On the flow and coherent structures generated by a circular array of rigid emerged cylinders placed in an open channel with flat and deformed bed
W.-Y. Chang, G. Constantinescu & W. F. Tsai

Direct numerical simulation of turbulence over anisotropic porous media
Y. Kusaka & K. Suga

Exploring the dynamics of ‘2P’ wakes with reflective symmetry using point vortices
S. Basu & M. A. Stremler

Added mass: a complex facet of tidal conversion at finite depth
C. Brouzet, E. V. Ermanyuk, M. Moulin, G. Pillet & T. Dauxois

Complete Hamiltonian formalism for inertial waves in rotating fluids
A. A. Gelash, V. S. L’vov & V. E. Zakharov

A neural network approach for the blind deconvolution of turbulent flows
R. Maulik & O. San

Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection
S. Horn & P. J. Schmid

Non-local continuum modelling of steady, dense granular heap flows
D. Liu & D. L. Hemann

Boundary element methods for particles and microswimmers in a linear viscoelastic fluid
K. Ishimoto & E. A. Gaffney

The instability of a moving interface in a narrow tapering channel of finite length
J. C. Grenfell-Shaw & A. W. Woods

Supersonic flow fields resulting from axisymmetric internal surface curvature
A. A. Filippi & B. W. Shews

Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects
G. L. Richard, A. Rambaud & J. P. Vila

Velocity profiles, flow structures and scalings in a wide-gap turbulent Taylor–Couette flow
A. Froitzheim, S. Merbold & C. Egbers

Spectral energy cascade in thermoacoustic shock waves
P. Gupta, G. Lodato & C. Scalo

On the propagation of gravity currents over and through a submerged array of circular cylinders
J. Zhou, C. Cenedese, T. Williams, M. Ball, S. K. Venayagamoorthy & R. I. Nokes

Transition to turbulence in pulsating pipe flow
D. Xu, S. Warnecke, B. Song, X. Ma & B. Hof

On the macroscopic modelling of dilute emulsions under flow
P. M. Mwasame, N. J. Wagner & A. N. Beris

Gas depletion through single gas bubble diffusive growth and its effect on subsequent bubbles
Á. Moreno Soto, A. Prosperetti, D. Lohse & D. van der Meer

Turbulent horizontal convection under spatially periodic forcing: a regime governed by interior inertia
M. G. Rosewar, B. Gayen & R. W. Griffiths

Instability wave–streak interactions in a supersonic boundary layer
P. Paredes, M. M. Choudhari & F. Li
554 Transient torque in stirred tanks
K. Steirns

579 Surfing the edge: using feedback control to find nonlinear solutions
A. P. Willis, Y. Daguet, O. Omel’chenko & M. Wolfum

592 Clean versus contaminated bubbles in a solid-body rotating flow
M. Rastello, J.-L. Marié & M. Lance

618 Isolating strain and curvature effects in premixed flame/vortex interactions

655 Sedimentation of inertia-less prolate spheroids in homogeneous isotropic turbulence with application to non-motile phytoplankton
M. Niazi Ardekani, G. Sardina, L. Brandl, L. Karp-Boss, R. N. Bearon & E. A. Variano

675 A numerical investigation of the asymmetric wake mode of a squareback Ahmed body – effect of a base cavity
J.-M. Lucas, O. Cadot, V. Herbert, S. Parvais & J. Delery

698 Detailed inner features in spectra of interfacial waves for characterization of a bubble-laden drop
U. R. Sumanasekara & S. Bhattacharya

719 Population balance equation for turbulent polydispersed inertial droplets and particles
F. Salehi, M. J. Cleary & A. R. Masri

743 Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder

779 Evaluation of turbulent mixing transition in a shock-driven variable-density flow

JFM Rapiids (online only)

R1 Sloshing in a Hele-Shaw cell: experiments and theory
F. Violu, F. Gailleux & B. Dollet

R2 How we compute N matters to estimates of mixing in stratified flows

S indicates supplementary data or movies available online.
The Journal of Fluid Mechanics exists for the publication of theoretical, computational and experimental investigations of all aspects of the mechanics of fluids.

EDITOR

Prof. M. G. Worster, University of Cambridge, mgw.jfm@damtp.cam.ac.uk

DEPUTY EDITORS

Prof. P. F. Linden, University of Cambridge, p.f.linden@damtp.cam.ac.uk
Prof. C. Meneveau, Johns Hopkins University, meneveau@jhu.edu

BOOK REVIEW AND FOCUS ON FLUIDS EDITOR

Prof. A. Juel, University of Manchester, anne.juel@manchester.ac.uk

ASSOCIATE EDITORS

Prof. N. Balmforth, University of British Columbia, nb@math.ubc.ca
Prof. O. Bühler, Courant Institute of Mathematical Sciences, obuhler@cims.nyu.edu
Prof. H. Choi, Seoul National University, choi@snu.ac.kr
Prof. J.-M. Chomaz, LadHyX-CNRS–Ecole Polytechnique, jfm.chomaz@ladhyx.polytechnique.fr
Prof. P. A. Davidson, University of Cambridge, pad3@eng.cam.ac.uk
Prof. J. Duncan, University of Maryland, duncan@umd.edu
Prof. J. M. Gordillo, University of Seville, jgordill@us.es
Prof. R. W. Griffiths, Australian National University, Ross.Griffiths@anu.edu.au
Prof. J. Kirby, University of Delaware, kirby@udel.edu
Prof. J. C. Lasheras, University of California, San Diego, lasherasjfm@eng.ucsd.edu
Prof. J. Magnaudet, Institut de Mécanique des Fluides de Toulouse, magnau_jfm@imft.fr
Prof. I. Marusic, University of Melbourne, imarusic@unimelb.edu.au
Prof. M. Matalon, University of Illinois at Urbana-Champaign, matalon@illinois.edu
Prof. J. F. Morris, Levich Institute, CUNY City College of New York, jfm@ccny.cuny.edu
Prof. P. Nott, Indian Institute of Science, prnott@iisc.ac.in
Prof. M. Onorato, University of Turin, miguel.onorato@unito.it
Prof. O. Pouliquen, CNRS - Aix Marseille University, Olivier.Pouliquen@univ-amu.fr
Prof. J. J. Riley, University of Washington, rileyj@u.washington.edu
Prof. S. Sarkar, University of California, San Diego, ssarkar@eng.ucsd.edu
Prof. S. Sherwin, Imperial College, jfluidmech@imperial.ac.uk
Prof. R. Verzicco, Università di Roma ‘Tor Vergata’, verzicco_jfm@uniroma2.it
Prof. S. Waters, University of Oxford, waters@maths.ox.ac.uk
Prof. J. S. Wettlaufer, University of Oxford, John.Wettlaufer@maths.ox.ac.uk
Prof. K.-Q. Xia, The Chinese University of Hong Kong, xia.jfm@phy.cuhk.edu.hk

RAPIDS EDITOR

Prof. É. Guazzelli, IUSTI CNRS - Aix Marseille University, Elisabeth.Guazzelli@univ-amu.fr

RAPIDS ASSOCIATE EDITORS

Prof. C. P. Caulfield, University of Cambridge, c.p.caulfield@damtp.cam.ac.uk
Prof. J. O. Dahibi, Stanford University, jodahibi@stanford.edu
Prof. D. S. Henningson, KTH Mechanics, jfm@mech.kth.se
Prof. D. Lohse, University of Twente, lohse.jfm@tnw.utwente.nl

PERSPECTIVES EDITOR

Prof. P. F. Linden, University of Cambridge, p.f.linden@damtp.cam.ac.uk

PERSPECTIVES ASSOCIATE EDITORS

Prof. M. Brenner, Harvard University, brenero@seas.harvard.edu
Prof. C. Doering, University of Michigan, doering@umich.edu
Prof. R. Goldstein, University of Cambridge, re.goldstein@damtp.cam.ac.uk
Prof. J. Magnaudet, Institut de Mécanique des Fluides de Toulouse, magnau_jfm@imft.fr
Prof. S. B. Pope, Cornell University, s.b.pope@cornell.edu

EDITORIAL OFFICE

FAX 44 1223 325802; JFMproduction@cambridge.org
SUMMARY OF INSTRUCTIONS FOR AUTHORS

Full instructions are available on the JFM web page at cambridge.org/flm

Submission

Authors wishing to have papers published in the Journal should submit them via the online submission and refereeing system, ScholarOne Manuscripts, at https://mc.manuscriptcentral.com/jfm. Papers may be submitted to any editor or associate editor but JFM Rapids articles (10 printed pages or fewer) must be submitted to Professors Guazzelli, Caulfield, Dabiri, Henningson or Lohse who should be consulted in advance. Submission of a paper implies a declaration by the author that the work is not being considered for publication elsewhere and that it has not already been considered by a different editor of the Journal. Conference Reports must be submitted within three months of the meeting.

Preparation of papers

Authors are encouraged to write their papers clearly, concisely and attractively, so that their work will be readily understood. A brief summary of editorial requirements for notation, English and presentation is available on the JFM web page (address above). Authors are urged to use the JFM latex style macros. The [referee] option should be used for initial submission. The style file and template files are available at cambridge.org/core/journals/journal-of-fluid-mechanics/information/instructions-contributors. While use of the JFM latex style file is preferred (and note that this is mandatory for JFM Rapids submissions), ordinary latex or plain tex files can also be accepted. Other software, such as Word, will be converted to latex by the Press or retyped. Manuscripts not prepared using the JFM latex style file should be typed in double spacing, with references listed at the end in alphabetical order of authors and with a separate list of figure captions.

Extensive detailed mathematical relations, tables or figures likely to be useful only to a few specialists will not be printed, but will be available as an electronic supplement to the online version or from the JFM Editorial Office.

Movies

Refereed movies that are integral to a paper can be supplied during the submission process and will be published as supplementary materials.

Accepted papers

Once a paper is accepted, final production files (e.g. the LaTeX source) must be uploaded to the ScholarOne Manuscripts site. Full details are given on the JFM web page. Do not email files to the JFM Editorial Office unless requested to do so.

Charges

There is no charge for publication, but the cost of any colour figures in standard articles must be borne by authors. Authors will receive a PDF file of their published article via email. For standard articles only, offprints can be purchased if ordered when the proofs are returned.

Address questions or comments to Mrs Amanda Johns (Editorial Assistant) or Mrs Alison James (Production Editor) at the Journals Department, Cambridge University Press, Shaftesbury Road, Cambridge CB2 8BS, UK; tel: 44 (0)1223 347922; fax: 44 (0)1223 325802; e-mail: JFMproduction@cambridge.org.