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Abstract. In this paper, we consider random iterations of polynomial maps z2 + cn, where
cn are complex-valued independent random variables following the uniform distribution
on the closed disk with center c and radius r. The aim of this paper is twofold. First,
we study the (dis)connectedness of random Julia sets. Here, we reveal the relationships
between the bifurcation radius and connectedness of random Julia sets. Second, we
investigate the bifurcation of our random iterations and give quantitative estimates of
bifurcation parameters. In particular, we prove that for the central parameter c = −1,
almost every random Julia set is totally disconnected with much smaller radial parameters
r than expected. We also introduce several open questions worth discussing.
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1. Introduction
1.1. Background. In this paper, we discuss the concrete and interesting random holo-
morphic dynamical systems with parameters c ∈ C and r ≥ 0. More precisely, we will
denote fc(z) = z2 + c throughout this paper and we consider random iterations of the form
fcn ◦ · · · ◦ fc2 ◦ fc1 , where cn(n = 1, 2, . . .) are complex-valued independent random
variables that follow the uniform distribution on the closed disk B̄(c, r) = {c′ ∈ C : |c′ −
c| ≤ r} on the c-plane. The reader is referred to [31, Remark 4.10]. See Setting 4.1 for the
rigorous setting.

The aim of this paper is twofold. First, we study the (dis)connectedness of random
Julia sets and relate it to the bifurcation, and second, we investigate the bifurcation of our
proposed random iterations and give quantitative estimates of bifurcation parameters.

In recent decades, there has been a rapid growth of studies on random dynami-
cal systems. In deterministic autonomous dynamical systems, time-evolution rules are
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2 T. Watanabe

independent of time and homogeneous; however, they are dependent in random dynamical
systems. Motivated by scientific demands, great efforts have been devoted to establishing
fundamental results. For this field, refer to the textbook by Arnold [1].

Fornæss and Sibony first studied random dynamical systems of complex analytic maps
[12]. They proved that small ‘random perturbations’ of a single map produce very stable
dynamics on average. It is then natural to ask what happens when larger noise is added.
This question is the central motivation of this paper.

Sumi expanded the results of Fornæss and Sibony by studying minimal sets and
established foundations for the study of random holomorphic dynamical systems. He
defined the mean stability, and showed that the set of mean stable systems is open and
dense in the space of all random dynamical systems having mild conditions [27]. We will
quickly review this theory in §2.2. For details, see [28, 29]. See also [30, 31] for the author
generalizing the setting from independent and identically distributed (i.i.d.) to non-i.i.d.

These previous studies motivate us to study the bifurcation of (i.i.d.) random quadratic
dynamical systems induced by the uniform distribution on B̄(c, r). More precisely, for
a fixed parameter c ∈ C, we can define the bifurcation radius rbif(c) as the parameter
satisfying that the random dynamical system is mean stable if and only if r /∈ {0, rbif(c)}.
Compare this with Theorem 2.16 and Definition 2.17.

The dynamical systems of quadratic polynomials fc(z) = z2 + c (c ∈ C) are extremely
important for studying holomorphic dynamical systems. The celebrated Mandelbrot set is
an iconic figure on the parameter plane, whose boundary is known as the deterministic
bifurcation locus of quadratic polynomials. The Mandelbrot set M is the set of all
parameters whose critical orbit is bounded: M = {c ∈ C : f ◦n

c (0) �→ ∞(n → ∞)}, where
f ◦n

c = fc ◦ · · · ◦ fc ◦ fc is the (autonomous) nth iterate of a map fc. The condition
f ◦n

c (0) �→ ∞ is equivalent to the Julia set of fc being connected. See McMullen’s book
[19] and Milnor’s book [21] for details.

Several authors have reported great studies on sample-wise dynamics for random
iterations. For a fixed infinite sequence (cn)

∞
n=1, we consider the Julia set of compositions

fcn ◦ · · · ◦ fc2 ◦ fc1 , which is called a non-autonomous Julia set or a random Julia set.
Brück, Büger, and Reitz investigated the (dis)connectedness of random Julia sets

[4]. They found interesting examples that illustrated the difficulty of random iteration
compared with deterministic iteration and established several conditions relating the noise
amplitude to the connectedness of random Julia sets. See Remark 3.2 and [3, 5].

Brück, Büger, and Reitz showed that if center c = 0 and radius r ≤ 1/4, then every
random Julia set of fcn ◦ · · · ◦ fc2 ◦ fc1 is connected. Later in [17], Lech and Zdunik
proved that if c = 0 and r > 1/4, then almost every random Julia set is totally discon-
nected. For our viewpoint, this is equivalent to rbif(0) = 1/4. One motivation of this paper
is to generalize this result for the cases where c �= 0.

1.2. Main results. First, we consider a sufficient condition for the random Julia sets to
be totally disconnected almost surely.

Main Result A. (Theorem 3.7) In this statement, the distribution μ of cn needs not to be
the uniform distribution on a disk. Under some assumption, if the critical point 0 tends
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to ∞ with probability one, then the random Julia set Jω is totally disconnected almost
surely.

Second, we reveal the relationships between the bifurcation radius rbif and the connect-
edness of random Julia sets. More precisely, the following holds.

Main Result B. (Theorem 4.6) Suppose that the interior of B̄(c, r) contains a superattract-
ing parameter. Then the following four are equivalent.
(1) The inequality r ≤ rbif(c) holds.
(2) The random orbit of z = 0 does not tend to ∞ surely.
(3) The random Julia set is connected for every sample-path.
(4) The set of all total orbits of z = 0 is bounded in C.
Also, the following four are equivalent.
(1′) The inequality r > rbif(c) holds.
(2′) The random orbit of z = 0 tends to ∞ almost surely.
(3′) The random Julia set is totally disconnected almost surely.
(4′) The set of all total orbits of z = 0 is not bounded in C.
Furthermore, either the former or the latter is valid.

In particular, the following dichotomy holds.

COROLLARY 1.1. Let c be a superattracting parameter. If r ≤ rbif(c), then every random
Julia set is connected. If r > rbif(c), then almost every random Julia set is totally
disconnected.

Corollary 1.1 is a generalization of the fact that the autonomous Julia set of a single map
fc is either connected or totally disconnected according to c ∈ M or not.

Next, we show some properties and present some quantitative estimates for the
bifurcation radius as follows.

Main Result C. (Lemma 4.9, Theorems 4.10, 4.12, 4.14, 4.18, and Examples 4.21 and 4.23)
All the following hold.
(i) For every c ∈ C, we have rbif(c) ≤ dist(c, ∂M).

(ii) For every c, c′ ∈ C, we have | rbif(c) − rbif(c
′)| ≤ |c − c′|.

(iii) If 0 ≤ c ≤ 1/4, then rbif(c) = 1/4 − c.
(iv) If −1/2 ≤ c < 0, then rbif(c) ≤ 1/4 − c − c2.
(v) We have 0.0386 · · · ≤ rbif(−1) ≤ 0.0399 · · · .

(vi) For the airplane parameter c̃3 ≈ −1.75487766, we have rbif(c̃3) ≤ 0.0021.

Here, dist(c, ∂M) denotes the Euclidean distance from c to the boundary of the
Mandelbrot set ∂M. Statement (iii) gives the examples of c satisfying equality rbif(c) =
dist(c, ∂M). However, statements (iv), (v), and (vi) give the examples of c satisfying strict
inequality rbif(c) < dist(c, ∂M).

It is worth noting that for c = −1 or c̃3, statements (v) and (vi) illustrate a large
gap rbif(c) � dist(c, ∂M). Furthermore, we also have rbif(c + ε) � dist(c + ε, ∂M) for
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a small ε ∈ C. The proofs of statements (v) and (vi) rely on parabolic implosion in a
stochastic context. See Theorem 4.19.

Combining statement (iv) with Corollary 1.1, we give a stronger result compared with
the result by Lech and Zdunik. Compare Corollary 4.15 with Theorem 3.5. Moreover, we
give a result for the case where c is far from 0.

COROLLARY 1.2. (Corollaries 4.15 and 4.25) Almost every random Julia set is totally
disconnected:
• if the central parameter −1/4 ≤ c < 0 and the noise amplitude r > 1/4 − c − c2; or
• if the central parameter c = −1 + ε and the noise amplitude r > 0.0399 · · · + |ε|; or
• if the central parameter c = c̃3 + ε and the noise amplitude r > 0.0021 + |ε|.

This corollary gives new examples which satisfy that the random Julia set is totally
disconnected almost surely even if B̄(c, r) ⊂ int M.

In addition, Main Result B gives a quasiconformal conjugacy between Julia sets.

Main Result D. (Theorem 4.29 and Corollary 4.30) Suppose that the interior of
B̄(c, r) contains a superattracting parameter c̃ and suppose r < rbif(c). Then for every
(cn)

∞
n=1, (c′

n)
∞
n=1 ∈ B̄(c, r)

N, there exist K ≥ 1 and a sequence of maps {ϕn}n≥0 such
that ϕn maps the Julia sets of (cn)

∞
n=1 onto the Julia sets of (c′

n)
∞
n=1 K-quasiconformally

and ϕn+1 ◦ fcn+1 = fc′
n+1

◦ ϕn on the iterated Julia set for every n ≥ 0. In particular,
there exists a quasiconformal map ϕ which maps the autonomous Julia set Jc̃ onto the
non-autonomous Julia set.

1.3. Structure of the paper. In §2, we discuss the elementary properties in the general
form and define the bifurcation radius. Moreover, we quickly review Sumi’s theory
on minimal sets and mean stability in §2.2. In §3, we establish some tools to decide
connectedness and total disconnectedness. These are developed by Brück, Büger, and Reitz
[4], and Lech and Zdunik [17]. In addition, we show Main Result A relating bifurcation
and connectedness. In §4, we prove Main Results B, C, and D. In §5, we discuss some
open problems and generalization to other cases.

2. Preliminaries
In this section, we define the bifurcation radius and discuss the elementary properties
required in subsequent sections. We consider minimal sets and mean stability, which
appear in §2.2. They describe set-valued dynamics and we can apply them to quenched, or
averaged, dynamics. The minimal sets provide the basis for our discussion and define the
bifurcation radius, which is the main subject in this paper.

2.1. Setting and notation. In this section, we consider a slightly general setting.

Setting 2.1. Let μ be a Borel probability measure on the parameter plane C with compact
support. Denote the support by supp μ. We define the probability measure Pμ as the
one-sided infinite product of μ, which is supported on �μ = ∏∞

n=1 supp μ with the Borel
σ -algebra Bμ.
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The most simple and important example for μ is the normalized Lebesgue measure on
B̄(c, r) = {c′ ∈ C : |c′ − c| ≤ r}, which means the uniform distribution. Another example
is the Dirac measure at c, which can be regarded as a deterministic dynamical system. We
analyze these examples in §4.

Our random dynamical systems are the stochastic process perturbed by i.i.d. noise in a
sense. One can generalize the setting to a non-i.i.d. setting, which we do not pursue here.
For details, the reader is referred to [30, 31].

Regarding noise, a natural consideration may be a distribution μ with unbounded
support, say the Gaussian distribution. However, in unbounded cases, there are no planar
attractors which we intend to investigate. Thus, we assume that supp μ is compact. See
[5] for the detail and see also [9] for more wild phenomena for the distributions with
unbounded supports.

The following is a well-known fact. See, for example, [11, §6].

LEMMA 2.2. Denote by σ the natural left shift, that is, σω = (c2, c3, . . .) if ω =
(c1, c2, . . .). Then σ : �μ → �μ is a measure-preserving ergodic transformation with
respect to Pμ.

We now define the Julia set for every noise realization ω.

Definition 2.3. For each n ∈ N and infinite sequence of parameters ω = (cn)
∞
n=1 ∈ C

N,
we denote f

(n)
ω := fcn ◦ · · · ◦ fc2 ◦ fc1 .

Definition 2.4. For each ω = (cn)
∞
n=1 ∈ C

N, we define the non-autonomous Julia set or
the random Julia set of ω by

Jω = {z ∈ C : {f (n)
ω }∞n=1 is not normal on any neighborhood of z}.

If there exists c0 ∈ C such that cn = c0 for every n ∈ N, then for ω = (cn)
∞
n=1, the

non-autonomous Julia set Jω is equal to the usual (autonomous) Julia set of fc0 .
Analogously to the usual case, the non-autonomous Julia set is the common boundary

of the basin at infinity and the filled Julia set defined as follows.

Definition 2.5. For each ω = (cn)
∞
n=1 ∈ C

N, we define the non-autonomous basin at
infinity of ω by Aω = {z ∈ Ĉ : f

(n)
ω (z) → ∞ as n → ∞}. We define the non-autonomous

filled Julia set of ω by Kω = Ĉ \Aω.

Here, Ĉ = C ∪ {∞} denotes the Riemann sphere, which is homeomorphic to the real
two-dimensional sphere. We endow Ĉ with the spherical metric d. A polynomial map
f : C → C can be extended analytically to f : Ĉ → Ĉ by letting f (∞) = ∞.

For our convenience, we list the elementary properties of non-autonomous Julia sets,
basins at infinity, and filled Julia sets. For R > 0, we denote by DR the open disk DR =
{z ∈ C : |z| < R} on the dynamical plane.
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LEMMA 2.6. Let μ be a Borel probability measure on C with compact support. Then we
have all the following.
(1) There exists R > 0 such that f

(n)
ω (Ĉ \DR) ⊂ Ĉ \D2R for every n ∈ N and ω ∈ �μ.

(2) Take R > 0 as above. The non-autonomous basin at infinity is then the union
of the increasing sequence of the open subsets; Aω = ⋃∞

n=1(f
(n)
ω )−1(Ĉ \DR) for

every ω ∈ �μ. Hence, Aω is an open neighborhood of ∞. Conversely, Kω =⋂∞
n=1(f

(n)
ω )−1(DR) is a non-empty compact subset for every ω ∈ �μ.

(3) For ω ∈ �μ, we have ∂Aω = Jω = ∂Kω.
(4) For ω ∈ �μ, we have Aω = f −1

c1
(Aσω), Kω = f −1

c1
(Kσω), and Jω = f −1

c1
(Jσω).

For the proof, see [4]. Note that the existence of such R is due to the compactness of
supp μ.

2.2. Minimal sets, mean stability, and bifurcation. Consider the action of polynomial
semigroups whose product is the composition of maps. Semigroup actions are related
to random dynamical systems as set-valued dynamics. Here, we review the theory of
polynomial semigroups, which enables us to define bifurcations.

Generally, one can consider rational semigroups, not polynomial. However, we focus on
polynomial maps since we are interested in quadratic polynomials. The interested reader is
referred to [15, 24].

We start with the definition of polynomial semigroups. Denote by Poly the space of all
polynomials of degree two or more endowed with the topology of uniform convergence
on Ĉ. We say that G is a polynomial semigroup if G is a non-empty subset of Poly closed
under mapping composition. Let � be a subset of Poly. We say that G is generated by � if
for every g ∈ G, there exist n ∈ N and γ1, γ2, . . . γn ∈ � such that g = γn ◦ · · · ◦ γ2 ◦ γ1.

Definition 2.7. Let μ be a Borel probability measure on C with compact support. We
define the polynomial semigroup Gμ as the semigroup generated by the compact set
� = {fc ∈ Poly : c ∈ supp μ}. Here fc(z) = z2 + c is a quadratic polynomial, as we will
assume throughout this paper.

Note that the map Poly × Ĉ � (g, z) �→ g(z) ∈ Ĉ is continuous. This implies that the
map � × Ĉ � (ω, z) �→ f

(n)
ω (z) ∈ Ĉ is also continuous for every n ∈ N.

For every polynomial semigroup, we define the Julia set and Fatou set as follows. The
following proposition connects the Julia set of polynomial semigroup and the random Julia
sets. The idea of the proof can be found in [25].

Definition 2.8. For a polynomial semigroup G, define the Julia set by

J (G) = {z ∈ Ĉ : G is not normal on any neighborhood of z}.
We call the complement F(G) = Ĉ \J (G) the Fatou set of G.

PROPOSITION 2.9. For a Borel probability measure μ on C with compact support, we
have J (Gμ) = ⋃

ω∈�μ
Jω.

Next, we define minimal sets which play a crucial role in studying random holomorphic
dynamical systems.
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Definition 2.10. Let G be a polynomial semigroup. A subset L′ ⊂ Ĉ is said to be forward
invariant under G, or forward G-invariant, if g(L′) ⊂ L′ for every g ∈ G. A subset L ⊂ Ĉ

is called a minimal set of G if L is a minimal element of the set of all forward G-invariant,
non-empty, and compact subsets of Ĉ with respect to the inclusion relation ⊂.

We can easily show that a non-empty compact set L ⊂ Ĉ is minimal if and only if for
every z ∈ L, we have

⋃
g∈G{g(z)} = L.

Trivially, the singleton {∞} is a minimal set of G for every polynomial semigroup G.
Thus, we are interested mainly in planar minimal sets as defined below.

Definition 2.11. A subset L ⊂ Ĉ is said to be planar if ∞ /∈ L.

For example, if μ = δc is the Dirac measure at c, then every periodic cycle of fc is a
minimal set of Gδc . Hence, there is an infinite number of planar minimal sets of Gδc for
every c ∈ C.

For the number of minimal sets, we have the following property.

LEMMA 2.12. Let G1 and G2 be polynomial semigroups generated by �1 and �2,
respectively. If �1 ⊂ �2, then every minimal set L2 of G2 contains some minimal set L1

of G1.

Proof. By definition, a minimal set L2 of G2 is forward invariant under G2. Since
�1 ⊂ �2, the set L2 is forward invariant also under G1. It follows from Zorn’s lemma
that there exists a minimal set L1 of G1 such that L1 ⊂ L2.

Definition 2.13. Let G be the polynomial semigroup generated by a subset � of Poly. A
minimal set L ⊂ Ĉ of G is said to be attracting if there exist N ∈ N and non-empty open
subsets U and V of the Fatou set F(G) such that the following two conditions hold.
(i) L � V � U � F(G).

(ii) For every f1, f2, . . . , fN ∈ �, we have fN ◦ · · · ◦ f2 ◦ f1(U) � V .
Here, A � B means that the closure A is a relatively compact subset of B.

One can easily show that if the polynomial semigroup G is generated by a compact
subset, then the minimal set {∞} is attracting. By using the hyperbolic metric, we have the
following characterization of attracting minimal sets. For the proof, see [28, Remark 3.5]
or [31, Lemma 2.8].

PROPOSITION 2.14. Let G be the polynomial semigroup generated by a compact subset
� of Poly. A minimal set L ⊂ F(G) of G is attracting if and only if the following holds.
There exist N ∈ N, 0 < α < 1, C > 0, and a neighborhood W of L such that for every
k ∈ N, f1, f2, . . . fkN ∈ �, and z, z0 ∈ W , the spherical metric satisfies

d(fkN ◦ · · · ◦ f1(z), fkN ◦ · · · ◦ f1(z0)) ≤ Cαkd(z, z0).

Now, we present the classification theorem, which states that every minimal set either
is attracting, intersects the Julia set, or intersects some rotation domain. Compare the
following theorem with the classification theorem for autonomous iteration of a single
map. For the latter classical theorem, see [21, Theorem 16.1] or [6, Theorem IV.2.1].
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THEOREM 2.15. Let G be the polynomial semigroup generated by a compact subset � of
Poly. A minimal set L ⊂ Ĉ of G is either one of the following three.

(i) L is attracting.
(ii) L ∩ J (G) �= ∅.

(iii) L ⊂ F(G) and there exist g ∈ G and a connected component U of F(G) with
L ∩ U �= ∅ such that g(U) ⊂ U and U is a subset of a Siegel disk of autonomous
iteration of g.

For the proof, see [28, Lemma 3.8]. The classification theorem leads to the following
definitions. We say that a minimal set is J-touching if it is of type (ii) in Theorem 2.15. In
addition, a minimal set is sub-rotative if it is of type (iii) in Theorem 2.15.

However, these two types of minimal sets are uncommon compared with the attracting
minimal sets as stated by Theorem 2.16. Denote by H the set of all parameters c ∈ M such
that fc is hyperbolic.

THEOREM 2.16. For every c ∈ C and r > 0, define the polynomial semigroup Gc,r as the
semigroup generated by {fc′ ∈ Poly : |c′ − c| ≤ r}. Here fc(z) = z2 + c. Then Gc,r has an
attracting minimal set {∞}. Other than {∞}, possible planar minimal sets are described
as follows.
• If c �∈ H, then Gc,r has no planar minimal sets for every r > 0.
• If c ∈ H, then there exists rbif(c) > 0 such that the following hold.

– If 0 < r < rbif(c), then Gc,r has exactly one planar minimal set and it is attracting.
– If r = rbif(c), then Gc,r has exactly one planar minimal set and it is not attracting.
– If rbif(c) < r , then Gc,r has no planar minimal sets.

Theorem 2.16 motivates us to define the bifurcation radius as follows. Note that our
bifurcation occurs at most once because fc is of degree 2, and in general, our bifurcation
occurs at most d − 1 times if we work on polynomial maps of degree d.

Definition 2.17. For every c ∈ C, we define the bifurcation radius rbif(c) ≥ 0 according
to the following cases. If c /∈ H, we define rbif(c) = 0. If c ∈ H, we define the bifurcation
radius rbif(c) > 0 as the unique r > 0 such that Gc,r has the non-attracting planar
minimal set.

Equivalently, the bifurcation radius rbif(c) is the maximum value for r ≥ 0 such that
Gc,r has a planar minimal set, or equivalently, is the infimum value for r ≥ 0 such that
Gc,r has no planar minimal sets.

The rest of this subsection is devoted to emphasizing the importance of deciding on the
bifurcation parameters by presenting some interesting phenomena. See [27, §3.6] for the
details.

Definition 2.18. Let G be the polynomial semigroup generated by a compact subset � of
Poly. We say that G is mean stable if all the minimal sets of G are attracting.

By Theorem 2.16, for every c ∈ C and r ≥ 0, the polynomial semigroup Gc,r is mean
stable if and only if r /∈ {0, rbif(c)}.
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Before describing the dynamics of a mean stable system, we define the function
representing the probability of random orbits tending to an attractor.

Definition 2.19. Let μ be a Borel probability measure on C with compact support. For
every attracting minimal set L of Gμ, we define the function TL,μ : Ĉ → [0, 1] by

TL,μ(z) := Pμ({ω ∈ �μ : d(f (n)
ω (z), L) → 0 (n → ∞)})

for every point z ∈ Ĉ, where d(w, L) = minw′∈L d(w, w′).

The following theorem reveals an interesting noise-induced order. That is, almost every
orbit is attracted by some attracting minimal set and the probability TL,μ(z) tending to the
attractor L depends continuously on initial point z if the system is mean stable. For the
details, see [27, Theorem 3.15].

Definition 2.20. For a polynomial semigroup G, define the kernel Julia set by

Jker(G) =
⋂
g∈G

g−1(J (G)).

THEOREM 2.21. Let μ be a Borel probability measure on C with compact support. If
Jker(G) = ∅, then T{∞},μ is continuous on Ĉ. Moreover, the sum satisfies

∑
L TL,μ(z) = 1

for every z ∈ Ĉ where the sum runs over all attracting minimal sets L.

The following gives a useful sufficient condition for Jker(G) = ∅.

LEMMA 2.22. Let μ be a Borel probability measure on C with compact support. If
int(supp μ) �= ∅, then Jker(Gμ) = ∅.

See [27, Lemma 5.34] for the proof. Notably, the continuity of TL,μ in Theorem 2.21
does not occur in deterministic dynamical systems. Namely, if μ is the Dirac measure at
c, then the function T{∞},μ takes 1 on A(fc) and 0 on K(fc), where A(fc) = Aω and
K(fc) = Kω for ω = (c, c, . . .). Thus, T{∞},μ is discontinuous on the autonomous Julia
set J (fc) = Jω.

Theorem 2.21 suggests that the dynamics of a mean stable system is similar to that of a
hyperbolic map. In the latter case, every orbit on the Fatou set is contracted to an attracting
cycle, while the complementary Julia set has zero areas.

The set of all hyperbolic rational maps is conjectured to be open and dense in the space
of all rational maps. Even in the quadratic polynomial case, whether or not H = M
remains unsolved. As is well known, this conjecture can be affirmatively solved if one
proves that the boundary ∂M is locally connected. Meanwhile, it is still open whether or
not the boundary of the Mandelbrot set has a positive area, although Shishikura showed
that it has the full Hausdorff dimension.

Compared with the autonomous case, the following results show that we can solve
random versions of the abovementioned conjectures. For the proof, see [28, 31].

THEOREM 2.23. For every c ∈ C and r ≥ 0, define the polynomial semigroup Gc,r as
the semigroup generated by {fc′ ∈ Poly : |c′ − c| ≤ r}. Then we have all the following
statements.
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(i) The set {(c, r) ∈ C ×[0, ∞) : Gc,r is mean stable} is open and dense in C ×[0, ∞)

with the usual topology.
(ii) For all but countably many r ∈ [0, ∞), the set {c ∈ C : Gc,r is not mean stable} has

zero two-dimensional Lebesgue measure.

We also have the following tameness if noise is added.

THEOREM 2.24. Let μ be a Borel probability measure on C with compact support. If
Jker(G) = ∅, then the random Julia set Jω has zero two-dimensional Lebesgue measure
for Pμ-almost every ω ∈ �μ.

One may mistakenly consider that Theorem 2.24 is insignificant since it is difficult
to construct autonomous Julia sets with positive areas. However, compared with the
autonomous case, constructing the non-autonomous Julia set of positive areas is not very
difficult. Jones et al found that there exists ω = (cn)

∞
n=1 with cn ∈ {0, 1/2, 1/4} for all

n ∈ N such that Jω has positive areas. They use the parabolic fixed point 1/2 of the map
f1/4. For the proof, see [10, §5.2]. Developing the idea, Comerford proved the existence of
measurable invariant sequences of line fields [8].

As presented above, the dynamics of mean stable systems is similar to that of hyperbolic
polynomial maps. However, they cause interesting phenomena that cannot occur in
deterministic dynamical systems, e.g., continuity of TL,μ, finiteness of the set of all
minimal sets, etc. This motivates us to determine the bifurcation radius where the mean
stability breaks.

3. Total disconnectedness
The systematic study of random iterations of the quadratic polynomial was done by Brück
and Büger. In particular, Brück, Büger, and Reitz investigated the (dis)connectedness of
the non-autonomous Julia sets in [4]. Here, we present some conditions for the random
Julia set to be connected or totally disconnected.

The following [4, Theorem 1.1] shows that the critical orbits determine connectedness of
Julia sets. Compared with the autonomous case, we need to modify the statement suitably.

THEOREM 3.1. Let ω = (cn)
∞
n=1 ∈ C

N. Then the non-autonomous Julia set Jω is con-
nected if and only if the orbit {f (n)

σ kω
(0)}∞n=1 is bounded in C for every k ∈ N.

Recall that if ω = (cn)
∞
n=1, then f

(n)

σ kω
= fck+n

◦ · · · ◦ fck+2 ◦ fck+1 by definition. We
remark on the difficulty of the disconnected case compared with the autonomous case.

Remark 3.2. For an autonomous case, the Julia set of a quadratic polynomial is either
connected or totally disconnected [21, Problem 9-f]. However, for a non-autonomous
case, we can construct a Julia set that has more than one but finitely many connected
components. For instance, if |c1| > 1 and cn = 0 for every n ≥ 2, then Jω = f −1

c1
(Jσω) has

exactly two connected components where ω = (cn)
∞
n=1. Similarly, we can construct various

non-autonomous Julia sets with finitely many connected components. Furthermore, there
exists ω = (cn)

∞
n=1 such that |cn| < 2 for every n ∈ N and f

(n)

σ kω
(0) → ∞ as n → ∞ for

every k ∈ N, but the filled Julia set Kω contains a segment (see [4, Example 4.4]). Thus, it
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is interesting to determine when the non-autonomous Julia set Jω is connected, has finitely
many connected components, is totally disconnected, and so on.

For the case when μ is the normalized Lebesgue measure on the disk B̄(0, r), Brück,
Büger, and Reitz showed that r = 1/4 is the critical value where connectedness drastically
changes as we see below. If r ≤ 1/4, then the random Julia set Jω is connected for every
ω ∈ �μ [4, Remark 1.2]. Brück, Büger, and Reitz then questioned whether the random
Julia set Jω is totally disconnected almost surely if r > 1/4.

Lech and Zdunik [17] showed that it is true. We pay attention to their idea for a while.

Definition 3.3. Let μ be a Borel probability measure on C with compact support. Let
R > 0 be a large number as in Lemma 2.6(1).

For every ω ∈ �μ, define the escape time k(z, ω) of z from DR by

k(z, ω) =
{

min{n ∈ N : |f (n)
ω (z)| > R} if z ∈ Aω,

∞ if z ∈ Kω.

We say that the critical point 0 is typically fast escaping if there exists γ > 0 such that
Pμ({ω ∈ �μ : k(0, ω) > k}) ≤ e−γ k for every k ∈ N.

Note that the escape time is related to the value of the Green function

Gω(z) = lim
n→∞

1
2n

log+ |f (n)
ω (z)|,

where log+ a = max{a, 0} for a ∈ R. By [17, Proposition 8], there exists C > 0 such that
for every ω ∈ �μ and z ∈ Aω ∩ DR , we have

C−12−k(z,ω) ≤ Gω(z) ≤ C2−k(z,ω).

Hence, typical fast escaping can be defined using the Green functions. For details, see [17].
For other discussions on the Green function, see also [12, 16, 26].

The following theorem gives a sufficient condition of random Julia sets to be totally
disconnected almost surely. For the proof, see [17, Theorem 11].

THEOREM 3.4. Let μ be a Borel probability measure on C with compact support. If the
critical point 0 is typically fast escaping, then the Julia set Jω is totally disconnected for
Pμ-almost every ω ∈ �μ.

Using the theorem above, the authors of [17] proved the following theorem.

THEOREM 3.5. Let μ be a Borel probability measure on C with compact support. If
supp μ ⊃ B̄(0, 1/4) and supp μ �= B̄(0, 1/4), then the random Julia set Jω is totally
disconnected for Pμ-almost every ω ∈ �μ.

Consider the case where μ is the normalized Lebesgue measure on the disk B̄(c, r).
From above, the connectedness changes at r = 1/4 if c = 0. Since the value 1/4 is the
distance from c = 0 to the boundary of the Mandelbrot set, one may conjecture that
the transition from connected to disconnected Julia sets equals the distance from c to
the boundary of the Mandelbrot set for any c ∈ M. However, Theorem 3.5 states that
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even if supp μ is contained in the closure of the main cardioid of the Mandelbrot set, it can
happen that the random Julia set Jω is totally disconnected almost surely.

Before giving the sufficient condition of typical fast escaping, we show the following
lemma.

LEMMA 3.6. Let μ be a Borel probability measure on C with compact support. Define
E = {z ∈ Ĉ : T{∞},μ(z) = 1}. If z ∈ E and k ∈ N, then f

(k)
ω (z) ∈ E for Pμ-almost every

ω ∈ �μ.

Proof. Since Pμ is the product of the probability measure μ, Fubini’s theorem implies

T{∞},μ(z) =
∫

B̄(c,r)
T{∞},μ(fc1(z)) dμ(c1)

for every z ∈ Ĉ. By induction, we have T{∞},μ(z) = ∫
�

T{∞},μ(f
(k)
ω (z)) dPμ(ω). Thus, if

T{∞},μ(z) = 1, then T{∞},μ(f
(k)
ω (z)) = 1 with probability one.

The following is the new and original result that gives a sufficient condition for typical
fast escaping.

THEOREM 3.7. Let μ be a Borel probability measure on C with compact support. Suppose
that T{∞},μ is continuous. If T{∞},μ(0) = 1, then the critical point 0 is typically fast
escaping, and hence the random Julia set Jω is totally disconnected for Pμ-almost every
ω ∈ �μ.

Proof. The latter statement is a consequence of Theorem 3.4. Thus, it suffices to show that
the critical point 0 is typically fast escaping. Let R > 0 be a large number as in Lemma
2.6(1). Set E = {z ∈ Ĉ : T{∞},μ(z) = 1}, then E is compact since we assume that T{∞},μ
is continuous. (This is the only place where the assumption of continuity is used.)

For every z ∈ E, there exist nz ∈ N and cz
1, cz

2, . . . cz
nz

∈ supp μ such that |fcz
nz

◦ · · · ◦
fcz

2
◦ fcz

1
(z)| > R. Since this map fcz

nz
◦ · · · ◦ fcz

2
◦ fcz

1
is continuous, there exists an open

neighborhood Oz of z such that for every z′ ∈ Oz, we have |fcz
nz

◦ · · · ◦ fcz
2
◦ fcz

1
(z′)| > R.

We may and do assume that Oz is precompact.
We now consider the open covering {Oz}z∈E of E. Since E is compact, there

exists a finite subcover. Namely, there exist � ∈ N and � open sets Oj (j = 1, . . . , �)

such that E ⊂ ⋃�
j=1 Oj . Moreover, for each j = 1, . . . , �, there exist nj ∈ N and

c
j

1 , c
j

2 , . . . c
j
nz

∈ supp μ such that for every z′ ∈Oj , we have |f
c
j
nj

◦ · · · ◦ f
c
j
2
◦f

c
j
1
(z′)|>R.

Let N = maxj=1,...,� nj . By Lemma 2.6(1), we can assume that nj = N for every
j = 1, . . . , �. Since C � c �→ fc ∈ Poly is continuous, for every n = 1, 2, . . . , N , there
exists an open neighborhood U

j
n of c

j
n such that for every cn ∈ U

j
n and z′ ∈ Oj , we have

|fcN
◦ · · · ◦ fc2 ◦ fc1(z

′)| > R.
Define Sk(z) = {ω ∈ �μ : |f (k)

ω (z)| ≤ R} for every z ∈ Ĉ. Then, by the construc-
tion above, we have Pμ(�μ \SN(z)) ≥ Pμ(

∏N
n=1 U

j
n × ∏∞

N+1 B̄(c, r)) for every
j = 1, . . . , � and z ∈ Oj . Since c

j
n ∈ supp μ and U

j
n is its open neighborhood,

we have μ(U
j
n ) > 0 for every j = 1, . . . , � and n = 1, 2, . . . , N . Define α =

minj=1,...,�
∏N

n=1 μ(U
j
n ) > 0. Then, for every z ∈ E, we have Pμ(SN(z)) ≤ 1 − α.
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It follows from Fubini’s theorem that

Pμ(Sk+N(z)) =
∫

�μ

Pμ(SN(f (k)
ω (z))) dPμ(ω)

for every k ∈ N. If ω �∈ Sk(z), then SN(f
(k)
ω (z)) = ∅ by Lemma 2.6. Thus, the integral

on the complement of Sk(z) is zero; Pμ(Sk+N(z)) = ∫
Sk(z)

Pμ(SN(f
(k)
ω (z))) dPμ(ω).

By Lemma 3.6, we have Pμ(Sk+N(z)) ≤ (1 − α)Pμ(Sk(z)) if z ∈ E.
Repeating this, we have Pμ(SmN(0)) ≤ (1 − α)m for every m ∈ N. Thus, we can find

a constant γ > 0 such that

Pμ({ω ∈ �μ : k(0, ω) > k}) ≤ Pμ(Sk(0)) ≤ e−γ k

for every k ∈ N. This completes the proof.

COROLLARY 3.8. Let μ be a Borel probability measure on C whose support is compact
and satisfies int(supp μ) �= ∅. If T{∞},μ(0) = 1, then the random Julia set Jω is totally
disconnected for Pμ-almost every ω ∈ �μ.

Proof. This is a consequence of Lemma 2.22 and Theorems 2.21 and 3.7.

COROLLARY 3.9. Let μ be a Borel probability measure on C whose support is compact.
If Gμ has no planar minimal sets, then the random Julia set Jω is totally disconnected for
Pμ-almost every ω ∈ �μ.

Proof. Since Gμ has no planar minimal sets, the function satisfies T{∞},μ ≡ 1 by Theorem
2.21. Since the constant function is continuous, Theorem 3.7 implies the conclusion.

For instance, let μ = δ0/2 + δc/2 be the convex combination of the Dirac measures
at 0 and c with |c| > 1. If |z| > 1, then f ◦n

0 (z) → ∞ as n → ∞. If |z| ≤ 1, then
|fc(z)| ≥ −|z2| + |c| > 1, and hence f ◦n

0 ◦ fc(z) → ∞ as n → ∞. This shows that Gμ

has no planar minimal sets, which implies that the random Julia set is totally disconnected
Pμ-almost surely.

In the next section, we apply Corollary 3.8 to the case where μ is the normalized
Lebesgue measure on the disk B̄(c, r).

4. Main results on uniform noise process
Throughout this section, we consider the case where μ is the normalized Lebesgue
measure on the disk B̄(c, r) as in Setting 4.1.

Setting 4.1. For fixed c ∈ C and r ≥ 0, we define the following Borel probability measure
μc,r on C with compact support. If r > 0, define μc,r as the normalized Lebesgue
measure on B̄(c, r) = {c′ ∈ C : |c′ − c| ≤ r}. If r = 0, define μc,r as the Dirac measure
at c. We define the probability space (�c,r , Pc,r ) = (�μc,r , Pμc,r ) as in Setting 2.1.
Namely, denote by Pc,r the one-sided infinite product of μc,r supported on �c,r =∏∞

n=1 B̄(c, r) with the Borel σ -algebra. In addition, let the polynomial semigroup Gc,r be
defined by the semigroup generated by {fc′ ∈ Poly : c′ ∈ B̄(c, r)} and define the function
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Tc,r : Ĉ → [0, 1], abusing notation, by

Tc,r (z) = Pc,r ({ω ∈ �c,r : f (n)
ω (z) → ∞ (n → ∞)}).

Remark 4.2. Setting 4.1 can be interpreted as an additive-noise stochastic process in the
following way. Fix c ∈ C and r ≥ 0. On a probability space (�, B, P), take independent
random variables νn : � → C that follow the uniform distribution on B̄(0, r) for all n ∈ N.
Fix z0 ∈ C and define the random variable Z0 : � → C by a constant map with value z0.
Define the C-valued stochastic process {Zn}n≥0 on (�, B, P), inductively by Zn+1 =
fc(Zn) + νn+1 for every n ≥ 0. Then the distribution of Zn are identical to that of the
random variable f

(n)• (z0) : �c,r → C for every n ∈ N, where f
(n)• (z0) is the map ω �→

f
(n)
ω (z0). This stochastic process describes the process driven by adding uniform noise

independently to the deterministic dynamical systems of fc with the initial value z0. Here,
the parameter r describes the size of noise that satisfies |νn| ≤ r almost surely for every
n ∈ N.

We investigate the bifurcation radius rbif(c) defined in Definition 2.17. Our final goal is
to determine rbif(c) and we provide some partial results in this paper.

4.1. Relation between bifurcation and connectedness. In this subsection, we reveal the
relation between bifurcation and connectedness. We start the discussion with the following
corollary.

COROLLARY 4.3. Suppose that r > rbif(c). Then the random Julia set Jω is totally
disconnected for Pc,r -almost every ω.

Proof. If r > rbif(c), then Tc,r ≡ 1 by Theorems 2.16 and 2.21. It follows from Corollary
3.8 that the random Julia set Jω is totally disconnected almost surely.

In the following, suppose that the interior of the support B̄(c, r) contains a superattract-
ing parameter.

LEMMA 4.4. Suppose that the interior of B̄(c, r) contains a superattracting parameter c̃.
If there exists ω ∈ �c,r such that f

(n)
ω (0) → ∞ as n → ∞, then r > rbif(c).

Proof. We show that for every z ∈ Ĉ, there exist c1, c2, . . . ∈ B̄(c, r) such that fcn ◦ · · · ◦
fc2 ◦ fc1(z) → ∞, which implies that Gc,r has no planar minimal sets.

The proof is divided into three cases. Denote by K(fc̃) the autonomous filled Julia set of
the superattracting map fc̃. If z �∈ K(fc̃), then f ◦n

c̃
(z) → ∞ by definition. If z ∈ ∂K(fc̃),

then there exists c1 ∈ B̄(c, r) such that fc1(z) �∈ K(fc̃) and hence f ◦n
c̃

◦ fc1(z) → ∞. If
z ∈ intK(fc̃), then by the no wandering domain theorem, the orbit f ◦n

c̃
(z) converges to the

attracting cycle of 0. By the assumption, we have 0 ∈ Aω. Since the non-autonomous basin
Aω is open, there exists an open neighborhood D of 0 such that for every z′ ∈ D, we have
f

(n)
ω (z′) → ∞ as n → ∞. Take N ∈ N so that f ◦N

c̃
(z) ∈ D, then f

(n)
ω (f ◦N

c̃
(z)) → ∞ as

n → ∞. This completes the proof.

LEMMA 4.5. Suppose that the interior of B̄(c, r) contains a superattracting parameter c̃.
If L = ⋃

g∈Gc,r
{g(0)} is bounded in C, then L is a planar minimal set of Gc,r .
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Proof. Fix any z ∈ L. First, we show
⋃

g∈Gc,r
{g(z)} ⊂ L. By definition, there exists gn ∈

Gc,r such that gn(0) → z as n → ∞. Then, for every g ∈ Gc,r , we have g ◦ gn(0) → g(z)

as n → ∞. Since Gc,r is a semigroup, we have g ◦ gn ∈ Gc,r . Thus, we have g(z) ∈ L,
which implies

⋃
g∈Gc,r

{g(z)} ⊂ L. Next, we show
⋃

g∈Gc,r
{g(z)} ⊃ L. For every open

set U which intersects L, take g1 ∈ Gc,r such that g1(0) ∈ U . Since g1 is continuous,
there exists an open set U0 such that 0 ∈ U0 and g1(U0) ⊂ U . Since

⋃
g∈Gc,r

{g(z)} ⊂ L,
the autonomous orbit {f ◦n

c̃
(z)}n∈N is bounded, and hence z ∈ K(fc̃). If z ∈ ∂K(fc̃), then

there exists c1 ∈ B̄(c, r) such that fc1(z) �∈ K(fc̃), but this contradicts
⋃

g∈Gc,r
{g(z)} ⊂

L. Thus, z ∈ intK(fc̃). It follows from the no wandering domain theorem that there exists
N ∈ N such that f ◦N

c̃
(z) ∈ U0. Thus, g1 ◦ f ◦N

c̃
(z) ∈ U , which implies

⋃
g∈Gc,r

{g(z)} ⊃
L. This completes the proof.

The following is the main theorem of this paper.

THEOREM 4.6. Suppose that the interior of B̄(c, r) contains a superattracting parameter
c̃. Then the following four are equivalent.
(1) The inequality r ≤ rbif(c) holds.
(2) For every ω ∈ �c,r , the orbit {f (n)

ω (0)}∞n=1 is bounded; hence, Tc,r (0) = 0.
(3) The random Julia set Jω is connected for every ω ∈ �c,r .
(4) The set

⋃
g∈Gc,r

{g(0)} is a planar minimal set of Gc,r .
In contraposition to this, the following four are equivalent.
(1′) The inequality r > rbif(c) holds.
(2′) For Pc,r -almost every ω ∈ �c,r , the orbit f

(n)
ω (0) → ∞ (n → ∞): Tc,r (0) = 1.

(3′) The random Julia set Jω is totally disconnected for Pc,r -almost every ω ∈ �c,r .
(4′) The set

⋃
g∈Gc,r

{g(0)} is not bounded in C.
Furthermore, either the former or the latter is valid.

Proof. It is obvious that item (1) or (1′) is valid. First, we show the equivalence of the
four from items (1) to (4).

(1) ⇒ (2) : If r ≤ rbif(c), then f
(n)
ω (0) �→ ∞ as n → ∞ for every ω ∈ �c,r by Lemma

4.4. Hence, Tc,r (0) = 0.
(2) ⇒ (3) : Take a large R > 0 as in Lemma 2.6(1). Suppose that for every ω ∈ �c,r ,

we have {f (n)
ω (0)}∞n=1 is bounded. Then |f (n)

ω (0)| < R for every n ∈ N. By Theorem 3.1,
the random Julia set Jω is connected for every ω ∈ �c,r .

(3) ⇒ (4) : Suppose that the random Julia set Jω is connected for every ω ∈ �c,r . For
a large R > 0 as in Lemma 2.6(1), it follows from Theorem 3.1 that |f (n)

σ kω
(0)| ≤ R for

every ω ∈ �c,r , n ∈ N, and k ∈ N. Thus, the set L = ⋃
g∈Gc,r

{g(0)} is bounded in C. By
Lemma 4.5, the set L is a planar minimal set.

(4) ⇒ (1) : This is trivial. See the latter part of Definition 2.17.
The argument above completes the proof of the equivalence from items (1) to (4). Next,

we show the equivalence of the four from items (1′) to (4′).
(1′) ⇒ (2′) : If r > rbif(c), then Gc,r has no planar minimal sets by Theorem 2.16. It

follows from Theorem 2.21 that Tc,r (z) = 1 for every z ∈ Ĉ, and hence Tc,r (0) = 1.
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(2′) ⇒ (3′) : Suppose Tc,r (0) = 1. If r > 0, then the random Julia set Jω is totally
disconnected Pc,r -almost surely by Corollary 3.8. If r = 0, then it trivially follows that
the autonomous Julia set is totally disconnected.

(3′) ⇒ (4′) : If item (3′) holds, then there exists ω ∈ �c,r such that the random Julia
set Jω is disconnected. By Theorem 3.1, there exists k ∈ N such that f

(n)

σ kω
(0) → ∞ as

n → ∞. Since f
(n)

σ kω
∈ Gc,r , then

⋃
g∈Gc,r

{g(0)} is unbounded.

(4′) ⇒ (1′) : Let R > 0 be large, as in Lemma 2.6(1). If
⋃

g∈Gc,r
{g(0)} is not bounded,

then there exists g ∈ Gc,r such that |g(0)| > R. By definition of Gc,r , there exist N ∈ N

and c1, c2, . . . , cN ∈ B̄(c, r) such that g = fcN
◦ · · · ◦ fc2 ◦ fc1 . Letting cn = c for every

n ≥ N + 1 and ω = (cn)
∞
n=1, we have f

(n)
ω (0) → ∞ as n → ∞ by Lemma 2.6. It follows

from Lemma 4.4 that r > rbif(c).

Remark 4.7. The orbit {f (n)
ω (0)}∞n=1 is bounded for every ω ∈ �c,r if and only if

Tc,r (0) = 0.

Proof. It is obvious that the ‘only if’ part is true. Suppose Tc,r (0) = 0 and we show
there does not exist ω ∈ �c,r such that f

(n)
ω (0) → ∞ as n → ∞ by contradiction. Take

a large number R > 0 as in Lemma 2.6(1). If there exists ω = (cn)n∈N ∈ �c,r such
that f

(n)
ω (0) → ∞, then there exists N ∈ N such that |fcN

◦ · · · ◦ fc2 ◦ fc1(0)| > R.
Since C � c �→ fc ∈ Poly is continuous, there exists an open neighborhood Un of cn

for every n = 1, 2, . . . , N such that |fc′
N

◦ · · · ◦ fc′
2
◦ fc′

1
(0)| > R for every c′

n ∈ Un

(n = 1, 2, . . . , N). Moreover, we have Pc,r (U) > 0 for U = ∏N
n=1 U

j
n × ∏∞

N+1 B̄(c, r).
However, for every ω′ ∈ U, it follows from Lemma 2.6 that f

(n)

ω′ (0) → ∞ as n → ∞,
contradicting the assumption Tc,r (0) = 0. This shows that for every ω ∈ �c,r , we have
|f (n)

ω (0)| ≤ R for every n ∈ N.

4.2. General properties. In this subsection, we give a trivial estimate of the bifurcation
radius and show the continuity. The following is due to [4].

LEMMA 4.8. Suppose r > 0. If B̄(c, r) ∩ (C \ M) �= ∅, then for every z ∈ C, there exists
ω ∈ �c,r such that f

(n)
ω (z) → ∞ as n → ∞.

Proof. Fix c′ ∈ B̄(c, r) \ M. Then the autonomous filled Julia set K(fc′) of fc′ has no
interior point. Thus, if z ∈ K(fc′), then there exists c1 ∈ B̄(c, r) such that fc1(z) /∈ K(fc′).
In this case, we have f ◦n

c′ ◦ fc1(z) → ∞ as n → ∞. Also, if z /∈ K(fc′), then by definition,
f ◦n

c′ (z) → ∞ as n → ∞. This completes the proof.

Denote by dist(c, ∂M) the Euclidean distance from the point c to the compact set ∂M.

LEMMA 4.9. For every c ∈ C, we have rbif(c) ≤ dist(c, ∂M).

Proof. From Lemma 4.8, if r > dist(c, ∂M), then the polynomial semigroup Gc,r has no
planar minimal sets. By Definition 2.17, rbif(c) is the infimum value for r ≥ 0 such that
Gc,r has no planar minimal sets. Hence, rbif(c) ≤ dist(c, ∂M).

The following is a part of Main Result C.
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THEOREM 4.10. As a function, the bifurcation radius rbif : C → [0, ∞) is 1-Lipschitz.
That is, | rbif(c) − rbif(c

′)| ≤ |c − c′| for every c, c′ ∈ C.

Proof. Fix c, c′ ∈ C. Pick any r > |c − c′| and set ε = r − |c − c′| > 0. By definition, the
polynomial semigroup Gc,rbif(c)+ε has no planar minimal sets. Since B̄(c, rbif(c) + ε) ⊂
B̄(c′, rbif(c) + r), it follows from Lemma 2.12 that also Gc′,rbif(c)+r has no planar min-
imal sets. This implies that rbif(c

′) ≤ rbif(c) + r , and hence rbif(c
′) − rbif(c) ≤ |c − c′|.

Exchanging c and c′ with each other, we have also rbif(c) − rbif(c
′) ≤ |c′ − c|, which

completes the proof.

4.3. Inside the main cardioid. In this subsection, we present some estimates of rbif(c)

when c is in the main cardioid. Recall that the main cardioid is the set of all parameters
c ∈ C for which there exists λ ∈ C with |λ| < 1 such that c = λ/2 − λ2/4, and its
boundary is contained in ∂M.

COROLLARY 4.11. If c = 0, then rbif(0) = 1/4.

Proof. This is essentially due to [4]. By Lemma 4.9, we have rbif(0) ≤ 1/4. A straight
calculation shows that D1/2 is forward invariant under the polynomial semigroup G0,1/4,
and hence rbif(0) ≥ 1/4.

We can easily verify that D1/2 is the planar minimal set of G0,1/4. Since the autonomous
Julia set of f1/4 contains z = 1/2 which is the parabolic fixed point of f1/4, the Julia set of
the semigroup satisfies 1/2 ∈ J (G0,1/4) by Proposition 2.9. Thus, the planar minimal set
D1/2 of G0,1/4 is J-touching at z = 1/2.

Corollary 4.11 shows that the equality in Lemma 4.9 may hold. Now, we show using
Theorem 4.10 that we can determine the bifurcation radius if 0 ≤ c ≤ 1/4. The following
is a part of Main Result C.

THEOREM 4.12. If 0 ≤ c ≤ 1/4, then rbif(c) = 1/4 − c.

Proof. By Lemma 4.9, we have rbif(c) ≤ 1/4 − c if 0 ≤ c ≤ 1/4. If c′ = 0, then rbif(c
′) =

1/4 from Corollary 4.11. Thus, Theorem 4.10 yields that | rbif(c) − 1/4| ≤ c for 0 ≤ c ≤
1/4, which completes the proof.

We showed that rbif(c) = dist(c, ∂M) if 0 ≤ c ≤ 1/4. However, the author does not
know whether there exists c ∈ C other than these, such that 0 < rbif(c) = dist(c, ∂M).
For c < 0, we will present some examples which satisfy rbif(c) < dist(c, ∂M).

LEMMA 4.13. For c = 0 and 0 < r0 ≤ 1/4, let δ = (1 − √
1 − 4r0)/2. Then the following

hold.
(i) The equality δ2 + r0 = δ holds. Thus, the point δ is a fixed point of fr0 .

(ii) The set Dδ is the planar minimal set of G0,r0 .

Proof. Statement (i) follows from the direct calculation. Now, we look at statement (ii). By
statement (i), we have fc1(Dδ) ⊂ Dδ for every c1 ∈ B̄(0, r0). Since B̄(0, r0) is symmetric
under rotation, then the union

⋃
c1∈B̄(0,r0)

{fc1(0)} is a round disk centered at the origin.
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By induction,
⋃

c1,c2,...,cn∈B̄(0,r0)
{fcn ◦ · · · ◦ fc2 ◦ fc1(0)} is a round disk centered at the

origin for every n ∈ N, and also
⋃

g∈G0,r0
{g(0)} is a closed round disk contained in Dδ .

If cn = r0 for every n ∈ N, then the autonomous iteration f ◦n
r0

(0) converges to the fixed
point δ of fr0 . This yields that

⋃
g∈G0,r0

{g(0)} = Dδ , and hence Dδ is a minimal set of
G0,r0 .

The following is a part of Main Result C.

THEOREM 4.14. Suppose that 0<ε ≤1/2. For c=−ε, we have rbif(−ε)≤1/4+ε −ε2.

Proof. Fix any r > 1/4 + ε − ε2. We show that G−ε,r has no planar minimal sets by
contradiction, which implies rbif(−ε) < r . Suppose that there exists a planar minimal
set L of G−ε,r . Since B̄(−ε, r) ⊃ B̄(0, r − ε), it follows from Lemma 2.12 that G0,r−ε

also has a planar minimal set. By Corollary 4.11, we have r − ε ≤ 1/4. In addition, we
assumed that r − ε > 1/4 − ε2 ≥ 0. By Lemmas 2.12 and 4.13(ii), we have L ⊃ Dδ for
δ = (1 − √

1 − 4(r − ε))/2. Let z0 = iδ and c1 = −r − ε, then z0 ∈ L, c1 ∈ B̄(−ε, r),
and fc1(z0) = −δ2 − r − ε = −δ − 2ε. Now, set R1 = (1 + √

1 − 4(r − ε))/2 > 1/2,
then

−fc1(z0) − R1 = 2ε + 1 − √
1 − 4(r − ε)

2
− 1 + √

1 − 4(r − ε)

2
= 2ε − √

1 − 4(r − ε) > 0

since r > 1/4 + ε − ε2. Set z1 = fc1(z0), then z1 < −R1. Let cn = r − ε ∈ B̄(−ε, r)

for every n ≥ 2. Since z1 < −R1, the direct calculation shows fc2(z1) > R2
1 + r − ε =

R1. Set z2 = fc2(z1) and α = z2 − R1, then z2 = R1 + α and α > 0. We can show by
induction that f ◦n

r−ε(z2) > R1 + α + nα2 for every n ∈ N. Hence, f ◦n
r−ε(z1) diverges to ∞

as n → ∞. Thus, we have proved that there exist z0 ∈ L and ω = (cn)
∞
n=1 ∈ �−ε,r such

that f
(n)
ω (z0) → ∞ as n → ∞. This contradicts that L is planar and forward invariant

under G−ε,r . This completes the proof since r is an arbitrary number that satisfies
r > 1/4 + ε − ε2.

Note that we can show that dist(−ε, ∂M) = 1/4 + ε if 0 < ε ≤ 1/4 as follows.
Assume 0 < ε ≤ 1/4, then dist(−ε, ∂M) ≤ | − ε − 1/4| = 1/4 + ε since 1/4 ∈ M. Let
C = {λ/2 − λ2/4: λ = eiθ , θ ∈ R}. Then C ⊂ ∂M and the domain bounded by C is
contained in the interior of M, see [6, Theorem VIII.1.3]. Since∣∣∣∣ − 1

4
− eiθ

2
+ e2iθ

4

∣∣∣∣2

=
(

− 1
4

− eiθ

2
+ e2iθ

4

)(
− 1

4
− e−iθ

2
+ e−2iθ

4

)
= 6 − (e2iθ + e−2iθ )

16
= 6 − 2 cos 2θ

16
,

we have dist(−1/4, ∂M) = minθ∈R
√

6 − 2 cos 2θ/4 = 1/2 and the minimum is
attained at θ = 0, π which correspond to c = 1/4, −3/4 ∈ M, respectively. Since
intB̄(−ε, 1/4 + ε) ⊂ intB̄(−1/4, 1/2) ⊂ int M, we have dist(−ε, ∂M) ≥ 1/4 + ε.
Therefore, Theorem 4.14 reveals that strict inequality rbif(c) < dist(c, ∂M) holds if
−1/4 ≤ c < 0.
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Combining the theorem above with Corollary 4.3, we have a little better result than
Theorem 3.5.

COROLLARY 4.15. Suppose that 0 < ε ≤ 1/2. If c = −ε and r > 1/4 + ε − ε2, then the
random Julia set Jω is totally disconnected for P−ε,r -almost every ω ∈ �−ε,r .

This shows that the random Julia set Jω is totally disconnected for almost every ω even
if B̄(c, r) ⊂ int M and B̄(c, r) �⊃ B̄(0, 1/4). This is stronger than Theorem 3.5 proved by
Lech and Zdunik.

4.4. Outside the main cardioid. Recall that a parameter c̃ is said to be superattracting if
there exists p ∈ N such that f

◦p

c̃
(0) = 0. For example, c̃ = 0 and −1 are superattracting

parameters with p = 1 and 2, respectively. In this subsection, we show the non-trivial
estimates of rbif(−1).

LEMMA 4.16. Let c = −1, r ≥ 0, and δ ≥ 0. Denote Dδ = {z ∈ C : |z| ≤ δ}. Then fc2 ◦
fc1(Dδ) ⊂ Dδ for every c1, c2 ∈ B̄(−1, r) if and only if

δ4 + 2(1 + r)δ2 + r2 + 3r ≤ δ. (1)

Proof. Assume that fc2 ◦ fc1(Dδ) ⊂ Dδ for every c1, c2 ∈ B̄(−1, r). For z = iδ, c1 =
−1 − r , and c2 = −1 + r , we have fc1(z) = −δ2 − 1 − r and fc2 ◦ fc1(z) = δ4 + 2(1 +
r)δ2 + r2 + 3r . Hence, inequality (1) holds.

Conversely, assume that inequality (1) holds. If z ∈ Dδ and c1 ∈ B̄(−1, r), then
|fc1(z) + 1| ≤ |z|2 + |c1 + 1| ≤ δ2 + r . In addition, if |z1 + 1| ≤ δ2 + r and c2 ∈
B̄(−1, r), then

|fc2(z1)| = |(z1 + 1)2 − 2z1 − 2 + 1 + c2|
≤ |z1 + 1|2 + 2|z1 + 1| + |1 + c2| ≤ δ4 + 2(1 + r)δ2 + r2 + 3r .

Thus, if inequality (1) holds, then fc2 ◦ fc1(Dδ) ⊂ Dδ for every c1, c2 ∈ B̄(−1, r).

LEMMA 4.17. Denote by δmax = 0.453 · · · the (positive real) root of δ3 + 2δ − 1. Define
the function ρ : [0, δmax] → R by

ρ(δ) = −2δ2 + 3
2

+
√

4δ2 + 4δ + 9
2

.

Then, for every δ ∈ [0, δmax], we have δ4 + 2(1 + ρ(δ))δ2 + ρ(δ)2 + 3ρ(δ) = δ and
ρ(δ) ≥ 0.

Proof. The former part δ4 + 2(1 + ρ(δ))δ2 + ρ(δ)2 + 3ρ(δ) = δ follows from a straight
calculation. We show ρ(δ) ≥ 0. A simple calculation shows that

2ρ(δ) = −(2δ2 + 3)2 + 4δ2 + 4δ + 9

(2δ2 + 3) + √
4δ2 + 4δ + 9

= −4δ(δ3 + 2δ − 1)

(2δ2 + 3) + √
4δ2 + 4δ + 9

.

Define ρ̃(δ) = δ3 + 2δ − 1, then ρ̃(0) = −1 < 0 and ρ̃′(δ) = 3δ2 + 2 > 0. Thus,
ρ(δ) ≥ 0 for every δ ∈ [0, δmax].
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We now give the lower bound of rbif(−1), which is one of the main results of this paper.

THEOREM 4.18. Let ρ be defined as in Lemma 4.17. Then ρ takes the maximum value
rmax = 0.0386 · · · , and hence rmax ≤ rbif(−1).

Proof. We have that the derivative ρ′(δ) = −2δ + (2δ + 1)/
√

4δ2 + 4δ + 9. Thus,
ρ′(δ) = 0 if and only if 16δ4 + 16δ3 + 32δ2 − 4δ − 1 = 0. Let δ∗ = 0.229 · · · be the
unique positive root of this quartic equation. Then, ρ(δ) takes the maximum value at
δ = δ∗. A numerical computation shows that the maximum value rmax is approximately
0.0386 · · · .

By Lemmas 4.16 and 4.17, for every δ ∈ [0, δmax], the set Dδ gives a forward
invariant set under the polynomial semigroup G−1,ρ(δ). Thus, we have ρ(δ) ≤ rbif(−1).
In particular, rmax = ρ(δ∗) ≤ rbif(−1). This completes the proof.

Next, we consider the upper bound of rbif(−1). The following theorem gives upper
bounds, whose proof suggests a kind of parabolic implosion in the stochastic sense.

THEOREM 4.19. Suppose that B̄(c, r0) contains a superattracting parameter c̃. If there
exist N ∈ N and c1, c2 . . . , cN ∈ B̄(c, r0) such that fcN

◦ · · · ◦ fc2 ◦ fc1 has a parabolic
periodic point, then rbif(c) ≤ r0.

Proof. Fix r > r0 and apply Lemma 4.4. Set g = fcN
◦ · · · ◦ fc2 ◦ fc1 and let z∗ denote

the parabolic periodic point of g. Then there exists p ∈ N such that g◦p(z∗) = z∗, and the
multiplier of g◦p at z∗ is 1. Thus, there exists a critical point z0 of g such that g◦np(z0) →
z∗ as n → ∞. Since g = fcN

◦ · · · ◦ fc2 ◦ fc1 , there exists 0 ≤ k ≤ N − 1 such that fck
◦

· · · ◦ fc2 ◦ fc1(z0) = 0 by the chain rule. Here, if k = 0, then we define fck
◦ · · · ◦ fc2 ◦

fc1 to be the identity map. In any case, we have g◦np−1 ◦ fcN
◦ · · · ◦ fck+2 ◦ fck+1(0) → z∗

as n → ∞. Now, let ε = r − r0 > 0, then there exists n0 ∈ N such that n0 ≥ 2 and

|g◦n0p−1 ◦ fcN
◦ · · · ◦ fck+2 ◦ fck+1(0) − z∗| < ε.

Set w = g◦n0p−1 ◦ fcN
◦ · · · ◦ fck+2 ◦ fck+1(0). Since the parabolic periodic point z∗

belongs to the autonomous Julia set J (g) of g and the Julia set is the boundary of the
basin at infinity, perturbation of cN allows us to find a random orbit which escapes to the
basin at infinity. Namely, there exists c′ ∈ B̄(cN , ε) such that

w′ = fc′ ◦ fcN−1 ◦ · · · ◦ fc2 ◦ fc1 ◦ g◦n0p−2 ◦ fcN
◦ · · · ◦ fck+2 ◦ fck+1(0) ∈ A(g),

where A(g) denotes the basin at infinity for the autonomous iteration of g. Note that
c′ ∈ B̄(c, r) since cN ∈ B̄(c, r0) and ε = r − r0. By definition, we have g◦n(w′) → ∞
as n → ∞. Thus, Lemma 4.4 gives that rbif(c) < r . This completes the proof since r is an
arbitrary number that satisfies r > r0.

Theorem 4.19 gives an alternative proof of rbif(0) ≤ 1/4 since f1/4 has a parabolic fixed
point at z = 1/2.

The following gives an algorithm to find an upper bound of the bifurcation radius.
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THEOREM 4.20. Suppose c is a superattracting parameter. Fix N ∈ N and k ∈ N, and let
pi ∈ {0, 1, . . . , k − 1} for each i = 1, 2, . . . , N . Define ζk = e2πi/k and ci = c + ρζ

pi

k ,
where ρ is a complex variable. Let �(ρ) be the discriminant of the algebraic equation
fcN

◦ · · · ◦ fc2 ◦ fc1(z) − z = 0 in the variable z, which is a polynomial in the variable ρ.
If �(ρ0) = 0 for some ρ0, then rbif(c) ≤ |ρ0|.
Proof. Under the assumptions, if ρ = ρ0, then fcN

◦ · · · ◦ fc2 ◦ fc1(z) − z = 0 has a
multiple root. This implies that the map fcN

◦ · · · ◦ fc2 ◦ fc1 has a parabolic fixed point
with multiplier 1. Since c1, c2 . . . , cN ∈ B̄(c, r0) with r0 = |ρ0|, we have rbif(c) ≤ r0 by
Theorem 4.19.

We now give upper bounds of rbif(−1).

Example 4.21. Suppose c = −1. Let N = 4, k = 6, and (p1, p2, p3, p4) = (1, 2, 5, 4).
Then numerical calculation shows the following result. The discriminant �(ρ) of fc4 ◦
fc3 ◦ fc2 ◦ fc1(z) − z vanishes at ρ0 ≈ 0.0399 · · · , and hence rbif(−1) ≤ 0.0399 · · · .

We have some comments on the upper bounds of rbif(−1).

Remark 4.22. In Example 4.21, the numerical errors should be treated carefully because
the discriminant of the equation fc4 ◦ fc3 ◦ fc2 ◦ fc1(z) − z = 0 with respect to z is a
polynomial �(ρ) of degree 32, and each coefficient is a very large number in absolute
value, that is, of the order of approximately 1019–1026. The author used validated numerics
to estimate ρ0, which showed rbif(−1) ≤ |ρ0| ≤ 0.0399217. Since validated numerics
gives values including mathematically strict error evaluation, this value 0.0399217 is a
rigorous upper bound of rbif(−1). For more details on validated numerics, see [22], for
example.

Note also that all the 64 candidates (p1, p2, p3, p4) ∈ {0, 1, 2, 3, 4, 5}4 were
(non-rigorously) verified. That is, for every (p1, p2, p3, p4) ∈ {0, 1, 2, 3, 4, 5}4, the
discriminant �(ρ) of the equation fc4 ◦ fc3 ◦ fc2 ◦ fc1(z) − z = 0 was computed using
c1, . . . , c4 as in Theorem 4.20, and we numerically computed the roots of �(ρ). This
computation shows that 24 candidates (p1, p2, p3, p4) including (1, 2, 5, 4) attain the
same minimum absolute value |ρ0| ≈ 0.0399 · · · . Also, the author replaced ζ6 by
ζ4 = e2πi/4 = i, and computed the roots of �(ρ) in the same manner, which gave less
sharp estimates.

We now give the upper bound for another parameter.

Example 4.23. Suppose c̃3 ≈ −1.75487766 is the airplane parameter such that c̃3 is a real
number and fc̃3 has a superattracting periodic point with period 3. Let N = 3, k = 6,
and (p1, p2, p3) = (0, 3, 0). Then a similar numerical computation shows that rbif(c̃3) ≤
0.0021.

Remark 4.24. Recall that we can calculate the connected component W of int M
which contains −1. The component W is the open disk with center −1 and radius
1/4, thus dist(−1, ∂M) = 1/4. For c = −1, we have rbif(−1) � dist(−1, ∂M) by the
example above. Similarly, rbif(c̃3) � dist(c̃3, ∂M) since dist(c̃3, ∂M) ≈ 0.00487766 for
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the airplane parameter c̃3. See [13] for the explicit parameterization of period-3 hyperbolic
components. This strict inequality is in contrast with the equality rbif(0) = dist(0, ∂M).

COROLLARY 4.25. Almost every random Julia set is totally disconnected:
• if the central parameter c = −1 + ε and the noise amplitude r > 0.0399 · · · + |ε|; or
• if the central parameter c = c̃3 + ε and the noise amplitude r > 0.0021 + |ε|.
Proof. By Theorem 4.6, Pc,r -almost every random Julia set is totally disconnected
if r > rbif(c). In addition, we have rbif(c + ε) ≤ rbif(c) + |ε| for every ε ∈ C by
Theorem 4.10. Thus, the conclusion follows from Examples 4.21 and 4.23.

4.5. Application to quasiconformal conjugacy. By combining Theorem 4.6 and the
theory of non-autonomous holomorphic motions by Comerford, we can deduce that
non-autonomous Julia sets are quasiconformally conjugate to the autonomous Julia set.
In this subsection, we see an overview of this conjugacy. For a more detailed meaning, the
reader is referred to [7].

For ω = (c1, c2, . . .) ∈ C
N, we denote σmω = (cm+1, cm+2, . . .) for every m ≥ 0.

Definition 4.26. Let δ > 0 and let ω ∈ C
N be a bounded sequence of parameters. We say

that ω has post-critical distance ≥ δ if

inf
m≥0,n≥m

dist(f (n−m)
σmω (0), Jσnω) ≥ δ.

Here, f
(0)
ω is understood as the identity map for every ω.

The sequence ω has post-critical distance ≥ δ for some δ > 0 if and only
if non-autonomous dynamics is uniformly expanding (hyperbolic) if and only if
non-autonomous dynamics is uniformly contractive at critical points. See [7, Theorem
3.3] for the details.

We next define hyperbolic components by analogy with the deterministic case. Denote
�∞(C) = {ω = (cn)

∞
n=1 : supn |cn| < ∞}.

Definition 4.27. Every connected component of

{ω ∈ �∞(C) : ω has post-critical distance ≥ δ for some δ > 0}
is called a hyperbolic component.

After formulating the concepts above, Comerford proved the following theorem [7,
Theorem 6.1].

THEOREM 4.28. Suppose that ω = (cn)
∞
n=1 and ω′ = (c′

n)
∞
n=1 lie in the same hyperbolic

component. Then there exist K ≥ 1 and a sequence of maps {ϕn}n≥0 such that ϕn maps
Jσnω onto Jσnω′ K-quasiconformally and ϕn+1 ◦ fcn+1 = fc′

n+1
◦ ϕn on Jσnω for every

n ≥ 0.
We say that ω and ω′ are quasiconformally conjugate on their iterated Julia sets if such

a sequence {ϕn}n≥0 exists.
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More precisely, the sequence {ϕn}n≥0 is bi-equicontinuous, as defined in [7, §4]. Using
the theorem above, we show the new results.

THEOREM 4.29. Suppose that the interior of B̄(c, r) contains a superattracting parameter
c̃ and suppose r < rbif(c). Then every two ω, ω′ ∈ B̄(c, r)

N are quasiconformally conju-
gate on their iterated Julia sets.

Proof. By Definition 2.17 and Theorem 4.6, the polynomial semigroup Gc,r has the planar
attracting minimal set L = ⋃

g∈Gc,r
{g(0)}. Define δ = dist(L, J (Gc,r )), which is strictly

positive by Definition 2.13 of attracting minimal sets. For every ω ∈ B̄(c, r)
N, m ≥ 0,

and n ≥ m, we have f
(n−m)
σmω (0) ∈ L since f

(n−m)
σmω ∈ Gc,r . Also, Jσmω ⊂ J (Gc,r ) by

Proposition 2.9. Therefore, ω has post-critical distance ≥ δ with uniform δ > 0. Since the
�∞-ball B̄(c, r)

N is connected, the ball B̄(c, r)
N is contained in a hyperbolic component.

Thus, every two ω, ω′ ∈ B̄(c, r)
N are quasiconformally conjugate on their iterated Julia

sets by Theorem 4.28.

More precisely, we can show by using [7, Theorem 1.3] that the maximal dilatation K
of the quasiconformal conjugacy {ϕn}n≥0 depends on c and r but not on ω nor ω′. This is
because the δ in the proof is independent of ω. In addition, we can show that the maximal
dilatation K tends to 1 as r tends to 0.

Lastly, we give the following corollary.

COROLLARY 4.30. Suppose that the interior of B̄(c, r) contains a superattracting param-
eter c̃. Denote the autonomous Julia set by Jc̃ = Jω̃ where ω̃ = (c̃, c̃, . . .). If r < rbif(c),
then for every ω ∈ B̄(c, r)

N, there exists a map ϕ that maps Jc̃ onto the non-autonomous
Julia set Jω quasiconformally. If r > rbif(c), then for Pc,r -almost every ω, the autonomous
Julia set Jc̃ is not homeomorphic to the non-autonomous Julia set Jω.

Proof. First suppose r < rbif(c). By Theorem 4.29, there exists a quasiconformal con-
jugacy {ϕn}n≥0 between ω̃ and ω for every ω ∈ B̄(c, r)

N. By definition, the map ϕ0

quasiconformally maps Jc̃ onto Jω. Next suppose r > rbif(c). Then by Theorem 4.6, the
non-autonomous Julia set Jω is totally disconnected almost surely. Since the autonomous
Julia set Jc̃ of superattracting parameter c̃ is connected, these Jc̃ and Jω cannot be
homeomorphic each other.

5. Conclusive discussions
In this section, we discuss three perspectives, namely, open problems, other problems about
geometric measure theory, and application to the general settings.

5.1. Open problems. We give the examples of c satisfying the equality rbif(c) =
dist(c, ∂M) and the examples of c satisfying the strict inequality rbif(c) < dist(c, ∂M).
The author conjectures that the former ones are uncommon. More precisely, the author
considers the answer to the following question is yes.
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Question 5.1. If c does not belong to the main cardioid, then does rbif(c) < dist(c, ∂M)

hold? If c /∈ [0, 1/4], then does it hold?

We numerically estimated 0.0386 · · · ≤ rbif(−1) ≤ 0.0399 · · · . However, the actual
value remains unknown. More generally, for every superattracting parameter c̃, it is
interesting to determine the bifurcation radius.

Question 5.2. What is the exact value of rbif(c̃) for a superattracting parameter c̃? How
does it relate to other dynamical quantities?

In addition, it would be meaningful to investigate their asymptotic behavior.

Question 5.3. Let c̃p be a superattracting parameter with period p for every p ∈ N. How
does rbif(c̃p) decrease as p → ∞?

Our strategy to estimate rbif(−1) from above is to find multiple roots of some algebraic
equation. This raises the following question.

Question 5.4. For every superattracting parameter c̃, is the bifurcation radius rbif(c̃) an
algebraic number?

At least, if c̃ = 0, then rbif(0) = 1/4 is algebraic and is related to the parabolic
parameter c = 1/4.

We are interested also in parameters which are not superattracting. Recall that Theorem
4.6 is concerned with the case where B̄(c, r) contains superattracting parameters.

Question 5.5. Can we generalize Theorem 4.6 when B̄(c, r) does not contain superattract-
ing parameters?

Question 5.6. How does rbif(c) decrease as c → ∂M? For example, within ε > 0, how
does rbif(−3/4 + ε) decrease as ε → 0?

5.2. Other problems about geometric measure theory. One can consider the Hausdorff
dimensions and other geometric properties of random Julia sets. For instance, the uniform
perfectness and the Johnness was investigated. See [26, Theorems 1.6 and 1.12].

Regarding dimensions, the following facts are known. Suppose c = 0 and 0 < r < 1/4,
and let (P0,r , �0,r ) as in Setting 4.1. Denote by HD(J ) the Hausdorff dimension of a set J .
Then, there exists 1 < d0,r < 2 such that HD(Jω) = d0,r for P0,r -almost every ω ∈ �0,r .
See [18, Theorems 8.8 and 8.10] by Mayer, Skorulski, and Urbański. In addition, denote by
Hd the d-dimensional Hausdorff measure and by Pd the d-dimensional Packing measure,
then Hd0,r (Jω) = 0 and Pd0,r (Jω) = ∞ for P0,r -almost every ω ∈ �0,r . See [18, Theorem
8.16]. Note that this is different from the deterministic case, and hence almost every Jω is
not bi-Lipschitz equivalent to any autonomous hyperbolic Julia sets.

Sumi kindly taught me that for every c ∈ C and r > 0, there exists a constant dc,r such
that HD(Jω) = dc,r for Pc,r -almost every ω ∈ �c,r . Rugh showed that the dimension dc,r

depends real-analytically on Re(c), Im(c), and r within |c| + r < 1/4. See [23] for the
exact statements. This is the motivation for the following question.
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Question 5.7. How does the typical dimension dc,r depend on c and r?

For other geometric properties, Brück showed that the random Julia set Jω is a
quasi-circle for every ω ∈ �0,r if r < 1/4. See [2, Corollary 4.5].

Theorem 4.29 generalizes this result. However, the following questions are open.

Question 5.8. Suppose r > rbif(c). Then for Pc,r × Pc,r -almost every (ω, ω′), are the
Julia sets Jω and Jω′ quasiconformally equivalent? Note that almost every Julia set is
homeomorphic to the (usual) Cantor set.

Question 5.9. If r = rbif(c), then is almost every random Julia set Jω quasiconformally
equivalent to the autonomous Julia set?

In this paper, we considered the measure-theoretic aspect of the typicality problem. For
the topological aspect, see [14], for example.

5.3. Application to general settings. We mainly considered random dynamical systems
induced by uniform noise on disks as in Setting 4.1. However, random dynamical systems
induced by any distribution μ with compact support can be considered. Even for Setting
2.1, we can apply the numerical estimates given in §4. More precisely, the following hold.

THEOREM 5.10. Let μ be a Borel probability measure on the parameter plane C with
compact support and let (Pμ, �μ) be defined as in Setting 2.1. If there exists c ∈ C such
that supp μ ⊂ B̄(c, rbif(c)), then the polynomial semigroup Gμ has a planar minimal set.
If there exists c ∈ C such that int(supp μ) ⊃ B̄(c, rbif(c)), then the random Julia set Jω is
totally disconnected for Pμ-almost every ω ∈ �μ.

Proof. Suppose that there exists c ∈ C such that supp μ ⊂ B̄(c, rbif(c)). By definition, the
polynomial semigroup Gc,rbif(c) has a planar minimal set. Thus, Lemma 2.12 gives that Gμ

also has a planar minimal set.
Similarly, if there exists c ∈ C such that int(supp μ) ⊃ B̄(c, rbif(c)), then Gμ does not

have any planar minimal sets. Thus, Gμ is mean stable, and T{∞},μ is identically equal to
1 by Theorem 2.21. Combining this with Theorem 3.7, we have that the random Julia set
Jω is totally disconnected for Pμ-almost every ω ∈ �μ.

Example 5.11. Let μs be the normalized Lebesgue measure on C with supp μs = {c ∈
C : |Re c| ≤ s, |Im c| ≤ s} for s ≥ 0. Then there exists s∗ > 0 such that Gμs is mean stable
if and only if s /∈ {0, s∗}. Theorem 5.10 and Corollary 4.11 imply (4

√
2)−1 ≤ s∗ ≤ 4−1.

Generally, we may apply our results to non-quadratic cases. Since ‘the Mandelbrot set is
universal’ [20], the structure of the quadratic family exists for any non-trivial family. Thus,
our quadratic results apply to random dynamical systems of any non-trivial family. In this
case, it is difficult to obtain quantitative estimates of bifurcation parameters.
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