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We consider the flow of a volume V = gt* of viscous fluid injected into a gap H between
two horizontal plates (¢ and « are positive constants, ¢ is time). When the viscosity
of the displaced fluid is negligible, the injected fluid forms a slug in contact with both
plates connected (at a moving grounding line) to a gravity current (GC) with a downward-
inclined interface. Hutchinson et al. (J. Fluid Mech., 598, 2023, pp. A4—1-13) considered
a constant source (o = 1) of Newtonian fluid at the center of an axisymmetric gap; the
flow, governed by the parameter J (the height ratio of the unconfined GC to H), admits
a similarity solution. Here, the self-similar flow theory is (a) extended to rectangular
geometry and power-law fluids, and (b) simplified. Similarity appears when o =n/(n + 1)
(two-dimensional) and o =2n/(n + 1) (axisymmetric), with propagation ~ 1P, where
B/a =1 and 1/2, respectively, and n — 1 is the power of the shear in the viscosity law
(n =1 for Newtonian fluid). The flow is governed by a single parameter J, representing
the above-mentioned ratio. For small J, the GC is mostly unconfined; for large J, almost
all the injected fluid is in contact with both boundaries of the gap. For given geometry
and n, we solve one ordinary differential equation (ODE) for the reduced thickness over
the reduced length 0 < y < 1, with a singular-regular condition at y = 1. The details of the
confined GC, functions of J, follow by simple formulae.

Key words: lubrication theory, gravity currents

1. Introduction

Gravity current (GC) is a generic name for the buoyancy-driven flow of a fluid of one
density, p., into an ambient fluid of a different density, p,, mostly in the horizontal
direction x (to be distinguished from the mostly vertical buoyancy-driven flows called
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Figure 1. Sketch of the confined system. The volume (per unit width) is V = g¢*. In the self-similar flow,
x6 =ycKtP, xy = K1P and yg depends on the parameter J. In the axisymmetric geometry, r replaces x and
V is per radian. «, B, K, yg are constants.

plumes); see Ungarish (2020) and the references therein. The interpretation of the
driving buoyancy mechanism is as follows: the hydrostatic pressure fields p; o« —p;gz
produce a horizontal pressure gradient o< g’ = |p./pq — 1|g, where g is the gravitational
acceleration, z is the vertical upward coordinate, j =a, ¢, and g’ is the reduced gravity.
The buoyancy is balanced by inertial or viscous effects, depending on the parameters of
the system, in particular, if the Reynolds number is large or small. Here, we focus attention
on the so-called viscous GC, dominated by a buoyancy—viscous dynamic balance (small
Reynolds number); the motion is confined in a horizontal gap, and sustained by a source,
as sketched in figure 1.

Viscous GCs have numerous applications in nature and industry. The systems of
interest belong to various prototypes, such as Newtonian or non-Newtonian fluids, two-
dimensional (2-D) or cylindrical axisymmetric (AXI) propagation, fixed or time varying
(influxed) volume, and liquid or porous medium. An important distinction is between
the unconfined and confined (gap) domain into which the GC propagates. Geostrophic
and environmental GCs are often unconfined (e.g. spread of lava or oilspills), and have
received significant attention. The confined GC occurs often in a gap where one viscous
fluid displaces another viscous fluid particular in the context of porous layers (e.g. Taghavi
et al. 2009; Ciriello & Di Federico 2013; Zheng, Rongy & Stone 2015; Hinton 2020 and the
review by Zheng & Stone (2022)). A less investigated type of confined viscous GC occurs
when the injected fluid encounters no friction from the displaced fluid (e.g. oil injected into
air). A typical application of this type of GC is injection moulding (Hoffman 2014); in this
process, the fluid viscosity is typically approximated by a power law. Our paper attempts to
close some gaps of knowledge concerning the flow of viscous GCs confined by a top, such
as the following. What are the convenient scalings and governing parameters? When are
self-similar solutions available? What are the differences between two-dimensional and
axisymmetric flows? What is the behaviour at the transition from unconfined to confined
flows? These clarifications will be sought for Newtonian and power-law viscous fluids.

The flow studied here is sketched in figure 1. Consider the two-dimensional propagation
of a viscous fluid injected into a small gap of height H between two horizontal plates.
This is a simplification of a rectangular channel of width > H. Assume that the ambient
fluid, displaced from the gap by the injected fluid, is less dense and significantly less
viscous than the injected one (e.g. oil injected into air). In this case, the following type of
flow may appear: the dense fluid forms a slug which fills the gap in 0 < x < xg (¢), while
the fluid ahead of the slug, in xg(#) < x < xn(t), forms a viscous GC with an inclined
interface. The subscripts G and N denote the ‘grounding line’ and the nose of the GC.
Moreover, such flows may be self-similar, in the sense that the slug and GC elongate while
maintaining a constant length ratio. The relevant questions are the following. When is the
flow ‘confined’ and when can it be considered free (after all, the unconfined flow also
propagates in some gap)? When is the flow self-similar? What is the solution? What is the
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connection between the theories of the unconfined and confined GCs? In this context, we
note that the thin-layer (lubrication) theory for the unconfined viscous GCs of volume ¢¢“
provides a rigorous similarity solution for arbitrary o > 0, for 2-D and AXI geometries,
for Newtonian and power-law fluids (Huppert 1982; Di Federico, Malavasi & Cintoli 2006;
Sayag & Worster 2013; Ungarish 2020); the propagation ~ t# and the height profile can
be calculated analytically.

The forerunner of this study (including additional background material) is the work of
Hutchinson, Gusinow & Grae Worster (2023), referred below as HGW, which considered
the flow sketched in figure 1 in axisymmetric geometry, with the source at the origin. HGW
assume a volume V = gt (per radian) and show that for a Newtonian fluid, a self-similar
flow with propagation ry = Kt'/? is predicted in the lubrication-theory framework. In
scaled form, the only parameter of this flow is J, roughly the ratio of the typical thickness
[ of an unconfined GC to H. The ratio between the length of the slug (position of
the grounding line), rg, to ry is a constant yg. The values of K and ys depend only
on J and can be obtained by the integration of a second-order ordinary differential
equation (ODE), which combines continuity with the dynamic buoyancy—shear balance.
Essential to this solution are the boundary conditions at the nose of the GC and at the
grounding line. The theoretical predictions have been verified against experiments, with
satisfactory agreement. The obvious question, which has motivated the present work, is
if this type of confined self-similar flow is present in other systems. Here, we show that
the HGW solution can be extended to two-dimensional flows and to power-law viscous
fluids.

The justification of this extension is both of academic interest and application. The new
results are expected to improve our understanding of, and modelling tools for, the flow of
viscous GCs in the confined situation. The practical aspect of this study is provided by
the observation of Hoffman (2014) that gravity may play a significant role in the injection
moulding industry. This is consistent with the sketch in figure 1: the front portion of the
injected material is expected to be a gravity current. Since moulds are not necessarily
axisymmetric and typically non-Newtonian (power-law), the present extension of the work
HGW is expected to be beneficial.

We show that confined self-similar flows appear for select values of «, depending on
the geometry and on the behaviour index n of the power-law shear. The propagation is like
KtP, and B is equal to o for two-dimensional flows and (1/2)« for axisymmetric flows.
For all cases, J and K increase with yg, and there is a value Jy below which the GC
behaves as in the unconfined case. The transition is elucidated.

The paper is organised as follows. We first consider Newtonian flows because this
facilitates the understanding of the mathematical framework and physical effects. In § 2,
we analyse the two-dimensional (referred to as 2-D) flow and demonstrate that similarity
solutions exist for & = 1/2 only (i.e. V = gt!/?), while xy = Kt'/?. In a properly scaled
form, the only parameter that fixes the values of y; and K is J (conversely, a given yg
determines J and K of the system). We obtain the solution (for all the domain of yg) by
a single numerical integration of an ODE, and also by an analytical approximation, which
turns out to be very accurate. In § 3, we briefly extend the analysis to the axisymmetric
geometry, where o« = 1 and ry = Kt!/2. This is a revisit of the flow considered by HGW;
we show that the same results are obtained by a simpler and more insightful method,
improve the accuracy of the approximated solution, and also clarify the transition to the
non-confined system. The investigation is extended to power-law viscous fluids in §4
and concluding remarks are presented in § 5. The derivation of the typical length of a
unconfined GC is given in the Appendix.
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2. The rectangular configuration (2-D)

We are concerned with a particular case of power-law influxed volume, V = ¢t%, and
propagation, xy = Kt#. Details of the analysis for unconfined GCs of this type are given in
§ 14 of Ungarish (2020) and the references therein. Here, we focus attention on the system
in which the influxed fluid is confined by a gap of height H starting from the source. In
the 2-D case and Newtonian fluid, the solution requires @ = 1/2, 8 = 1/2. Here, we use
these values, but in some equations during the derivation, we shall also mention the more
general form with o and 8. This will facilitate the understanding why only these particular
values are compatible with the confinement constraint.

The densities of the ambient and dense (current) fluids are p. and p,(< p.), and the
reduced gravity is g’ = (1 — ps/pc)g. We neglect the viscosity of the ambient fluid,
which usually implies a very small p,/p. (e.g. oil in air) and hence g’ = g. This detail
is unimportant to our analysis. We also neglect surface tension effects.

The standard lubrication-theory simplifications are used for the GC. The governing
dynamic balance for the horizontal velocity u(x, z, t) is between the buoyancy-driving
and viscous shear

—. 21

ax Y 972 1)

Integration, subject to the boundary condition of no-slip at the bottom z = 0 and no-shear

at the interface z = h(x, t) yields u(x, z, t). The convenient variable for the GC analysis

is the depth-averaged velocity (dimensional)

hzah
ox

We switch to dimensionless variables. The horizontal and vertical lengths are scaled
with H. Volume (per width) is scaled with H 2 The velocity and time are scaled with
/
H
v=5pm 1=2, (2.3)
3v U
and the volume flux coefficient, ¢, is scaled with

h
ﬁ(x,t):}ll‘/(; u(x, z, t)dz——3— 2.2)

1/2
Q=H*/T*=H*/T'?=HU)!/?* = H5/2(3v> . (2.4)

Subsequently, in this section, unless stated otherwise, the variables x, ¢, i, u, }V and ¢
are dimensionless, scaled as defined above. The dimensional counterpart, when needed,
will be denoted by an asterisk; in particular, we note that the dimensional flux coefficient,
which will appear in the definition of J, is denoted g*.

An inspection of the scaled balances reveals that the dimensionless g is the only
input parameter of the problem. However, the value of the coefficient ¢ lacks a clear-
cut physical connection with the confinement effect. HGW suggested the more convenient
parameter J =[/H, where [ is the typical length of the free (unconfined) GC with the
same dimensional volume g* - (#*)V/%. Note that Q < H>/2, see (2.4), and this suggests

1/5

3y *2
J:q2/5:< :/ ) /H. (2.5)

(Again, the asterisk is used to distinguish between the dimensional and the dimensionless
coefficients ¢.) The right-hand side of (2.5) is clearly a ratio of a length / to H. As
expected, / can be regarded as the typical length scale (thickness) of the unconfined GC,
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see the Appendix. Therefore, the value of J =¢g?/3 is expected to be a measure of the
importance of the confinement. We keep in mind that g o J, i.e. a stronger influx will
be more affected by the boundaries of the gap. However, a weak influx (very small J)
is expected to produce a thin GC over the bottom of the gap, and be unaffected by the
confinement. This will be clarified and quantified later.

Using the standard lubrication simplification, the depth-averaged velocity of the
GCis

i(x, 1) = 29 (2.6)
ax
The continuity equation of the GC reads
oh + i(hﬁ) =0, ie. o _ 9 <h3%) =0. (2.7)
ar  0dx ar  0x ax

We emphasise that (2.6) and (2.7) are valid for xg(#) < x < xn(?). In the slug 0 < x <
xg(t), we impose h = 1.

The boundary conditions at xy (¢) are iy = 0, while uy = dxp /d¢. The last condition
implies a finite negative [h*(dh /0x)]n (for more details, see Ungarish (2020) §14.1).

The boundary conditions at the grounding line x¢ (¢) are the obvious i =1 and total
volume conservation

xn (1) xn (1)
% =/ h(x, 1)dx = xg (1) +/ h(x, n)dx = qt'/? (= q1%). (2.8)
0 X,

G (1)

We apply ¢ derivative to the balance (2.8), use (2.7) to eliminate dh/dt and recall
hg =1, hy = 0. We obtain the condition

0x 2

which can be simplified because i = 1. We observe that this is a flux condition which,
in general for the 2-D geometry, can be expressed as

(hit)g = agt®™". (2.10)

h 1
— hy; [—] =—qt ' (=aqt®™), (2.9
G

Since hg = 1, this is actually a condition for u¢.
Introduce the reduced space coordinate of the GC:

y=x/xny@) O<y<D. (2.11)

We obtain from (2.6) and (2.7) the following equation for u(y,t) and h(y,t) of
the GC:

1 dh
i(y, 1) =—h>——, (2.12)
Xy 9y
oh  xiyoh 1 9 dh
a9 (32 2o, (2.13)
ot xy 0y sz\, dy dy

where the upper dot denotes ¢ derivative. The conditions at the leading edge y =1 are
h =0 and u = xy. The conditions at yg are, again, hg = 1, while (2.9) is expressed as

—[g—h} = L Py () (=gt (). (2.14)
Yl 2
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2.1. Similarity solution

It is insightful to start the similarity analysis with the GC of volume V = g%, where « > 0
is a constant. We shall show that, while such solutions are valid in general for unconfined
GCs, the confinement imposes the restriction o = 1/2.

We seek a similarity solution of the form

vV _
=K, h=—Hy) =T PH): a=pKPTUG).  @19)
XN K
where K and B are some positive constants, and /(1) = 1. Substitution into (2.12) yields

potl (2.16)
5
The condition 2 =1 at yg for all ¢ implies that d0h(y, t)/0t =0, i.e. h = h(y). This can
be satisfied when =, see (2.15), and next, (2.16) yields 8 =« =1/2. This is the
justification for the system under consideration here: a consistent matching between a
confined slug and a leading free 2-D GC for a Newtonian fluid is possible only when
V= qtl/z. Note that the term 1 !xy (1) = Kt*T#~1 on the right-hand side of (2.14) is
now a constant, consistent with the left-hand side.
We shall proceed by letting

xy=Kt'"2, h(y,0)=h()=K>PAy), a(y,1)=-2VK:"2, (2.17)

where the prime denotes y derivative. The variable A(y) represents the thickness of the
GC. The rescaling of h(y) simplifies the manipulation and solution of the continuity
equation, as seen later. Note that we replaced U/ (y) by —22(»)A'(y)/B, in accord with
(2.12). The task is to calculate A(y), K and y¢g for a given J.

The substitution of (2.17) into (2.13) yields

1
B + 3 yA' =0, (2.18)

with the boundary conditions A(1) = 0 and — 222 =1/2 (= p) at y = 1. The last condition
follows from u(y =1, t) = xn(¢) (or U (1) = 1). In other words, we require that y =11is a
singular-regular point of (2.18). Equation (2.18) and the boundary conditions at y = 1 turn
out to be the generic governing equations for the viscous GC in the unconfined geometry
for « =B =1/2 (see Ungarish 2020). The reason is that these formulae reproduce the
balances for the GC before the confinement conditions are applied.

Using a Frobenius series expansion 4 =§&"(ap +a1& +---), where £ = (1 — y), we
obtain the solution

P 1/31 ZE3 PR Ly topa -y 2.19
(y)—[z] 1=y [ 24( y) 4032( y+ 0l —y) ]]. (2.19)
We can verify that the boundary conditions at y =1 are satisfied. This result is in
agreement with the solution of Huppert (1982) for the unconfined GC (after correction
of a misprint in the coefficient of the second term).

We use this approximation to obtain regular boundary conditions for 1and " at y =1 —
A, where A is some convenient small interval, say 1073. Then, the numerical integration
of (2.18) can be performed by a standard method. (We used a fourth-order Runge—Kutta).
We obtain A(y) and A’(y) at a large number of gridpoints for the y € [0, 1) interval.

The conclusion is that the calculation of A(y) is decoupled from the calculation of K and
yg. This is the consequence of the rescaling of 2(y) in (2.17). We argue that the one-time

1007 A4-6


https://doi.org/10.1017/jfm.2025.145

https://doi.org/10.1017/jfm.2025.145 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) (b)]2
) — [
: ~ 1.0}
08} i |
: 0.8
/10'6; \ U 06
0.4 0.4:
02} 02f
0 02 04 06 08 10 0 02 04 06 08 1.0
y y
@

/
" L%

— 1 —1J

0 0.2 0.4 0.6 0.8 1.0
YG

Figure 2. Results of numerical integration of (2.18) and use of (2.21). Two-dimensional, V = gt'/?, xy =
Kt'2, h=K*PA(y), it =(1/2)Kt~"2U(y). The value of J determines the grounding-line position yg and

the coefficient K (panel c).

integration of (2.18) for y from 1 to 0 is sufficient for closing the similarity flow solution
in the confined geometry, as follows.

2.2. Calculation of J and K

The solution A(y) provides a universal height profile for GCs of volume o #'/2, which
propagate like Kt'/2, where K is as yet an unspecified constant. The implementation to a
specific system requires the use of the parameter J, see (2.5), and the calculation of the
corresponding coefficient K. Physically, the confinement conditions must be applied.

We recall the confinement conditions 2 = 1 and (2.14), which now read

1
K Aye) =1, —K*PXV(ye) = LS (2.20)

and can be rewritten as
g=-=22"20, K=1/27 aty=yg. (2.21)

Recall that we have obtained the values of A and A" at y € [0, 1]. Any point y of the
solution can be regarded as y¢. For this point, (2.21) produces ¢ and K of the respective
confined GC. In other words, the numerical solution of (2.18) with the boundary conditions
at y = 1, provides (implicitly) the values of yg and K for any plausible g (or J = ¢g>/°).

Typical results are shown in figure 2. In the upper frames, we see the scaled thickness
profile A(y) (=h(y)/K 2/3) and the profile U(y) = —2A%1'. This is the generic behaviour
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n o B Jo Ko Joo Koo K

0.500 0.333 0.333 0.82 0.84 1.61 3.64 1.14
1.000 0.500 0.500 0.85 0.87 1.45 2.59 1.11
1.500 0.600 0.600 0.86 0.87 1.34 2.08 1.09

Table 1. Two-dimensional, the effect of n on the values of «, 8, Jy, Ko, Jo.9, Koo and k.

of the unconfined GC with influxed volume V = g!/2, i.e. for @ = 1/2. In the confined
GC, the profiles A(y) and U(y) are relevant for yg < y < 1 (the flow in the confined part
y < yg can be represented by the horizontal lines A(yg) and U(yg)). The lower frame
provides the coefficients of propagation for a confined flow: for a given yg, the plot
provides the values of J and K; conversely, for a given parameter J, the plot provides
the values of yg and K. This closes the description of the propagation pattern. We see
that for a large J =1/H, the grounding line position yg approaches 1, i.e. most of the
influxed fluid fills the gap. The full-length unconfined GC needs a wider space (h > 1)
than the available gap and, hence, only a short part y € [yg, 1] where i <1 appears.
However, when J is close to 1, the interface of the unbounded GC barely touches the
upper boundary of the gap and, hence, yg is small. For J < 0.85 = Jy, the GC will not
touch the upper boundary. This is the limit of applicability of the confined GC theory;
for smaller J (weaker influx), yg is irrelevant. In this case, we return to the theory of the
classical unconfined GC. The profiles A and U/ remain valid, but the value of K must be
determined by a different condition, not by (2.21); see § 2.3 and Ungarish (2020).

Since J and K are increasing function of yg, it is convenient to introduce the
parameters Jy, Ko and Jo9, Ko.9, which correspond to the situations yg =0 and yg = 0.9,
respectively. For J < Jy, the GC is unconfined and propagates with K < K¢. For J > Jy 9,
the GC is a small part of the influxed volume and the propagation is with K > Ko 9. The
values of the present system are tabulated in table 1.

Interestingly, the comparison between the numerical A(y) and the two-term Frobenius
series solution (2.19) reveals a remarkable agreement, of three to four significant digits,
over the entire range of y. This could be anticipated, because the coefficient of the (1 — y)3
term is 2.5 x 10~*. The conclusion is that the analytical two-terms A is a very reliable
tool for the calculation of the entire flow, in particular, for the prediction of J and K.
In the present case, the numerical solution A(y) is needed mostly for support, not for the
predictions.

The Frobenius series solution provides the following results. The first term gives

2 1/5 5 1/2
JrxJW=|—= | | K~gkW=|—— | . (2.22)
3(1=y6) 31 =y6)

This slightly overestimates J and underestimates K, by approximately 4 % for yg = 0.5,
and the accuracy improves as yg increases. The two-term approximation gives

1/5

23+y61" 5+ 1 1 2 1
J = =J 1——-(1- 1——(1- s
[ e ] 36 6( YG) 24( YG)

2.23a)

) 12 1 32 " 1 32
K~ [m} [1 g0 yG)] —K [1 - o= yg)] . (2.23b)
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The approximations (2.23) are quite accurate, the difference with the numerical results is
less than 0.04 % in the entire range of y¢. In particular, (2.23a) shows that for yg =0, we
obtain Jo = 0.85. The fact that the value is close to 1 confirms the physical meaning of J.

This completes the solution. For a given system (i.e. given g*, g’, v, H), we calculate the
scalings U, T and Q and the parameter J by (2.5). Figure 2 provides the appropriate values
of y and K. The grounding line and nose propagate as yg Kt'/> and Kt'/%. Conversely,
if we wish a certain yg in our system, the figure provides the necessary J and value of K.
We may adjust the values of ¢*, H and v for obtaining this J. Note that the slope dJ/dyg
is small in the domain yg < 0.6. This indicates a big sensitivity of yg on J (ill-conditioned
connection). In practice, it may be difficult to obtain (and maintain) a desired value of yg
in this domain.

2.3. Total volume and transition to unconfined flow

The substitution of the similarity variables (2.17) into the global volume conservation (2.8)
yields

1
K |:yG + K3 / /l(y)dy:| =q. (2.24)
Y6
We note that in the previous solution for K and ¢ as functions of yg, we did not impose this
condition. The only confinement conditions that we applied is the flux condition (2.21).
We argue that the condition (2.24) is equivalent to the flux condition (2.21). The proof,
keeping in mind A(1) = 0), is as follows. Using integration by parts,

1 1
/ A(y)dy = —ycA(yc) — / yA'dy. (2.25)
Y6 YG
Using (2.18), the integral gives —2431" at y = yg. Substitution of K =1/1%? at yg
recovers the first equation of (2.21). In other words, (2.24) and the first equation of (2.21)
are alternative ways for obtaining ¢ = J 3/2 as a function of yg (in both cases, K = /183/ 2).
The use of (2.24) requires the integral of A(y) which is easily obtained. The alternative
calculations of ¢ versus J can be used as a test of the numerical solution for A.

The connection with the unconfined GC can be formulated. The transition from confined
to unconfined occurs when ys = 0 in the continuity equation (2.24), and we obtain

K = q3/5/13/5 — Kq3/5 —_ KJ3/2, (226)

where

1
1= / A(y)dy. (2.27)
0

The value of « is given in table 1. We note that (2.24) with yg = 0 gives the volume balance
for an unconfined GC. Consequently, the result (2.26) expresses the global continuity for
the marginally confined (yg = 0), but also for the unconfined GC in general, i.e. for J < Jy
systems and, thus, K < K. In these cases, (2.26) replaces (2.21), and the value of J is not
a physically relevant parameter of the system, because H does not influence the flow.
For the unconfined GC, H is just an arbitrary length scale. In any case, (2.26) yields the
following relationship between the unconfined and marginally confined (subscript 0) GCs

K =Ko(J/Jo)*'* (I < o). (2.28)

This demonstrates that the confinement enhances the propagation, and the transition about
Jo 1s smooth.
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3. Axisymmetric flow (AXTI)

In the axisymmetric case, the source is at the axis r =0 of a cylindrical coordinate
system, while u is in the radial direction. Figure 1, with r replacing x, is relevant. HGW
demonstrated that the self-similar confined flow appears for VV = gt volume behaviour, and
the propagation is like K#'/2. In other words, thisis ao = 1, 8 = 1/2 case. Here, we briefly
derive the solution. We present this derivation because: (a) this allows a clear comparison
and contrast with the 2-D case; (b) the present solution is simpler and more insightful than
that of HGW; and (c) it facilitates the extension to power-law fluids discussed later.

We start with the observation that the 2-D dynamic result (2.2) for u carries over to the
AXI case with r replacing x, and the major difference will be in the continuity equation
because of the curvature terms.

We switch to dimensionless variables. The horizontal and vertical lengths are scaled
with H. Volume (per radian) is scaled with H3. The velocity and time are scaled with

/
H
U=§—H2; =2 3.1)
V
and the flux coefficient g is scaled with
/
0=H3/T*=H3/T = H*U = H* (f—v) (3.2)

Subsequently, in this section, unless stated otherwise, the variables r, ¢, h, u, V and ¢
are dimensionless scaled as defined above. The dimensional counterpart, when needed,
will be denoted by an asterisk; in particular, we note that the dimensional flux coefficient,
which will appear in the definition of J, is denoted g*.

Again, the only parameter of the scaled flow in the lubrication-theory approximation is
the dimensionless flux coefficient g. It is our intuitive (and correct) understanding that for
a weak influx, the GC will be thin and in little contact with the upper boundary, while
a strong influx will produce a thick layer that will fill the gap and require a significant
pushing pressure. However, the interpretation of the confinement in terms of g is not
straightforward. We note that the scaling Q o« H* and, hence, the scaled g oc H . This
suggests that the major parameter can be defined as

x\ 1/4
J=q'= (3”‘/’ ) /H. (3.3)
8
Here, ¢* is the dimensional coefficient for the constant-rate influx (per radian; equal to
Qo/2m in the notation of HGW). The right-hand side of (3.3) is clearly a ratio of a length
[ to H. As indicated, by HGW, this [ can be regarded as the typical length scale (thickness)
of the unconfined GC, see the Appendix. Therefore, J = g'/* is expected to represent the
importance of the confinement.
The depth-averaged radial velocity is

oh
i(r, 1) = —h>—. (3.4)
or
The continuity equation takes into account the divergent geometry and reads
oh 10 oh 1290 oh
— 4+ —— (rhi)=0, ie. ————(rk®*—)=0. 3.5
8t+r8r(r “) e at rar(r Br) (3-5)

Again, (3.4) and (3.5) are valid in the GC in the domain rg(¢) <r < ry(¢). In the slug,
0 <r <rg(t), the confinement imposes 7 = 1.
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https://doi.org/10.1017/jfm.2025.145

https://doi.org/10.1017/jfm.2025.145 Published online by Cambridge University Press

Journal of Fluid Mechanics

The boundary conditions at ry(¢t) are hy =0, while uy =dry/d¢t. The boundary
conditions at the grounding line rg(¢) are the obvious g =1, and the total volume
conservation (per radian) reads

1 (1)
V=_rk +/ h(r, yrdr = gt (= q1%). (3.6)
2 rg(t)

(Again, the specific result on the right-hand side is for « = 1, but we also add the formal
expression for a general «. This will facilitate the justification that the similarity solution
with confinement conditions requires o = 1.) We apply ¢ derivative to (3.6) and use (3.5)
to eliminate 0/ /dt. We obtain the condition

oh
- rGh3G [—] =q= (=aqt® "), 3.7)
ar G

which can be simplified because kg = 1. We observe that this is a flux condition which,
in general for the axisymmetric geometry, can be expressed as

(rhit)g = aqt®". (3.8)
Introduce
y=r/rn@) O<y<]1). (3.9)
We obtain from (3.4) and (3.5) the following equations for u#(y, ¢) and A(y, t) of the GC:
, 1 0h

u(y,t)=—h"——, (3.10)
ry 0y

oh  Fiyoh 119 h38h
dy

o iy Ry
where the upper dot denotes ¢ derivative. The conditions at the leading edge y =1 are
h=0andau=ry.
The conditions of confinement and the ‘grounding line’ are

h=1 0<y<yg, (3.12)

=0, (3.11)

oh _
— G (hg) (—) =q (=aqi*™"). (3.13)
3y /¢
Note that the last equation can be simplified because hg = 1.

3.1. Similarity solution

Again, we start the similarity analysis with the case V = gt* where @ > 0 is a constant.
We shall show that the confinement imposes the restriction o = 1.
We seek a similarity solution of the form

V
=K% h= ) = G TG, a=BKPTUG). (3.14)
N
where K and § are some positive constants and /(1) = 1. Substitution into (3.10) yields
3 1
B = “8+ : (3.15)
1007 A4-11
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The argument used in the 2-D case is relevant: the boundary condition 4 =1 at the
position yg for all ¢ implies 0h(y, t)/0t =0, i.e. h = h(y). This can be satisfied when
B =a/2, see (3.14), and next, (3.15) yields « = 1, 8 = 1/2. This is the justification for the
system solved by HGW: a consistent matching between a confined slug and a leading free
axisymmetric GC for a Newtonian fluid is possible only for the V = gt case. Note that the
right-hand side of (3.13) is consistent with the left-hand side only for o = 1.

We shall proceed letting

rn=Kt'2 h(y, ) =h(»)=KPAWy), aly,t)=-2PAUKt/? (3.16)

where the prime denotes y derivative. The variable A(y) represents the thickness of the
GC. The rescaling of h(y) simplifies the manipulation and solution of the continuity
equation, as seen later. Again, we replaced U/(y) by —A%(y)A'(y)/p, in accord with (3.10).
Substitution of (3.16) into (3.11) yields

YA + % y2A =0. (3.17)
The boundary conditions for this equation are A(1) =0 and —A%A2' =B =1/2. The
justification is like in the 2-D counterpart, and we require that y =1 is a singular-regular
point of (3.17).

It turns out that (3.17) and the boundary conditions at y = 1 are the generic formulation
for the viscous GC in the unconfined geometry for « =1, 8 = 1/2 (see Ungarish 2020).
This is not surprising, because these are the balances of a GC over a solid bottom before
the application of the confinement conditions.

Using a Frobenius series expansion A =&Y (ag +ai& +---), where £ = (1 — y), we
obtain

P! 1/31 e La X 1 — 240l —y)? 3.18
(y)—[z] 1=y [ U=+ gogl — "+ 0ld—y) ]]- (3.18)
This result is in agreement with the solution of Huppert (1982) for the axisymmetric
unconfined GC (after correction of a misprint in the coefficient of the second term). We
use this approximation to obtain regular boundary conditions for 1 and ' at y=1— A,
where A is some convenient small interval, say 1073, Then, the numerical integration of
(3.17) can be performed by a standard method. (We used a fourth-order Runge—Kutta).
We obtain A(y) and A’'(y) at a large number of gridpoints for the y € (0, 1) interval. This
one-time integration of (3.17) is sufficient for closing the similarity flow solution for the
confined flow, as follows.

3.2. Calculation of J and K

An important point of the present formulation is that the calculation of A(y) is generic,
independent of the value of yg, and decoupled from the calculation of K and J. Actually,
J and K are by-products of the solution of the generic (or universal) equation for A of
the unconfined GC, when y¢ is imposed. We emphasise this insight because it provides a
significant simplification over the method used by HGW for solving the same problem. The
A(y) (thickness, or height) profile of the unconfined GC is determined by the conditions
at the nose y =1, in particular, A =0. Looking back from this point, the confined GC
obeys the same balances (and hence admits the same solution 1) until the thickness, which
grows as y decreases, encounters the upper boundary at yg. Suppose we have the values of
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Figure 3. Results of numerical integration of (3.17) and use of (3.19). AXI, V =gqt, ry =Kt'/?, h=
K2 A(y), i=(1/2)Kt~'21{(y). The value of J determines the grounding-line position y; and the
coefficient K (panel c). For comparison with HGW, recall y¢ = ng/ny and K =ny.

Aand A" at y. Any point y of the solution can be regarded as y¢. In view of the boundary
conditions (3.12) and (3.13), for y = yg, we calculate

J=g""* =1y /a1, K =1/1a0) P> (3.19)

Thus, the use of the numerical solution for obtaining J and K as functions of yg, or
vy as a function of J, is straightforward. Results are shown in figure 3. The physical
behaviour is like in the 2-D case. For J > 1, the grounding line yg is close to the nose,
and for J <0.55~ Jy, the GC can be considered unconfined. In the AXI system, the
value of Jy is less clear-cut than in the 2-D case, because A is unbounded at y =0.
Formally, the interface of the axisymmetric influxed GC will intersect the upper boundary
of any finite gap, but this is unrealistic because a very large U/ is needed at small y,
see figure 3. It makes sense to introduce some artificial y;,i, (0.05 say) as a mimic of
the radius of a realistic source and consider GCs with yg < i, as unconfined. This is
consistent with the estimate Jy = 0.55. Like in the 2-D case, it is convenient to consider
the parameters Jy, Ko and Joo, Koo, see table 2, whose meaning is unchanged by the
geometry.
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n a B Jo Ko Joo Koo K

0.500 0.667 0.333 0.61 0.65 1.52 3.61 1.49
1.000 1.000 0.500 0.54 0.57 1.32 2.55 1.47
1.500 1.200 0.600 0.48 0.50 1.20 2.04 1.38

Table 2. AXI, the effect of n on the values of «, 8, Jo, Ko, Jo.9, Koo and «.

The analytical A(y) series (3.18) is also convenient for an approximate calculation of K
and J by (3.19). (The identity A'/A = (In A)’ is useful). Using the first two terms, we obtain

2’ 1/2 1 -3/2
K~(2 14+ —(1— : 3.20
(31_y6) [ b ycﬁ (3.20)
J~ L + ! (3.21)
Y6 31—yg 13—yg/~ '

This demonstrates that J is large for yg very close to 1. However, for yg =0.95, we
obtain J &~ 1.59 (in good agreement with the numerical solution) and for yg = 0.5, we
obtain J & (.78 (the numerical solution is J = 0.81). In contrast to the 2-D counterpart,
the two-terms approximation is not accurate for yg < 0.5. The reason is that the height
(i.e. 4) diverges at the axis. In a realistic system, the source has a finite radius, which is not
taken into account by the present solution. Equation (3.17) has a singularity at y = 0 which
defies the Frobenius-series approximation at small y. However, various tests show that the
accuracy of the numerical solution is maintained for y > 0.05, and this is sufficient for the
present analysis.

The present method of solution is different from that of HGW. The mathematical model
is the same, the parameter J is the same, but the derivation of the similarity solution is
different. HGW derived a similarity solution which, in our dimensionless variables, can
be expressed as

2, rg=ngt'?, h=f), (3.22)
where the similarity variable is n =ny(r/ry(t)) and the GC extends from ng to ny
(both constants). This means that ny = K, n = Ky. The governing equation for f(n)
is identical with our (3.17), the boundary conditions are the same, but the domain of
solution is g < n < ny (instead of our yg < y < 1). The main objective was to obtain the
coefficients ny and ng as functions of J. To this end, HGW solved the governing equation
for f(n) numerically for various values of ny (the singularity at ny was resolved using
the first term in a Frobenius series corresponding to (3.18)). For each 5y, the numerical
solution produces the value of ng at which the condition f =1 is satisfied. The flux
condition —ng f 3 me) f(ng)=J 4 (the equivalent of our first equation in (3.19)) provides
the value of J. Evidently, the ratio ng/ny of HGW corresponds to the present yg, and the
coefficient ny of HGW corresponds to the present K. A comparison of the numerical
results ng/ny and ny presented by HGW as functions of J (figure 3 in that paper)
shows perfect agreement with our results yg and ny (figure 3), which were obtained by a
considerably smaller effort. This confirms the advantage of the present method of solution,
which is the result of a more effective scaling of the similarity variables. However, we
emphasise that the physical model and conclusions of HGW are not affected by this
simplification.
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3.3. Total volume and transition to unconfined flow
Using the similarity variables (3.16), the global volume conservation (3.6) yields

1 1
K? |:§y%; + k%3 / /l(y)ydy:| =q=J" (3.23)
YG

We note that in the previous solution for K and J as functions of ys, we did not impose
this condition. We imposed the flux condition (3.19).

We argue that the condition (3.23) is equivalent to the flux condition at yg. The proof,
keeping in mind A(1) = 0, is as follows. Using integration by parts,

1 1

1 1

/ﬁa@ndy=—5%zwm—- (372 0)dy. (3.24)
YG YG

Using (3.17), the integral gives —yA31" at y = yg.

Some algebra and use of K = [/l(yg)]_3/ 2 end the proof. Conclusion: the integral
condition (3.23) is satisfied by the solution of the generic equation combined with the local
flux conditions at yg. In other words, (3.23) and the first equation of (3.19) are alternative

ways for obtaining ¢ = J* as a function of yg (in both cases, K = /153/ 2). The use of
(3.23) requires the integral of yA(y) which is easily obtained.

The connection with the unconfined GC can be formulated. Again, since A increases
to oo as y — 0, we introduce an ad hoc threshold y,,;, (we used 0.05, but tests with
other small values produced very close results). The GC is considered unconfined if the
theoretical yg < Ymin-

The transition from confined to unconfined flows occurs when yg = y,i, in the

continuity equation (3.23), and we obtain (neglecting small terms)
K=¢"%PP =kq’® =k ]2, (3.25)

where

1
1= / A(y)ydy. (3.26)
Ymin

We note that (3.23) with yg = 0 expresses the volume balance of the unconfined GC.
Therefore, the result (3.25) is valid for the marginally confined and also for the unconfined
GC, i.e. for J < Jy systems. In these cases, (3.25) replaces (3.19), and the value of J is
not a physically relevant parameter of the system, because H does not influence the flow.
For the unconfined GC, H is just an arbitrary length scale. The coefficient « in (3.25) is
conveniently calculated as a small addition to the numerical solution of A(y). The value is
given in table 2. Since (3.25) is valid for unconfined and marginally confined GC (subscript
0), we obtain the following correlation:

K =Ko(J/Jo)* (J<Jo). 3.27)

This demonstrates that the switch from the confined flow to the unconfined J < Jj, reduces
the speed of propagation. Here, K is continuous and the transition is smooth, as expected.

4. The unified formulation for Newtonian and power-law GCs
In power-law case, the dynamic viscosity of the current is given by

n—1

u

P 4.1)
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where m is the consistency index and »n is the behaviour index (or exponent). A fluid is
shear-thinning (pseudoplastic) if n < 1 and shear-thickening (dilatant) if n > 1. We define

VNN =m/p. 4.2)

The standard fluid is recovered for n = 1. In this case, vyy = v.

Here, we show that the results of the previous sections can be extended, and expressed
in a convenient compact form for both Newtonian (n = 1) and power-law fluids (n #£ 1).

The lubrication theory of the unconfined Newtonian viscous GC (Huppert 1982) has
been extended to the general n fluid (see Di Federico et al. 2006; Chowdhury & Testik
2011; Sayag & Worster 2013; Longo et al. 2013; Ungarish 2020 §14.3). Here, we consider
the effect of the confinement. We specify the geometry by the dimension & =2 (2-D) and
k =3 (AXI). We denote

G=¢'/vNn, 4.3)

keeping in mind that vy = v for n = 1. The flow is as sketched in figure 1.
The major effect of the power-law behaviour is in the lubrication momentum equation.
In a 2-D system with z vertical upward, the balance is
n—1
0
- } . (4.4)

9z

ou

oh ad
0= —g/— + VNN — |: B_Z

0x 0z

This equation can be integrated twice with respect to z to obtain u(x, z, t). The constants
of integration are determined again by the same boundary condition as for the Newtonian
fluid. We obtain the depth-averaged velocity (dimensional)

_ 1 n an\'/"
u(x’t)=Z[) u(x, z, l‘)dZ=2n—+1gl/n <_8_x> RO/, 4.5)

We switch to dimensionless variables. Lengths are scaled with H and volume (per unit
width or per radian) with H*. The scales for velocity, time and flux coefficient are as
follows:

n H H* n o
=gy qd HU T=g 0=ag = HE (2n+1> gt 4o

Subsequently, in this section, unless stated otherwise, the variables x, r, ¢, h, u, }V and
g are are dimensionless, scaled as defined above. The dimensional counterpart, when
needed, will be denoted by an asterisk; in particular, we note that the dimensional flux
coefficient, which will appear in the definition of J, is denoted ¢*.

The insight from the previous Newtonian cases suggests that the convenient parameter
for expressing the importance of the confinement of the flow is the dimensionless flux
coefficient ¢ at some power. We note that the scaling Q o« H*"+®)/" This suggest the use
of the parameter

2 1\¢ n/(kn+a) 1
J:q”“"“"”:[( n: ) q*g_“/”] = 4.7

The right-hand side of (4.7) is the ratio of a length, [, to H. This expresses the ratio of the
typical thickness of the unconfined GC to H, see the Appendix.
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The dimensionless depth-averaged velocity, for both 2-D (§ =x) and AXI (§ =r)
geometries, see (4.5), is

LAy
wE, ) =—-—— YT 4.8
u@, ( 85) (4.8)
The continuity equations are

8h+ a(h')—O (2-D) (4.9a)

or ax T ’ o
oh 19 -
— 4+ ——(rhu)=0 (AXD. (4.9b)
at  ror

The boundary conditions at the nose &y (¢) are hy =0, while uy = d&y /dr.

The total volume balance is a kinematic consideration. The flux condition results of the
analysis of (2.8) and (2.8) carry over to the general power-law fluid. The grounding line
conditions are therefore g = 1 and

(hit)g = aqt®™'  (2-D), (4.10a)

(rhi)g =aqt®™"  (AXID), (4.10b)

which can be simplified by using #g = 1. The difference between the Newtonian and
power-law fluids appears upon the substitution of (4.8) into (4.9) and (4.10).

The similarity solution is obtained as follows. We define y =& /&y, where & stands for
x or r according to the geometry. We switch to the variables i (y, ¢) and u(y, t) in the
domain y € [0, 1] keeping in mind that the grounding line is at y = yg < 1. The governing
equations (4.8) and (4.9) for the GC are expressed as

1 an\ "
iy, 1) =——— (——> RO/, (4.11)
[En ()] ay
oh iy dh 1 o [ an\ /"
oh _Ewoh 101 emi (__) —0 D). (412
o “xndy  (xn)@FD/moy | dy
oh iy dh 1 1a an\ "
__yr_N__—l__ yh@ntD/n (__) =0 (AXD), (4.12b)
ot Trydy () FD/myay | dy

where the upper dot denotes ¢ derivative. At the nose y = 1, the boundary conditions are
h =0 and u = xy (or ry). We postulate a self-similar behaviour,

xv®) =KtP, a=ptP U, h= ):%H(y) = KD/ )y F (2-D),
N (4.13a)
V()

v =KiP = BPTIUY) b= S H(y) = KT A() 2 (AXD),

3 (1)
(4.13b)

where U (1) = 1. Here, A(y) is the scaled profile of the height. Such similarity assumptions
have been used for the unconfined GC system, see Di Federico et al. (2006); Longo et al.
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(2013); Sayag & Worster (2013) and Ungarish (2020) §14.3. Substitution into (4.11), (4.12)
yields

_amn+2)+n _an+2)+n

2-D), = AXI). 4.14
2n+3 @D p 3n+5 ( ) (414

With these relationships, we obtain from (4.11)
i(y, ) =[=2" AWK (4.15)

where the prime denotes y derivative. The last equation shows that U(y)=
[—/ln—H/l/]]/n/ﬂ.

We apply the confinement conditions to this similarity flow. We argue that the grounding
line is represented by a fixed yg < 1. The 2 = 1 condition at this point requires that A (y, t)
is time independent, i.e. # = h(y). This is realised when

a=p8 2-D), a=28 (AX]D), (4.16)
see (4.13). The combination of (4.14) and (4.16) yields
n n
=(k-1 , =—, 4.17
o= )n +1 p n+1 .17

where k =2 for 2-D and k = 3 for AXI. The confinement imposes a clear-cut restriction
on the value of « for which a similarity flow exists. This value depends on the geometry
of the system (k =2 or 3) and on the viscosity behaviour index » of the fluid.

We conclude that the confined self-similar flow appears only for specific values of the
volume increase time power, o. We emphasise that « is a function of n. We note that, for a
given value of n, 8 is the same in the 2-D and AXI geometries, but 8 = « in the first case,
while 8 = «/2 in the second. Since o and § are determined by the geometry (k =2 or 3)
and the viscosity law (n), the only free input parameter of the flow is J, as demonstrated
below. Combining (4.17) with (4.7), we obtain

J:q(n+1)/(2n+3) 2-D), J=q(”+1)/(3”+5)(AXI). (4.18)

For closing the solution, with the values of « and 8 given by (4.17), we proceed as
follows. The flow is given by

xn(t) (or ry(t) =KtP, (4.19q)

h(y, 1) =h(y) = K", ay, n =[O KPTL (@19b)

The task is to obtain A(y), K and J for a given yg.
The equation for A(y) is obtained by the substitution of (4.19) into the continuity
equation (4.12). In compact form, this is expressed as

|:yk72/l(2n+1)/n (_/1/)1/"]' _ Igykfl,y =0. (4.20)

The boundary conditions at y =1 are 1 =0 and (AL = B (this reproduces
the condition u(y =1,¢t) = K P~V ort4(1) = 1). These boundary conditions impose the
behaviour

1/(nt2) n n 1/(n+2)
Ay) =[+2)"(1 - y)] = [(n+2) (n—> ¢ —y)] (y—1D

+1
4.21)

in general. It turns out that (4.20) and (4.21) overlap with the general formulation for A(y)
for the unconfined GC in the case o« = (2k — 1) (Di Federico et al. 2006; Chowdhury &
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Testik 2011; Sayag & Worster 2013; Longo et al. 2013). This could be expected because,
so far, we applied on A only the conditions at the nose y = 1. Viewed from the nose, the
GC is unconfined until the interface encounters the upper plate at y = yg. For y — 1,
the difference between the 2-D and AXI geometries is insignificant. Equation (4.21) can
be used for starting the numerical integration of (4.20) at 1 — A, and obtaining A and A’
for smaller y, where A is a very small interval. We used a Runge—Kutta method.
Practically, for a given system, the values of A and A’ are available for y € [0, 1] in 2-D
and y € [ypin, 1] in AXI, where y,,;;, =~ 0.05.

We conclude that the calculation of A(y) does not depend on y¢, and is decoupled from
the values of K and J. Therefore, the integration of (4.21) must be performed only once
for a given geometry and n. This decoupling is a result of the rescaling of i (y) in (4.190).

Next, at the position y = yg < 1, the values Ag and /1/G are known. Recalling (4.19), the
height condition hg =1 gives

K =178/ (4.22)
and the flux condition (4.10) yields

B { (1/e)[(—A) AL O (e =2),
Y6 /Ol=A /AL (k=3),

where y = > +2n — 1)/(n + 1).

This completes the task. In general, the procedure, for a given system, is: (a) solve
(4.20), obtain A(y) and A'(y) for y € (0, 1); then (b) calculate K, g and J for a certain
y = yg using (4.22), (4.23) and (4.18). For n = 1, we recover the Newtonian-fluid solution
presented in the previous sections.

Approximations for K and J as a function of yg can also be derived by combining
(4.22), (4.23) and (4.18) with a Frobenius-series solution of A(y). However, the formulae
for n # 1 tend to be cumbersome after the first term (4.21), and are therefore not presented
here.

We illustrate some results for confined GCs with three different values of n in figures 4
and 5. The plots indicate that the profiles A(y), ¢ (y), and the dependencies of J and K
on yg of the confined flow are quite robust with respect of the change from Newtonian to
power-law viscous fluids. As compared with the Newtonian fluid, for a shear-thickening
fluid, both J and K are smaller (for a given yg), while the height A(y) is larger. The
opposite occurs for the shear-thinning fluid. A significant change occurs in the power «.
The shear-thickening fluid accommodates a larger volume-increase rate; this prediction is
an interesting issue for experimental verification. (The tentative explanation is as follows:
the larger o imposes a larger pressure gradient in the current, and this can be matched by
an increase of internal shear provided by a larger n.)

The previous definitions of Jy, Ko and Jyg, Ko9 are valid for both Newtonian and
power-law fluids. Results are given in tables 1 and 2. We emphasise that the calculation of
K and g (or J) by (4.22) and (4.23) is valid only for confined GCs, i.e. J > Jp (at which
v =0 (2-D) or yui, (AX1D)). The transition to the unconfined system is elucidated again
by the total volume balance, which in terms of the similarity variables reads

(4.23)

1

K [y(; + KD/ n+2) / /l(y)dyi| =q (2-D), (4.24q)
YG
1 1

K? |:§yé + K 1D/ () / /l(y)ydy:| =g (AX)). (4.24b)
YG
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Figure 4. Results for 2-D power-law viscous GCs n =0.5 (¢ =1/3),n =1 (¢ =1/2) and n = 1.5 (¢ = 0.6).
Inall cases, B =a.V =qt*, xy = KtP, h = KD/ 3y it = BK1B~1U(y). The value of J determines
the grounding-line position yg and the coefficient K (panel c).

The transition occurs for yg =0 (or yuin =~ 0.05 in AXI) which corresponds to go, K.
For smaller ¢, the same volume balance remains valid (i.e. the first term in the left-hand
side brackets of (4.24) is void). This yields, after some algebra, for g < qo,

K=q" /1" =kq", (4.25)
where [ is the volume integral, given by (2.27) (for 2-D) (or (3.26) for AXI), and
2 2
r=""2 op). r=""% (ax. (4.26)
2n+3 3n+5

Typical values of « are given in tables 1 and 2. Recalling the definition (4.18) of J, we
obtain for both 2-D and AXI systems, the correlation

K = Ko(J/Jo) "2/ 0D (1 < ). (4.27)

The transition from the marginally confined Jy to a smaller J (unconfined GC) reduces the
speed of propagation. The K o< J ox ¢ dependency is expected, in general; (4.27) provides
an explicit correlation for this behaviour in the unconfined case. For the confined case,
J > Jo, the K—J correlation is implicit, as illustrated by figures 4 and 5.

In practice, the value of n may be different from these presented in figures 4 and 5, and
tables 1 and 2. For this case, the values of « and g are provided by (4.17), and interpolation
can be used for the other variables (e.g. K). For a higher accuracy, the numerical solution
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Figure 5. Results for AXI power-law viscous GCs n =0.5 (¢ =2/3),n=1(e¢=1)andn=1.5 (¢ =1.2). In
all cases, B =a/2.V =qt*, ry = Kt#, h=K®+tD/0+D(y), i = BKtP~1U(y). The value of J determines
the grounding-line position ys and the coefficient K (panel c).

of (4.20) for this particular n must be obtained, but this is a quite straightforward numerical
task, as explained above.

5. Conclusions

We analysed the flow of a viscous fluid of volume V = g% injected into a horizontal
gap of height H in two-dimensional and cylindrical axisymmetric geometries. When the
displaced (ambient) fluid is less dense and significantly less viscous than the injected one
(a typical occurrence in the moulding industry), the leading part of the flow is a gravity
current; for a sufficiently strong influx, the tail fills the gap. We showed that for certain
values of «, the flow is self-similar and the propagation is like K#. In general, 8 =« in
2-D and f =oa/2 in AXI flows. We recall that the unconfined GCs display self-similar
propagation for any o > 0. The confinement restricts the similarity flow to o« =n/(n +
1) and 2n/(n 4+ 1) in 2-D and AXI flows, respectively. The analysis of the non-similar
confined flows requires a finite-difference solution which is beyond the scope of this paper.
We derived the details of the self-similar confined flow and of the transition to the
unconfined situation (for a sufficiently weak ¢). The theory covers systematically both
Newtonian and power-law viscous fluids. The flow model is self-contained, without any
adjustable constants. We think that this is a useful addition to the interesting families of
boundary-influenced gravity currents reviewed by Zheng & Stone (2022).
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The flows in the rectangular and cylindrical geometries share some salient patterns.
Most important, the thickness & of the GC is a function of the reduced coordinate y =
x/xn(t) (or r/ry(t)) only, which means that the profile elongates with time, but is not
inflated/deflated. The slug that fills the gap and the position of the nose of the GC elongate
with time, while maintaining a constant length ratio, yg. This behaviour can be supported
only by specific values of «, depending on the geometry and viscosity law. (In contrast,
the unconfined GC is self-similar for any « > 0.) In addition, the only parameter is J,
the ratio of the typical thickness of the unconfined GC to H, and we note that J « g; the
propagation is of the form Kt#; and the total volume continuity condition can be reduced
to a simple flux condition at the grounding line yg. In all cases, the similarity flow is
obtained from the solution of a generic second-order ODE for the scaled thickness A(y)
with physical boundary conditions at y = 1. In other words, the profile of the interface of
the GC is determined by the conditions at the moving nose, like in the unconfined case. The
matching of the generic solution with the confinement conditions at yg < 1 provide the
values of K and J as functions of yg (or of K and y¢ as functions of J). The solution A(y)
requires, in general, a numerical calculation, and useful Frobenius-series approximations
are also available.

The self-similar GC is confined for J > Jy (close to 1, the exact value depends on the
geometry and type of viscosity index). As J increases, the grounding line advances from
the source position towards the tip (nose) of the GC. For J < Jy, the GC is self-similar
over the lower boundary and unaffected by the upper boundary of the gap. In this case,
the value of K is determined by J only (ys is meaningless). We have thus established the
transition from an unconfined GC to the confined counterpart, or vice versa. The transition
is smooth, i.e. K is continuous about Jy and, in general, K o< J, as expected.

The present investigation is a significant extension of the study HGW for the
axisymmetric Newtonian GC. The present methodology is simpler, but the physical model
and insights are the same. HGW compared the theoretical results with experimental data
and found good agreement in general (in some tests, the measured grounding position
yc was notably larger than predicted, an effect attributable to physical mechanisms not
included in the model such as surface tension; see Hutchinson 2024). We hope that the
present paper will motivate similar experimental tests for 2-D Newtonian systems, and
for power-law 2-D and AXI systems. The system of HGW uses a constant influx rate,
o = 1. The other systems considered in this paper display o # 1 and, thus, a challenge of
the experimental tests is expected to be the need of a good control of the time-dependent
influx rate oc7%~! of the pump. We emphasise that the theory provides sharp predictions
for experimental corroboration, in particular: (a) self-similar flows appear only for certain
values of the influx rate coefficient o (accompanied by a corresponding propagation power
B); and (b) the clear-cut physical parameter J determines the position of the grounding line
yg and the value of the propagation coefficient K. For a fluid with given (or measured)
viscosity parameters n and m, the values of « (for similarity) and J can be set, then 8, yg
and K can be measured from the observation of the propagating flow in a gap of known H.
The measured 8, yg, K can be compared with the predicted ones. The possible changes of
geometry, height of gap, influx coefficient ¢* and fluid viscosity provide a wide range of
parameters for the verification of the theory. Comparisons of the profile are also of interest,
but require more complicated measurements and data processing.

Similarity solutions are an idealisation. An interesting question for further research is
what is the robustness of the predictions of this paper, i.e. what modificaettions will occur
due to some (not large) changes of the influx volume rule, e.g. by a variation of « (constant
or time-depending). Some insights in this direction can be sought during the experiments
mentioned above.
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Appendix A. Typical L of the unconfined GC

Let L, U, T denote the scales of length, speed and time of the unconfined GC.

The volume of the GC is V*=g*- (#*)* (per width in 2-D and per radian in
cylindrical geometries). The asterisk denotes dimensional variables to distinguish from
the dimensionless ones with the same notation (e.g. t =¢*/T). For given ¢* and «, we
can derive L, U, T from scaling arguments. We focus attention on L.

We postulate T = L/U. The volume scale is L, k =2 for the 2-D and k =3 for the
AXI case. The dimension of ¢* is L¥/ T, This kinematic consideration suggests

q*=L"T*= LU (A1)
For the dynamic balance, we consider the following.

(i) Newtonian viscous GC: vd%u/dz> ~ g’ suggests U = g’ L?/v. Substitution into (A1)

gives
v\ 1/(k+a)
=l “

In the paper, the definition J =I[/H (see (2.5), (3.3)) is a ratio of two lengths.
Comparing with (A2), we conclude that / & L (the difference is numerical coefficient
~ 1 due to the more rigorous definition of U in the paper).

(ii) Power-law viscous GC: vy n[3(du/dz)"/dz] ~ g’ suggests U = (GL"T1)1/" where
G = g’'/vnn. Substitution into (A1) produces

I — [q*ng—a]l/(lm+0¢) ] (A3)

The definition J =1/ H for the non-Newtonian GCs is a ratio of two lengths, see (4.7).
Comparing with (A3), we observe that/ ~ L.
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