structure in our model it
is clear that the ; arrival period represents the Q;_1 service period. Let K", denote the
total number of arrivals to @; during the mth @; arrival period for m =1,..., M,,. Thus,
between the end of the nth and (n + 1)-st service period 2%21 K", customers arrive to Q.
So that, in our interpretation of the batch arrival queue with off-service periods removed,
at time y, a batch of size 2%21 K", arrives to the queue. Note that it is possible that
M,, = 0, in this case the batch size is simply equal to zero. Let E; ;41 denote the number
of customers that complete their service in @); during the (n + 1)-st service period in the
case where at the beginning of this period the @; queue length is infinite. A sample path of
the evolution of N;(t) as a function of ¢ is depicted in Figure 2. It is then easily seen that
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Q; length
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FIGURE 2. Sample path of the @); queue length.

during the nth cycle, [yn, Yn+1), N{, 41 can be written as function of N, as follows:

M, +
Nfpy1 = (Ngn + Y KD, - Em+1> ., n>0. (13)
m=1

where ()1 := max(0, -). Recall that Y; ,,.1 denotes the duration of the (n + 1)-st Q; service
period that is an exponentially distributed rv with rate & = ol + o} 11~ Recall that the
customers service requirements are i.i.d. rvs with general distribution. It follows that F; .,
n=0,1,..., are i.i.d. rvs, which are geometrically distributed with parameter v; := P(B; <
Yint1) Bi(fl) Thus, the probability of the event {E; ,+1 = [} reads

P(Eipii=0)=1-v), 1=01,.... (14)

79

5.

Note that E; ,, 11 is independent of ngln and M, K Zmn depends on the index m, however, it is
independent of the rv M,,, and that K", depends on the queue-length process of ();—1 during
the time interval between the nth and (n + 1)-st Q; service periods. Moreover, the queue

length of @;—1 does not form a Markov chain. For this reason, the rvs K, n=0,1,...,
m =1,..., My, are not independent rvs. In addition, F;, and K], are not independent.

For the sake of model tractability, we make the following approximating assumption:

AssumPTION A: K[, n=0,1,...,m=1,..., M, areii.d. and also independent of {E;:
1=0,1,...,n}.

By Assumption A, Eq. (13) represents the waiting time of an arrival in a discrete-
time single-server queue with inter-arrival times Ej;, 11 and service requirements F;,, :=

2%21 K77, . The main advantage in this model is that the distribution of E; ,+1 is geometric.
It is known that Nf(z), the steady-state p.g.f. of N¢,, is given by (see [16, Corollary 4.3]
with U and B equal in distribution and v = p = 1)
(1—v; —vE[F))(z—1)
z—1+v;(1—2F(2))

NE(z) = el < (15)

where Fl(z) is the steady-state p.g.f. of F; ,. Since K", is independent of M, the p.g.f.

i,m

F}i(z) can be written as follows:

Fi(z) =E [E ERa M“} = My (Kin(2)). (16)

We emphasize that IAQn(z) follows from the analysis of Q;_1. For this reason, to complete
the analysis of Q);, in Section 5.4 we will derive IA(H_ln(z)
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To derive the LST of the sojourn time at Q; we need N¢(z), the p.g.f. of Q;
queue length seen by an arbitrary customer, and M, (z), which will be determined
in Section 5.2.

LEMMA 1: The p.g.f. of the queue length of Q; seen by an arbitrary arriving customer is
given by

N{(z) = Nf(z)

7 K2

(1 - Fi(2))
1

0~ 2] (17)

PROOF: Let N/(z) denote the p.g.f. of Q; queue length seen by the jth customer within
a batch upon arrival including himself. Since the size of the batches is independent of the
queue length of @; present upon arrival, N/ (z) reads,

N/ (2)=2N7"Y2), j=1,2,..., (18)

with N?(z) = N¢(z). The probability, P(J = ), that a customer is the jth customer within
the batch is equal to the fraction of customers who are jth arrival in their own batch, which
gives

P(F; > j)

BT =3)= E[F]

(19)

Removing the condition on the customer position in a batch in (18) and using (19) gives
the desired result. |

As can be seen Nf(z) is function of Fj(z) and eventually of M, (z). Now, we derive
M, ().

5.2. P.g.f. of M,

The rv M,, only depends on the mobility process of Q;_1, Q;, and Q;4+1 and can be fully
represented as the number of visits to a state in a Markov chain.
The p.g.f. of M,, can be written as follows:

s
O
I
=
S
I

0) + (1 —P(M, = 0)) M, (2), (20)

where M; is M,, given that it is strictly positive. In the following lemmas, we will first
derive Mt (z) and next P(M,, = 0).
LEMMA 2: The p.g.f. of Mt is

M (2) = —bz(A +2B) tu, |z| <1, (21)

n
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where

A11 0 0 a%l 0 0

ol Ap a2y 0 oY, 0

A — 0 a%+1 A33 0 0 Oé?_l
0411_1 0 0 A44 Oz? 0 ’

0 g Ass O‘?ﬂ

0 0 alf, A

0
0 af 0 0 0 0 it

0 0 0 0 0 0 0
g_l0 0o o oo0of _fa

I ) 0O 0 0 0]” B afy ’

0 afy 0 000 0
0 0 «a_, 000 ol

and where the diagonal entries of A are such that (A + B)e +u = 0. The vector b is the
row vector of order six and of non-zero entries

b(2) = h(1), b(3) =1—h(1),

11 0o 1 0 .0
(ai—lai+17 0,a;_10;41,0,0, a;_1a;)

h=— "H L.V,
(0‘?—1 + 0%1—1)(a? + C%l-s-l)
H11 Oé?+1 Oé?_l 0 0 0 aQ 0
ajlyy He 0 o)y 0 0 0 al
al g 0 Hss oz(l)Jrl al 0 0 0
H= 1 1 o |V = 0 0
0 oa; ;1 ajy; Hu 0 oy
1 al 0
0 0 a; 0 H55 Qi 161 1
o
0 0 0 of alyy He !

The diagonal entries of H are such that He + V x (1,1)T = 0, where e is the column vector
of order siz and with all entries equal to 1, and xT is the transpose of vector x.

PROOF: See Appendix A.1. |

LEMMA 3: The probability that no Q; arrival period occurs during the nth cycle reads

P(M, =0)=—g-F ' w, (22)
where
1 1 1 0 1 0 0
9 @, +al_ )@ +al (0‘1'—104¢+1aa¢_1%+1707%_1%)7
1—1 1—1 7 1+1
F11 o 0 0 O‘?-H
F— Oézl_l F22 Oé,? 0 o O‘?Jrl
N 0 ol F o9 v 0
i 33 i+1 1
0 0 OtllJrl F44 @
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The diagonal entries of F are such that
Fe+w+ (a,0,a}_;,al )T =0.

PROOF: See Appendix A.2. |

5.3. Sojourn Time in Q;

Recall that D;, the sojourn time in @Q);, consists of two parts: the time required to serve
N¢ customers, and the time a customer is in @Q; but @; is not served. Let BS" denote
the effective service time at @Q;, i =2,...,N — 1, that starts when a customer receives
the service for the first time and ends when the customer departs from Q;. Clearly, B¢t
includes the time when the @); service is interrupted. Let L denote the total number of
interruptions during the service of a customer. It is easily seen that B?ff can be written as

L
B = By + Y (Vi + B (23)
=1

where B is the conditional B; given that it is smaller than Y;, the exponential rv with rate
& =al+af,, Y7 is the conditional Y; given that it is smaller than B;, and Z;; is the
duration of the service interruption in @Q;. Let él(s) denote the steady-state LST of =, ;.
Since we are considering the preemptive-repeat discipline, the distribution of L is geometric
with parameter P[B; > Y;] = 1 — B;(&;). Conditioning on L, we find the LST of BT that
reads

B (s) = Ets) Bil&i+s) o N_1 Re(s)>0. (24)

(& + ) = &(1— Bi(& + 5))=i(s)

An arriving customer to @Q; joins the queue when @Q); is not served. Therefore, the customer
has to wait for the server to return to (); in order that her service starts. This occurs when
Q; and ;41 are both at location L;. Let = denote the first time after ¢ that the server
returns to ; given that an arrival joins @); at t. In the following lemmas, we give the LST
of 2, and =7.

LEMMA 4: The LST of =; is

[1]:

1(8) = y(SI —A- B)ilum Re(s) > 07 (25)

where

1
Y= (ao +a1 )(ao +a1 )(a%—la?—i—l?070%1—10‘?70‘?—10‘11-&-1’O’o"(i]—la?)’ (26)
i—1 i—1 i i+1

A, B, and u are given in Lemma 2.
PROOF: See Appendix A.3. [ |
LEMMA 5: The LST of 2 is

Zi(s) = y*(sI— A— B)"'u, Re(s) >0, (27)
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where

% 1
V= el 0 00, 0,0,0) (28)
i+ i+

PROOF: See Appendix A 4. [ |

We are now ready to formulate our main result for the sojourn time in @;, the queue-
length approximation.

THEOREM 1 Sojourn time via queue length: Under Assumption A, the sojourn time in

Qi is
N¢
D;=%;+ Y B (29)
=1
The LST of D; reads
Di(s) = E; (s)NF (B (s)),  Re(s) > 0. (30)

Proor: Equation (29) is due to the fact that the queue length of @; seen by an arriving
customer is Nf (including himself) and the customer in service has to wait for = before
that the service restarts in Q);.

Since N depends on the history of the Markov chain (L;—1(t), L;(t), Li+1(t)) and B$T
depends on the future of (L;—1(t), Li(t), Li+1(t)) the rvs Nf and B¢ are independent.
Moreover, Bf‘cf is independent of Z¥, e.g., see (23), and Nf is independent =F. All these

independencies together readily give (30). O

Remark 1. For the exponential service times, we note that in [1] we proposed a different
approximation of the sojourn time at @; via the workload analysis in the queue. We empha-
size that the queue-length approximation proposed in this paper is much easier to derive
and to extend to the general service times distribution.

5.4. ng of Ki+1,n

In our tandem model, we note that the arrivals to a queue are the departures of the upstream
queue. Therefore, to derive the queue length of @);, it is required to first analyze Q;_1, and
so on. For this reason, we emphasize that in our iterative scheme the p.g.f. Kln(z) should
be computed in the analysis of Q;_1. Therefore, to close the iteration loop of @Q;, we will
derive in the following k,+1n(z) The rv Kj41, represents the total number of arrivals
to Q41 during a @); service period. Let IV denote the queue length of @); just after the
beginning of a @); service period. Therefore, N is the sum of N/, the queue length of @;
seen by arriving batch, and Fj;, the batch size. Note that during a ); server period, there
are no arrivals to @; and the distribution of the duration of that server period is Y;, an
exponential rv with rate & = af + o} ,,. Consequently, using (12) with A — 0 and replacing
ad by & and Bi(s) by Bi(s) gives

. 1

Kiv1n(2) = |Bie)a - (Big)z) +1-Bi&)]. @)

1- Bi(&)

where NP (z) := N¢(z)F;(z), which are given in (15) and (16).
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6. NUMERICAL RESULTS

We consider a tandem network of N queues including the source and the destination queue.

The mean service time at @; is equal to b; =1 for ¢ =1,..., N. Recall that @); remains
at locations L;_; and L; an exponentially distributed period of time with rate a} and o?.
0 1

We will consider the case where o; = oy = a;. The queues ); and Q) remain always at
locations L1 and Ly, respectively. Our objectives are to validate the approximations and
to give insights into the sojourn time behavior as a function of the system parameters.

To validate our approximation we will compare its results with those of the simulation.
The simulation of the above tandem model scenario was implemented in the C++ program-
ming language. To generate the rvs we used the pseudo-random generator package of C++.
We note that a simulation result consists of an average over multiple runs with different
seeds. The number of runs considered is high enough in order to guarantee a small 95%
confidence interval.

Let E[D?l] denote the mean sojourn time in @); using the queue-length approximation
given in (30). Let E[D$™] denote the mean sojourn time in @; using simulation for the
tandem network. Moreover, let us refer to the relative difference between the mean sojourn
time at @; using the approximation and simulation as follows.

al o7y . E[D{]
(%) =100 x (1 - w) .

In the sequel, we will consider four different service time distributions: the determinis-
tic distribution, the Erlang-2 distribution, the exponential distribution, and the two-phase
hyper-exponential distribution. The two-phase hyper-exponential distribution is uniquely
determined by its mean value b, and by the mean m; and probability p; of the first phase.
In the next section, we present some general error analysis by varying all parameters. This
is followed by more detailed studies focussing on only one parameter at a time.

6.1. Global Accuracy Results of the Queue-Length Approximation

In this section, we study the effects of varying several parameters like the maximal load p
at the stations, the visit time parameter o and the SCV of the underlying service times
on the performance for tandem queues of various length. As performance measure we
take the sojourn time in the last mobile queue. In our numerical experiments, this last
mobile queue is the one with the largest relative error (see section 6.2). In Figures 3 and
4, we present 71(1\‘,171(%), the percentual error of our approximation for this sojourn time.
We take the number of nodes in the tandem queue N € {4,7,10}, the mean service time
at every node b; = 1 and the squared coefficient of variation (SCV) of the service times
SCV € {0,0.5,1,3.43}. Furthermore, we consider the system with «; = 0.025 (long visits to
every node), a; = 0.2, (short visits), a; = 0.025 + £=%5(0.2 — 0.025) (decreasing visit times)
or a; = 0.2 — ]6112 (2 —0.025) (increasing visit times) for ¢ = 2,..., N — 1. Finally, for every
combination of N, SCV and «; the arrival rate A is varied such that the maximal load
at a node p € {0.1,0.25,0.4,0.55,0.7} (see Eq. (6)). So, in total, we analyzed 240 different
scenarios. The results indicate that the approximation is not very sensitive to the SCV of
the service times. On the other hand, the approximation is very sensitive to the visit time
parameter «; especially when the visit times are very long compared to the service time the
approximation reaches its limit. Overall, the approximation works well when p = 0.25 but
also for p = 0.4 and the o’ s not to small. For larger values of p or «, the accuracy of the
approximation drops significantly. Here, we also remark that taking another performance
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FIGURE 3. Relative errors (%) in the sojourn time of the last mobile node (on the vertical
axis) as function of the maximal load (on the horizontal axis) for a; = 0.025 and a; = 0.2 —
+=L(2 - 0.0025).
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FIGURE 4. Relative errors (%) in the sojourn time of the last mobile node (on the ver-
tical axis) as function of the maximal load (on the horizontal axis) for a; = 0.0252 —
+=1(2-0.0025) and a; = 0.25.
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FicURE 5. Relative difference between the queue-length approximation and the simula-
tion as function of p for = 0.05 and b = 1 with: (a) exponential service requirement, (b)
deterministic service requirement.

measure like the total sojourn time, the absolute figures change, but the shapes of the figures
only change slightly.

In the following sections, we focus on the effects of changing one parameter at a time.
In these cases, we not only give the relative accuracy of our approximation in the one but
last queue but also in the other queues.

6.2. Accuracy of Queue-Length Approximation versus Load

In this section, we study the accuracy of the mean sojourn time in @; using the queue-
length approximation by comparing it to the simulation results as function of the queue
load p;. This will be done for both the symmetric case when o; =« for i =2,... N — 1,
and asymmetric case when o; # a; for some ¢ and j.

6.2.1. Symmetric case. We consider a tandem network of six queues, that is, N = 6,
with mean service time b = 1 and a; = 0.05, ¢ = 2,...,5. Note that in the case of exponen-
tial services the load at the queues satisfies po = p3 = ps = 2p5 = p. However, in the case of
deterministic or hyper-exponential the load at the queues satisfies ps = p3 = ps = p = 2ps;
see Eq. (6). Figures 5 and 6 show the relative difference as function of p for exponential,
deterministic, and hyper-exponential service distribution. Observe that Tiql is smaller than
20% for p < 0.4 and for all service distributions. For this reason, the queue-length approxi-
mation is accurate in the cases of light and moderate load at @Q);. Moreover, we note that the
accuracy of the approximation is almost the same for the considered service distributions.

6.2.2. Asymmetric case. We consider a tandem network with N = 6 queues including
source and destination. Our objective is to show that the approximated and simulated
mean sojourn time follow the same pattern for ¢ =2,...,6. We consider two different
settings for {as,...,as}: the allocation set A = {0.05,0.025,0.1,0.0375,0.05} and the set
B ={0.05,0.1,0.15,0.2,0.05}. Figure 7 displays the mean sojourn time at Q; as function of
«; for exponential service requirement. Observe that the approximation predicts the behav-
ior of the simulation very well. Moreover, the queues with the highest and lowest mean
sojourn time are the same in the simulation and approximation. These observations also
hold for the hyper-exponential service distribution as shown in Figure 8.
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FIGURE 6. Relative difference between the approximation and the simulation as func-
tion of p for @ =0.05 and b =1 with: (a) hyper-exponential service time with p; = 0.6,
mp = 0.1, and SCV= 3.43, (b) hyper-exponential service time with p; = 0.8, m; = 0.1, and

SCV=7.48.
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FIGURE 7. Mean sojourn time at ; using queue-length approximation and simulation for

A =0.05 and b =1 with: (a) exponential service time, (b) deterministic service time.
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FIGURE 8. Mean sojourn time at ); using queue-length approximation and simulation for
A =0.05 and b = 1 with: (a) hyper-exponential service time with p; = 0.6 and m; = 0.1, and
SCV=3.43, (b) hyper-exponential service time with p; = 0.8, m; = 0.1, and SCV= 7.48.
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FIGURE 9. Expected sojourn time at Q3 and (4 as function of the SCV of the service
times for v = 0.05 and \ = 0.05.

TABLE 1. Coefficient of variation and second moment of the sojourn time at @; using
queue-length and workload approximation and simulation for: A = 0.05, exponential service
with b = 1, for the «; allocation set A (Top) and B (bottom)

Q2 Q3 Q4 Qs Qs

@ 0.05 0.1 0.15 0.2 0.05
o 0.785 0.811 0.830 1.084 0.791
ofim 0.778 0.782 0.795 1.099 0.801
E[(DI)?] 3328.0 1796.4 1147.9 2080.9 1453.0
E[(D§™)?] 3094.0 1449.8 933.9 1891.0 1318.8
; 0.05 0.025 0.1 0.0375 0.05
o 0.998 0.761 0.981 0.815 0.761
ofim 1.022 0.741 0.985 0.795 0.756
E[(DM)?] 8726.9 11466.6 6000.3 10163.8 1875.6
E[(D§m)2?] 8338.7 9098.3 4780.2 8266.8 1643.7

6.3. Mean Approximate Sojourn Time versus Service Times Distribution

Let us check the behavior of the queue-length approximation as function of the service
times distribution. We consider the symmetric scenario of a tandem network of six queues,
that is, N = 6, with mean service requirement b = 1 and a; = 0.05, 1 = 2,...,5. Figure 9
displays the expected sojourn time at Q3 and Q4 using the approximation as function of the
SCYV of the service times. For A = 0.05 and A = 0.1, respectively, observe that the accuracy
of the queue-length approximation is almost insensitive of the SCV of the service times.
Furthermore, for all parameter values considered the approximated mean delay in ); gives
an upper bound of the simulated mean delay in Q);. This observation is in support of the
result in [4] which proves that in the correlated M/G/1 queue a positive correlation between
the service time and the last inter-arrival time reduces the mean sojourn time. We should
emphasize that in our model K", and the last inter-arrival time are positively correlated,
that is, an increase of the last inter-arrival time induces stochastically an increase of K"},
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TABLE 2. Coefficient of variation and second moment of the sojourn time at ); using
queue-length and workload approximation and simulation for: A = 0.05, deterministic service
with b = 1, for the a; allocation set A (Top) and B (bottom)

Q2 Q3 Q4 Qs Qs

o 0.05 0.1 0.15 0.2 0.05
ol 0.775 0.799 0.817 1.052 0.780
ofim 0.767 0.763 0.769 1.060 0.791
E[(D)?] 3542.7 2112.5 1465.4 2322.6 1449.5
E[(D§™)?] 3254.1 1650.2 1155.2 2102.5 1324.8
o 0.05 0.025 0.1 0.0375 0.05
o 0.99 0.755 0.968 0.809 0.748
ofim 1.012 0.734 0.964 0.787 0.742
E[(DM)?] 8941.5 12182.8 6441.7 10513.9 1882.0
E[(D§™)?] 8511.1 9513.6 5075.6 8650.5 1650.1

TABLE 3. Coefficient of variation and second moment of the sojourn time at ); using
queue-length and workload approximation and simulation for: A\ = 0.05, hyper-exponential
service with b = 1, p; = 0.6, and m; = 0.1, for the «; allocation set A (Top) and B (bottom)

Q2 Q3 Q4 Qs Qs

o 0.05 0.1 0.15 0.2 0.05
ol 0.805 0.833 0.854 1.142 0.816
oim 0.897 0.903 0.912 1.081 0.907
E[(DI)?] 2958.7 1368.5 793.9 1729.5 1456.0
E[(D5™)?] 2805.4 1162.1 675.9 1582.4 1306.1
o 0.05 0.025 0.1 0.0375 0.05
ol 1.015 0.773 1.010 0.826 0.789
ofim 1.018 0.871 1.011 0.899 0.885
E[(DM)?] 8288.3 10180.8 5214.7 9449.5 1857.9
E[(D§™)?) 7956.4 8321.6 4241.5 7687.5 1620.7

6.4. SCV of Sojourn Time in Q;

Next, we compare the SCV o; of the sojourn time at Q;, o; := Var[D;]/E[D;]?, follow-
ing from the queue-length approximations with the simulation denoted as U?l and o$m,
respectively. Tables 1-3 show o and 3™, and also the second moments E[(D{)?] and
E[(D§™)?] for the exponential, the deterministic, and the hyper-exponential service times

distribution. Observe that the SCV of the approximations are accurate.
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TABLE 4. Mean sojourn time at (Q; using the queue-length approximation as
function of « for: A = 0.075, exponential service with b =1

a p2 Q2 Q3 Q4 Qs Qs

0.05 0.3 60.55 71.64 76.54 78.14 35.62
0.1 0.3 33.23 38.04 41.43 42.42 19.01
0.2 0.3 19.55 22.25 23.36 23.75 10.75
0.4 0.3 12.69 13.96 14.39 14.52 6.34
0.8 0.3 9.24 9.82 9.96 10.00 4.29
50 0.3 5.77 5.78 5.78 5.79 2.38

TABLE 5. Mean sojourn time at Q; using the queue-length approximation as function of
a for: A = 0.075, deterministic service with b =1

a P2 Q2 Q3 Q4 Qs Qs

0.05 0.315 62.49 74.37 23.52 20.95 22.99
0.1 0.33 35.77 42.21 44.94 45.91 19.34
0.2 0.37 23.52 27.10 28.31 28.67 11.03
0.4 0.46 20.98 23.30 23.79 23.90 7.24
0.8 0.74 49.57 53.01 53.37 53.58 6.26

6.5. Impact of «; on Mean Sojourn Time

Our objective is to show the impact of a; on the mean sojourn time at @; as function
of the service time distribution. We consider the symmetric case where «; = «. Table 4
shows the mean sojourn time at @; as function of « in the case of exponential service times.
Note that for A = 0.075 and b =1, the load p;, i = 2,...,5, is equal to 0.3 and pg = 0.15.
Observe that the mean sojourn time decreases at (); with . Moreover, the mean sojourn
time at @Q;, 7 = 2,...,5, converges to the mean sojourn time in an M/M/1 queue with load
0.3 and arrival rate A = 0.075 that is equal to 5.71. A similar result holds for Qg which gives
that its limiting mean sojourn time is equal to 2.38. Table 5 displays the mean sojourn time
at @); as function of « in the case of deterministic service. The mean sojourn time of the
deterministic service as function of a has an optimum value for a. Additional experiments
show that this optimum is around 0.4. The hyper-exponential service gives similar results
as the case of exponential service (see Table 6). That is, the mean sojourn time in Q;,
i=2,...,5, is decreasing with « and it converges to a limit value, which is approximately
equal to the mean sojourn time in an M/M/1 queue with arrival rate A and load p;. For the
deterministic service, we note that the optimal value of « is sensitive to the value of A and
b in such a way that the higher the load at the queue the smaller the optimal value of «.

7. CONCLUSION AND POSSIBLE GENERALIZATION

In this paper, we have addressed the performance of a tandem queueing system with mobile
queues. We have proposed an analytical approximation for the LST of the delay in @;. The
approximation is called queue-length approximation. Through extensive numerical valida-
tion we have shown that the queue-length approximation gives nice results for light and
moderate load in the case of general service times distribution.
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TABLE 6. Mean sojourn time at (; using the queue-length approximation as
function of « for: A = 0.075, hyper-exponential service with b =1, p; = 0.6, and

my = 0.1

a p2 Q2 Q3 Q4 Qs Qs
0.05 0.27 56.83 66.39 70.96 72.58 35.00
0.1 0.24 29.29 33.58 35.87 36.89 18.31
0.2 0.21 15.33 17.05 17.97 18.39 9.64
0.4 0.16 8.19 8.82 9.15 9.31 5.2
0.8 0.124 4.5 4.73 4.84 4.89 2.88
50 0.05 0.74 0.74 0.75 0.75 0.38

For the sake of clarity, we restricted ourselves to the case where the switch-over time,
that is the time needed for a queue to alternate between locations, is equal to zero.
As a generalization, we can assume that the switch-over time distribution is phase-type,
which increases the cardinality of the state space. For example, in Section 5.2, assume
that when @; migrates from location L; to L;_;1 it requires an exponentially distributed
switch-over time with mean c; . Similarly, when @; migrates from location L; 1 to L; it
requires an exponentially distributed switch-over time with mean cf. The state space of the
Markov chain (L;_1(t), L;(t), Li4+1(t)) is equal to Q= {—2,—1,0,1}3, where L;(t) = —1
(Li(t) = —2) when Q; switches from L;_1 to L; (L; to L;—1). Following the footprints of
Section 5.2, one can easily show that the Mn(z) has exactly the same form as depicted in
Lemmas 2 and 3. The matrices A and B in this case have a much larger dimension. More
precisely, A (resp. B and H ) is a 60-by-60 matrix.

In this paper, we restricted ourselves to the Tandem model case. The case of a general
network of queues with fork and join traffic and with mobile queues remains an open problem
to be addressed in the future. Moreover, we considered the case where there is a single
mobile node moving between two consecutive locations. The scenario of multiple mobile
nodes moving between two consecutive locations is important to address some applications
such as in vehicular networks where for example the mobile nodes represent the busses
moving between to stations.
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APPENDIX A: PROOFS

In this section, we will use the theory of the finite-state continuous-time absorbing Markov chains
to compute Mp(z). Lemma 6 summarizes some known results, e.g., see [14], of this theory that
will be used afterwards.

LEMMA 6: Consider a finite-state, continuous-time, Markov chain {MC(t),t > 0}, with state space
¢=A{1,...,m+n} and with infinitesimal generator matriz, G, of the form

o (o)

where U is an m-by-m matriz, V is an m-by-n matriz, O is an n-by-m matriz with entries
equal to 0 and Oy is an n-by-n matriz with entries equal to 0. The states {m +1,...,m +n} are
absorbing. Then,

(a) the states {1,...,m} are all transient if and only if U is a non-singular matriz.

(b) The probability distribution, F(.), of the time until absorption in one of the absorbing states
{m+1,...,m+n}, given that MC(0) =i, i =1,...,m, reads

F(t) =1 — ajexp(Ut)e, ¢>0, (A.1)

where «; is the m-dimensional row vector with entries equal to 0 except the ith one that is
equal to 1, e is the m-dimensional column vector with entries all equal to 1, and where

exp(Ut) := Z (Ig!)z,

=0
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with (Ut)O = I, the m-by-m identity matriz. Similarly, the LST, F(s), of the time until
absorption in one of the states {m+1,...,m +n}, given that MC(0) =14, i=1,...,m,
reads

F(s) = aj(sly, —U) " 'Ve,, Res>0, (A.2)

where en is the n-dimensional column vector with entries are all equal to 1.

(c) Given that MC(0) = i, the expected amount of time spent in the transient state j is equal
to the (i,j)-entry of —U~Y 4, j=1,...,m.

(d) Given that MC(0) =1, the probability that absorption occurs in state j is equal to the
(i,7)-entry of U 'V, i=1,....mandj=m+1,...,m+n.

A.1. Proof of Lemma 2

Recall that M, is equal to My given that M, > 0, where M, is the total number of Q; arrival
periods during the time interval that separates two consecutive @); service periods.

Let W(t) = (Li—1(t), L;i(t), Li+1(t), M(t)) denote the continuous-time Markov chain with
discrete state-space {0,1}% x {1,2,...}, where M(t) is the number of Q; arrival periods until
time t given that it is strictly positive. Assume that (L;—1(0),L;(0),L;11(0)) is in steady-
state and that a @Q; arrival period has just started at 0, that is, time 0 is the first time that
(Li—1(0), L;(0), L;+1(0)) = (0,1,-) with (L;—1(0—), L;(0—)) # (0,1). Moreover, we set M(0) =1
and M(0—) = 0, and make the states (+,0,1,-) of W(t) to be absorbing. Merging these absorbing
states into one state, referred to as a, will not impact the dynamics of W (t) before absorption.
Since (Li,l(t)7 L;i(t), Lix1 (t)) is an irreducible Markov chain, the probability of transition to state
a is equal to one and thus the time until absorption, Ty, is a proper rv. We will refer to the pre-
vious absorbing chain as AMC. Now writing M,’ in terms of M (t) gives that M, = M(Ty). The
probability distribution IP’(M{{' = m) is the probability that the transition to a occurs from one of
the states {(i,4,k,m) : 4,5,k = 0,1 and (j,k) # (0,1)}.

We derive now M,}L(z), the p.g.f. of M;I. Let us define a level I[(m), m =1,2,..., to be the
transient states of AMC with M (t) = m and ordered as follows

I(m) := {(0,0,0,m), (0,1,0,m), (0,1,1,m), (1,0,0,m), (1,1,0,m), (1,1,1,m)},

Observe that there are in total six states in {(m). We order the infinite number of AMC states as
follows: 1(1),1(2),..., and finally the absorbing state a. It is easily seen that the generator matrix

P of AMC can be written as
R
o (2 R),
0 0

where Q represents the generator matrix of transitions between the transient states of AMC, R
represents the rate vector of transitions from the transient states to the absorbing state a, o7 is
the row vector with all entries equal to zero. Let u denote a column vector that designates the
transition rate vector from I(m) states to the state a. Therefore, u = (a?+1,0,azl,a?+1,(), a)T.
Since u is independent of m, the vector R = (uT,u”,...). Note that on leaving I(m) the AMC
either jumps to I[(m + 1) or to a. For this reason, Q is an infinite upper-bidiagonal block matrix of

the following form
A B e
Q 0 A B o0 -- (A.3)
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where, A is a six-by-six matrix that represents the transition rates between the states of I(m),

m =1,2,..., which reads
[0,0,0m 0,1,00m 0,1,1,m 1,0,00m 1,1,00m 11,1,m |
0,0,0,m || A 0 0 al 0 0
0,1,0,m al Ago oy, 0 af 0
A= 0,1,1,m 0 Oz}“ Ass 0 0 af
1,0,0,m | o}, 0 0 A a? 0
1,1,0,m 0 0 0 a} Ass O‘?+1
1,1,1,m 0 0 0 0 oy Agg

B is a six-by-six matrix that represents the transition rates from the states of I(m) to I(m + 1),
m =1,2,..., which reads

[0,0,0,n 0,1,0,n 0,1,1,n 1,0,0,n 1,1,0,n 1,1,1,n |

0,0,0,m 0 « 0 0 0
0,1,0,m
B= 0,1,1,m
1,0,0,m
1,1,0,m
1,1,1,m

<o

coocoo
oo oo
cooo
coocoocoo
coocoo
cooo

T

where n = m + 1. The diagonal entries of A are such that (A + B)e 4+ u = 0, where e is the column
vector of order six and with all entries equal to 1.

Next, we will derive P(M,; = m) as function of the blocks of the inverse of Q. Since Q is an
upper-bidiagonal block matrix, it is easily verified that Q lisan upper-triangular block matrix
of blocks Uj ., = (—A'B)™ " A~! for 1> 1 and m > I. Note that the matrix A is invertible
since it is a generator matrix of a transient chain. Moreover, —A"!'Bis a sub-stochastic probability
matrix whose entries give the probability of jumping to level [(m + 1) given that the AMC starts
in I(m). For this reason, (—A7!B)™ — 0 as m — oo.

From the theory of absorbing Markov chains, given that AMC starts in [(1) with probability
distribution vector b, the probability that the absorption occurs from one of the states of level I(m)
is given by (see Lemma 6.(d))

A (A.4)

]P)(M,;L"_ = m) — _bUl,YrLu — —b( _ A—lB)mf
The p.g.f. of M, then reads

M{f(z) = —bz Z (- ,zA_lB)mA_lu7
m>0

—bz(A +zB) tu, |2 <1, (A.5)

To complete the proof of Lemma 2 it remains to find b. We assumed that at time 0 the
Q; arrival period has just started. This means that time 0 is the first time after s(< 0)
that (L;—1(0), L;(0), Li4+1(0)) = (0,1,-) and (L;—1(s), Li(s), Li+1(s)) # (0,1, ). More specifically,
given that (L;—1(s), L;(s), Li+1(s)) starts in {(0,0,1), (1,0,1)} with steady-state distribution, the
process (Li_l(t), L;(t), Li+1(t)), s < t <0, either jumps first into {(0,1,0),(0,1,1)}, or first into
{(0,0,0), (1,0,0),(1,1,0),(1,1,1)} and later on into {(0,1,0), (0,1,1)}; see Figure A.1. Given that
(Li—1(s), Li(s), Liy1(s)) = (-,0,1) with steady-state distribution, the former event occurs with a
probability vector that is equal to the probability of transition to {(0, 1,0), (0,1,1)}, considered as

https://doi.org/10.1017/50269964814000059 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964814000059

DELAY IN A TANDEM QUEUEING MODEL WITH MOBILE QUEUES 385

h

'
[ [ |

((0,0,1) (1,0,1)] ((0,0,0) (1,0,0) (1,1,0) (1,1,1)) ((0,1,0) (0,1,1)]

— S p
Chaiﬁ state f -
at s<0 (_hal‘:t ?)tate

FIGURE A.1l. Initial probability distribution of AMC that is equal to f + h.

absorbing set, that reads (see Lemma 6.(d))

1 0 0 0 1 0 -1
fe— (ai_y 04 1) [—0i1 —a; — @i @1 <0 a?)
=-3 i 1 1 0o 1
Qi oy a;_q -y — oy — Qg U
10
_ (0, 05_103) (A.6)

(af_y +af )@ +ajy )

Given that (Lj—1(s),L;(s), Lit1(s)) = (-,0,1), the latter event is composed of two consec-
utive steps: the first one occurs when the process (L;—1(t),L;(t), Lit1(t)) jumps first into
{(0,0,0),(1,0,0),(1,1,0), (1,1,1)} and the second one occurs when it jumps into {(0, 1,0), (0,1, 1)};
see Figure A.1. The probability vector of the first step is equal to g; see Eq. (A.12). For the second
step, given that the process (L;_1(t), Li(t), Li11(t)) starts in {(0,0,0), (1,0,0),(1,1,0),(1,1, 1)}
with probability g, it is possible that the process visits {(0,0,1),(1,0,1)} several times before it
first jumps into {(0,1,0), (0,1, 1)}. This occurs with probability (see Lemma 6.(d))

1 1 0 1 0 0
(ei_10i41,0,05_105,1,0,0,05_05)

h=-— CH 'V, (A7)
(f_y +aj_)(af +af)
where,
Hiu alyy ol 0 0 0 a? 0
i1 H2z 0 04?71 0 0 0 a?
H— ajy 0 Hzp ol af 0 I 0 A

- 1 1 0 7V - 0 0 5 ( .8)

0 0 a0 Hs ol aj ;0

1
0 0 0 af  abyy Hee 0 a5

and the diagonal entries of H are such that He + V(1, l)T = 0. Finally, f 4+ h gives the probability
distribution of {(0,1,0),(0,1,1)} at time 0. Therefore, the non-zero entries of b read

b(0,1,0) = (f + h)(1) = h(1), b(0,1,1) = (f +h)(2) =1 —h(1), (A.9)

because, specifically, f(1) = 0 (see also (A.6) and (A.7)). This completes the proof.

A.2. Proof of Lemma 3

The probability P(M, = 0) is the probability that no @; arrival period occurs during the nth cycle.
This happens when no ;1 service period occurs between the nth and (n + 1)-st Q; service periods.
In terms of the Markov chain (L;_1(t), L;(t), Li+1(t)), the probability of the latter event reduces
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to the probability that the chain first visits the set {(0,0,1),(1,0,1)} and later on {(0,1,0), (0,
1,1)}, given the initial conditions that

(Li—1(0-), Li(0-), Li+1(0-)) € {(0,0,1), (1,0,1)}, (A.10)
(Li-1(0), Li(0), Li+1(0)) € {(0,0,0),(1,0,0), (1,1,0), (1,1, 1)}. (A.11)

Making the sets {(0,0,1),(1,0,1)} and {(0,1,0), (0,1,1)} absorbing, P(M, = 0) is the probability
of absorption in {(0,0,1),(1,0,1)} given the conditions in (A.10) and (A.11). First, let us derive
the initial probability vector of the absorbing Markov chain. This initial probability vector is equal
to the probability that the process jumps into {(0,0,0), (1,0,0),(1,1,0),(1,1,1)}, given that at
initial time this process starts with the steady state distribution in {(0,0,1), (1,0,1)}, which can
be written as (see Lemma 6.(d))

-1
1 0 0 0 1 0 1
= (Qj_1,05_1) [—ai_1 — o — oGy Qg a0 00
O] 1 1 1 0 1 1 0
a;_ytag_ ;g —Qi_1 0y — oy 0 oy 0 o
11 0 1 0 0
(O‘iflaz#l’O‘iflo‘iJrlvaO‘iflai)
= 0 . (A.12)

(@) ) +aj (e +ajy )

It then follows from absorbing Markov chain analysis that (see Lemma 6.(d))

P(My,, = 0) = ,glFfl -w, (A.13)
where,
Fii o, 0 0 oy
1 0
po |1 2o 0 et
- 1 0 bl w = b)
0 Q; Fis3 (ere) 0
0 0 a}_H Fya af

and where the diagonal entries of F are such that
Fe+w+ (], 0,00 1,0i 1) =0,

which completes the proof.

A.3. Proof of Lemma 4

=; is the duration of service interruption in ;. Therefore, in terms of the Markov chain
(Li—1(t), Li(t), Li41(t)), ; is the return time of the Markov chain (L;j—1(t), L;(t), Li+1(t)) to the
set {(0,0,1),(1,0,1)}, given that the chain has just left this set at initial time. Let y denote the row
vector that represents the probability distribution of the states {(0,0,0), (0, 1,0),(0,1,1),(1,0,0),
(1,1,0),(1,1,1)} at the initial time. Hence, y can be written as (see Lemma 6.(d))

1 0 0 0 1 0 -1
y= (1,05 1) (=01 —og — iy Q1
-0 1 1 1 0 1
a;_qtag_ a;_y —0G_] — O — g
y aiyy 002 0 0 0
0 0 0 af; 0 o
1 0 1 0.0 1 0 0
_ (aj_1aiy1,0,05 105, 0_q1049,0,05_105) (A.14)

(@) ) +aj ) +af, )

Considering the set {(0,0,1),(1,0,1)} as an absorbing set, Z;(s) becomes the LST of the time to
absorption of (L;_1(t), Li(t), Li+1(t)) with generator matrix between transient states A+B, given
in Section 5.2, u transition rate column vector from transient states to the absorbing set, and with
initial probability distribution y. Lemma 6.(b) gives the desired result of Z;(s).
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A.4 Proof of Lemma 5

E7 is the first time after ¢ that the server returns to @; given that an arrival to @; occurs at .
Therefore, in terms of the Markov chain (Lifl(t),Li(t),LHl(t)) the duration of = is equal to
the first passage time of the Markov chain (L;—1(t), Li(t), Li+1(t)) to the set {(0,0,1),(1,0,1)}
given that the chain starts in {(0,1,0), (0,1,1)} at initial time. By analogy with the derivation of
Z;(s), assuming that {(0,0,1),(1,0,1)} is an absorbing set, é;k(s) becomes the LST of the time to
absorption of (Li_l(t), L;(t), Li+1(t)) with A+B, the transient states generator, u transition rate
column vector from transient states to the absorbing set, and with initial probability distribution
y*. That is, the probability distribution that the chain starts in {(0,1,0), (0,1,1)} is given by

1 0
* (0,ai+1,ai+1,0,0,0)
y = 0t al . (A.15)
i+1 i+1

Lemma 6.(b) gives the desired result of Z}(s).
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