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1. Introduction. The first discussion of the propagation of elastic waves in a thick
plate was given by Lamb [1] for the two-dimensional problem of a harmonic wave travelling
in a direction parallel to the medial plane of the plate. Lamb derived equations relating the
thickness of the plate to the phase velocities of two types of wave, one symmetric with respect
to the medial plane and the other antisymmetric. The symmetric modes of propagation
introduced by Lamb have been studied by Holden [2] and the antisymmetric modes have
been studied by Osborne and Hart [3]. More recently Pursey [4] has shown how the amplitude
of the disturbance is related to a given distribution of stress, varying harmonically with time,
applied to the free surfaces of the plate ; two types of source are considered by Pursey, one
producing a two-dimensional field of the Lamb type, and the other having circular symmetry
about an axis normal to the surface of the plate.

The purpose of the present paper is to derive formulae for the components of the displace-
ment vector and of the stress tensor at an interior point of the plate when time-dependent pres-
sures are applied to the free surfaces of the plate. As in the other papers cited, it is assumed
that the displacements and strains are small and that the substance is homogeneous, isotropic
and satisfies Hooke's law, so that the equations of the classical theory of elasticity apply.
The method of solution follows that outlined in [5] and developed for the infinite solid in [6].
By a systematic use of the theory of integral transforms, expressions are established for the
stress and displacement in the general three-dimensional case in the form of triple integrals.
The simpler solutions corresponding to the case of axial symmetry and the two-dimensional
problem are also derived. In general the evaluation of the integrals occurring in these formulae
presents formidable difficulties. In one case—that in which the stress is due to pulses of pres-
sure moving uniformly along the boundaries—the integrals in the two-dimensional theory
reduce to single integrals which can be calculated numerically. The method is illustrated by
the calculation of the normal component of stress in the medial plane of the plate. Finally
the solution of the statical problem is derived from the " steady-state " solution by letting the
velocity of the applied pulses tend to zero.

2. The General Solution of the Equations of Motion. We shall consider the distribu-
tion of stress in the interior of an infinite plate of homogeneous isotropic elastic material
bounded by the parallel planes z = ± d. We shall assume that there are no body forces
operative in the interior of the plate. If we take a pair of orthogonal x- and 2/-axes in the
central plane of the plate, z = 0, then in terms of the rectangular Cartesian co-ordinates
x, y and z the displacement vector may be denoted by the components (u, v, w) and the
stress tensor by the components ax, ay, az, TXV, TVZ and TZX. In this system of co-ordinates
the equations of motion of the solid may, in the absence of body forces, be written in the
form
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drxv day dryz B*V
~te + ~dj ~fc = (A + 2 ' X ) ^ ' (2-2)

Srxz dryz 8<JZ B2W
~dz~ + ^y~ + ~dz~ ~ (A + 2 H ^ f ' (2-3)

where A and /z denote Lame's elastic constants and r is a space-like variable related to the
time t through the equation

T =cxt, (2.4)

where Cj is the velocity of P-waves in the solid, so that

? (2.5)

The relation between the stress tensor and the displacement vector may similarly be
expressed by the set of six equations

. . . (du dv dw\ _ (du dv dw\ ,_ _.
K> av e.) = A ( ^ + ^ + ^ } + S f c ^ , ̂  , - ^ (2.6)

du dv dw dv du div\ .„ _.

+ + j ( 2 . 7 )
We shall discuss the case in which the normal component of stress, az, is prescribed

uniquely at every point of the bounding planes z = ±d, and each of the shearing stresses
and TVZ vanish identically at each point of these boundaries. No new principle is involvedT

in the calculation of the components of stress in the general case in which the shearing stresses
instead of being identically zero on the boundaries, assume prescribed values, and the analysis
extends along lines precisely similar to those outlined below. We therefore assume that our
boundary conditions are :—

Txz = TVJ = 0, on the planes z = ±d ; (2.8)

az = ~Pi(x, y, T), on the plane z = +d; (2.9)
az = -Ptfa V> T). on the plane z = -d (2.10)

To solve the set of nine partial differential equations symbolised by (2.1), (2.2), (2.3),
(2.6) and (2.7), subject to the boundary conditions (2.8), (2.9) and (2.10), we introduce the
three-dimensional Fourier transform defined by the equation

f(l v, z, w) = (2^-3/2 f" P° P" f(x,y,z,T)e«e*+™^dxdydT (2.11)
J —taj —aoj —oo

of all the quantities occurring in these equations. If we multiply both sides of each of our nine
partial differential equations by exp{-i {£x + rjy + on-)}, integrate from - oo to + oo with respect
to each of the variables x, y and T, and make use of well-known properties of Fourier trans-
forms, [7, p. 27 and p. 43], we obtain the set of simultaneous ordinary linear differential
equations

i^ (2.12)

(2.13)

(2.14)

v, iDw), (2.15)

+£w) (2.16)
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where we have written D to denote the operator djdz. If we now substitute from equations
(2.15) and (2.16) into equations (2.12)-(2.14) we obtain the set of three simultaneous ordinary
differential equations

= 0, (2.17)

= 0, (2.18)

? = 0 (2.19)

for the determination of the Fourier transforms of the components of the displacement vector.
In these equations we have written

.(2.20)

By the ordinary methods for the solution of such differential equations we can readily show
that

u = £©! cosh (TIJZ) + £®2sinh (nxz) + «2©3cosh (n2z) + w2®5sinh (n2z), (2.21)

v = r)&1 cosh (%z) +7j@2sinh {n^z) + n2®i cosh (w2z) + w2@6sinh (n2z), (2.22)

w = in1@icosii (nxz) + m1©1sinh(w1z) + i{£G5 + r)&li) cosh(«2z) + i(£@3 + rj®4)sinh(tt2z),...(2.23)

where @v ®2, ®3, ®4, ®6, and ®6 are arbitrary constants, and

~?i2 = P + ^-w*, n\ = f + T j 2 - ^ 2 (2.24)

It should be observed that though the arbitrary constants ©,• (i = 1, 2, ..., 6) are independent
of z they may involve the parameters £, 77 and w. If we substitute from equations (2.21)-(2.23)
into the second and third equations of the set (2.16) we find that

TXS = ix[2n1$@i sinh (wxz) +2»1f©2 cosh (%z)

+ {{n\ + ?) @3 + £, 0 J sinh (n2z) + {{n\ + ?) 06 + (v ®6} cosh (n2z)]
and that
TV, = /X[2M1IJ®1 sinh {n^z) +2n1-q&2 cosh (%z)

+ {£V ®a + (wi + ̂ 2) ®t) s i n h (n2z) +
Now it follows from the boundary conditions (2.8) that both
the planes z = ±d. We must therefore have

2nJ©x sinh (n^d) +{{n\ + f )®3 + |TJ®4} sinh (w2d) = 0,

2*1^02 cosh (njd) +{(n\ + ^2)05 + £77 ©6} cosh (n2d) = 0,

2W1TJ@I sinh (^d!) +{(n| +TJ2)@4 + fij®3} sinh (w2d) = 0,

2WJ7J02 cosh (?ixrf) +{(n\ +172)06 + ^TJ@5} cosh (n2d) = 0.

It is readily shown that the solution of these algebraic equations is

@x = (f2+r?
2_£|32a>2) sinh

+ 'J2 cosh

'•xz and TV2 will vanish on each of

sinh
cosh
COSh

.(2.25)

where 0j and 02 are arbitrary.
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If we substitute these values for the @'s into equations (2.21)-(2.23) and then substitute
these expressions into the third equation of the set (2.15) we find that

aa = 2i/4(f2 + 7/2-^/9W)2{sinh (n2d) cosh (n1z)&1+ cosh (n2d) sinh (wiZ)#2}

- njn2(f
2 + 7]2) {sinh (wxd) cosh (?i2z) $ j + cosh (n^) sinli («2z) <P2}].

Now it follows from equation (2.9) that

az = — Pi(£, yj, co) when z = +d, and that ~az = —Pz(£, •»/, tu) when z = — d,

so that the equations for the determination of the constants (Px and 0 2 are

—* = (P +1}2 - JB2a>2)2{sinh (nj&) cosh (w,^)^! + cosh (n2d) sinh (w,(Z)<Z>2}
2/x

- w1w2(f
2 + ij2) {sinh (%d) cosh (n2d)<P1 +cosh (iijd) sinh

^ = (£2 +TJ2 -ij32ai2)2{sinh (w2d) cosh (Wjd)^ -cosh (w2d) sinh [n1d)0i

-w1w2(|2 +»j2) {sinh (Wjd) cosh (n2d)&1 -cosh (%d) sinh

Solving these equations for 01 and &2 we find that

0X = —— , 02 = -?- (2.26)

where

P = -i(Pi +^2) {(I2 + rj2- !/22<o2)2 cosh (wxd) sinh (?i2d) - w1w2(^
2 + -q2) sinh (n-^) cosh (n^)}-1 ,

(2.27)
and

Q = - £(Fi -^2) {(P + 'y2 - ii82tu2)2 sinh (w^) cosh (n^) - WjWjf̂ 2 + if) cosh (w^) sinli (wad)}"1. •
(2.28)

Substituting from equations (2.25)-(2.28) into equations (2.21)-(2.23) we obtain finally
for the Fourier transforms of the components of the displacement vector

£(£2+,j2 _ 1 (Pw2) — —
u = — — - {P sinh {n2d) cosh (%z) + Q cosh (n2d) sinh (n^)}

- ^ ^ (F sinh (njd) cosh (w2z) + Q cosh ( V ) sinh (n^)} (2.29)

_ _ r)( T) 2p <» | p sinji (w^) cosh (Wld) + Q cosh (?i2d) sinh (%z)

- ^ ^ {P sinh (rijd) cosh (ngz) + Q cosh (mxd) sinh (?i2z)}, (2.30)

w = — \— W {P sinh (n2d) sinh (^z) + Q cosh (m2d) cosh (w,z)}

- - ^ - — {P sinh { V ) sinh (ra2z) +Q cosh (w d̂) cosh (w2z)} (2.31)

The expressions for the components themselves are then found by inverting these formulae
by means of the Fourier inversion theorem for multiple transforms [7, p. 45]:—

(u, v, w) = (2TT)-3/2 P° f" f" («,»>w)e-'tee+w+WT>#<fyc*w (2.32)
J —00 J —00 J —(30

Similar expressions can be obtained for the components of the stress tensor. For
example, it follows from the third equation of the set (2.15) and the equations (2.29)-(2.31)
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that

ot = JP{(£2 + TJ2 - ||S2aj2)2 cosh (rijz) sinh (n2d) - nxn2{£2 + ?j2) sinh {Ujd) cosh (w2z)}
+ Q{(£2 + y2- ij82w2)2 sinh (wxz) cosh (?i2d) -%n2(£2 + ij2) cosh (iijd) sinh (?i2z)}. ...(2.33).

In the symmetrical problem in which p1 = p2 the expression for ~az on the central plane
s = 0 assumes a much simpler form. We find that

[?J*=o =P{(i? + T)2-\p"2u2)2 sinh {n^-njn^ + T]2) sinh {n^d)} (2.34)

where P is given by equation (2.27) with p2 = pv Inverting equation (2.34) by means of the
appropriate Fourier theorem we then obtain an expression for the normal component of stress
at the base of an elastic strip 0 < z < d when the base z = 0 rests on a rigid foundation and a
pressure px is applied to the surface z = d.

3. Solution of the Equations of Motion in the Case of Axial Symmetry. We shall
now derive a formal solution of the problem for the case in which the pressures p1 and p2 which
are applied to the boundaries of the thick plate are both distributed symmetrically about the
z-axis. In these circumstances we can describe the displacement vector by a pair of com-
ponents ur and uz, where (r, 8, z) are the cylindrical polar co-ordinates of a point. The non-
vanishing components of the stress tensor may then be denoted by oy, ae, az and rrz. If we
substitute from the stress-strain relations

(<rr, oB, oz) =

and

( 3 - 3 )

into the equations of motion
d<jr drrz Or-ag d2ur

Tr

we find that the components of the displacement vector satisfy the pair of simultaneous partial
differential equations

p I -5-5- H 5 K I +(p - 1) 3—K +-5-9- = P -5-? 1 \d-o)
\or2 r dr r2 J or az oz2 or2

d2u \du. d fduT ur\ d2uz d2uz
- « - r H 5 h (p" — 1) ^ - ( -5 1 l + p -5-5- = P o o " 1 ld-«)
dr2 r or r dz\or r) oz2 r dr2

If we now multiply both sides of equation (3.5) by eiUTrJ1(^r) and both sides of equation
(3.6) by eiu>TrJQ(£r) and integrate with respect to r from 0 to 00 and with respect to T from
- 00 to +00 we find that these equations are equivalent to the pair of simultaneous ordinary

differential equations

(p2t2-D2-IPa>2)ur + Z(P2-I)Duz = 0 (3.7)
-f(/F-l)2)fif. + (£«-/3»2>«-/3»eU*)»I = 0, (3.8)

for the transforms ur and uz defined by the equations

- 0 0
rWi(fr)*- (3-9)
Jo
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J(4TT) J _«,

f (-1-1

J

In equations (3.7) and (3.8), D denotes the operator djdz as before, and /? is given by equation
(2.20). I t is readily shown that the solution of the pair of equations (3.7) and (3.8) is contained
in the relations

ur = £{A cosh (nxz) +B sinh (W]Z)} + n2{C cosh (w2z) +D sinh (n2z)}, (3.11)

uz = -n^A sinh (n^z) +B cosh (wxz)} -£{C sinh (w2z) +D cosh (w2z)}, (3.12)

where A, B, C and D are arbitrary constants and

n\ = £2-co2, n\ = ^-j82a.2 (3.13)

If the conditions on the boundary surfaces are

rtl = 0, on z = ±d (3.14)
at = -Pi(r,r)onz= +d (3.15)

az = -Pi(r,T)onz= -d, (3.16)

then it follows from equations (3.14) and (3.2) that
Dur - fws = 0, on the planes z = ±d (3.17)

From this we find that
A = (£2 -|£2co2) sinh (n2d)0v B = (£2

 -1J82OJ2) cosh (n2d)02>'
G = - ^nx sinh (?i1c2)@1, Z) = -1?^ cosh (w^) ®a,

where ©j and ®2 are arbitrary constants.
Making use of the fact that the boundary conditions (3.15) and (3.16) are equivalent to

the relations

at = — Pi(£, CJ) on z = d ; az = — y2(£, <u) on z = — d,

where Pi 2(^1t") = V/o eit0T dr \ rp12(r,T)J0(£r)dr, (3.19)
\Z(̂ W) J -00 Jo

we find that

where

P = - | ( P i +2>2){(£2-£j82a>2)2 cosh (Wjrf) cosh (w2d) -£2Wj?i2 sinh (w^) cosh (w^)}"1, (3.21)

Q = - ^ ( ^ -]52){(f2 -^j82a>2)2 sinh (w^) cosh (n2d) -Pn,jn2 cosh (w^) sinh (ra^)}-1 (3.22)

The components of the displacement vector therefore possess the transforms

ur = f(£2
 -£/S2OJ2)2 [cosh (rijz) sinh (n2d)01 +sinh (%z) cosh (w2z) cosh (w2rf)®2]

- ^Wjjfsinh (Wjrf) cosh (w2z) ©j + cosh (n^d) sinh (w^) ©2], (3.23)

uz = -Wj(f2 -^/82cu2) [sinh (%z) sinh (Wjrf)®! +cosh (%z) cosh (w2rf)@2]

+ f2re1[sinh {nxd) sinh (rijz) ®x + cosh (%d) cosh (?i2z)®2], (3.24)

where 0X and ©2 are given uniquely by the equations (3.19)-(3.22). The final solution of the
problem is therefore given by the integral expressions

1

_«, Jo
(3.25)

FMft (3.26)
O
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where uT and uz are given by the expressions (3.23) and (3.24).

4. The General Solution of the Two-Dimensional Problem. The solution of the
two-dimensional problem in which the physical conditions are identical in all planes parallel to
the xz-plane (plane strain) can be derived by writing down the equations of plane strain and
the corresponding stress-strain relations and solving them by a process similar to that employed
in § 2 for the three-dimensional case. We may however derive the two-dimensional solution
from the three-dimensional one by considering the solution in the latter case when the applied
pressures p1 and p2

 a r e functions of x and T only, that is

Pi ="PI(X,T), PZ =PZ(X,T) (4.1)

so that, in the notation of § 2,

), "I
(4.2)

where 8(77) denotes the Dirac delta function of argument 77 and

Pi,zi£> w) = H~ Pi,z(x> T ) e* ex+t"T dxdr (4.3)

are the two-dimensional Fourier transforms of the functions Pi(x, T), p2(x, T). On substituting
from equations (4.2) into equations (2.29)-(2.31) we obtain the expressions

^ j p sinh ( m ^ cosh ( m ^ + Q cosh ( m ^ sinh

t)— ^ {P sinh (m^) cosh (ma«) + Q cosh K ^ ) sinh (m2z)}, (4.4)

v = 0, (4.5)

w = (^) ~ ^ {^ sinh (m2<i) sinh (m^) + Q cosh (m2rf) cosh

]
/

^ — {p sinh (m^) sinh (m2z) +(Q cosh (m^) cosh (ra2z)} (4.6)
f4

for the Fourier transforms of the components of the displacement vector. In these equations

ml = £*-w*, ml = f2 - 02o>2, (4.7)

P = - *[j5i(f, <o) +pa(f, w)] {(f - ||32w2)2 cosh {m^d) sinh (m2d)

- mĵ mjl2 sinh (m^) cosh (mjd)}"1 (4.8)

Q = -\\$i(£, w) - f t d , «)] {(f8 - */32w2)2 sinh K d ) cosh (m2d)
-m1m2(;

2 cosh (m^) sinh (m2d)}-1, (4.9)

and the transforms "p-^g, tu), p2(£, cu) are defined by equations (4.3). Inserting these expres-
sions into Fourier's inversion theorem (2.32) we obtain the expressions

u = J— r f" f(f2 - ij82o)2) {p sinh (m2d) cosh (m^)
4i7T^. J - a , J _ w

+ <£ cosh (?ra2d) sinh (mxz)} e-<(fa;+<UT) rff cico

- —:— ?w1m2£{p sinh ( m ^ ) cosh (ra2z)
4i7T^t J 00 J 00

+ Q cosh (mjd) sinh (m^)} e-<(«X+WT) i f dco (4.10)
v = 0 (4.11)
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w = -— \ \ mA?-\&io2)(p sinh (m2d) sinh (nuz)
47T/A J _oo J -00

+ Q cosh (m2d) cosh (m^z)} e-i((x+mT) d£ dm
J |*oo ra>

- - — tn-i^iP sinh (m^d) sinh (w2z)+Q cosh (m2d) cosh (m^i)}e-"ix+aT>dgdw,
^n\h J _oo J —oo

(4.12)
for the components of the displacement vector in this problem of plane strain.

In problems in which the applied normal forces are symmetrical with respect to the
medial plane of the strip so that the boundary conditions are

az= -p(x,r), TXZ = 0, z = ±d, (4.13)

we find that v = 0 as before and that
1 (*00 foo "Zlt w\

u = -TT\ frr^ M? ~ ̂ ^)sinh ^ c o s h (mi2)

- rr^m^ sinh (m^d) cosh (m2z)] e-'(^+U)T) d£ dm (4.14)

w = - - i - T f" 5 ^ ? K(^2 - l(82^2) sinh (mji) sinli (mrf
47r/xJ_oo J -oo/(?, ">)

sinh (j^rf) sinh (m2z)] e-'
(fx+MT) d^ rfoj, (4.15)

where
/(£, w) = (£* -\fi2w2)2 cosh {mxd) sinh (m2d) -m1m2f2 sinh (m^d) cosh (m2d), ...(4.16)

and

Substituting from equations (4.14) and (4.15) into the stress-strain relations we obtain the
expressions

02 _ 1 foo Too Z/t ^
°x + °* = t-TT— 77T-T "HP ~ W*"2) sinh (m2d) cosh K z ) e-«f*+<"T> d€ dw, ...(4.18)

Zn J _«, J -a,/(f, cu)
1 f00 f00 »(f to)

(7, - a,. = - ^-r^—- {m^m^2 sinh (j^d) cosh m2z
T J -oo J - « / ( ? , C")

- (^2 - |a>2) (f2 - ^/S2co2) sinli (m2d) cosh (wixz)} e~"fx+WT) d f dco, (4.19)

Txz — H ~ I 777̂ —T mi£(^2 ~ ̂ 2(X|2) {sinh (wi,d) sinh (J^Z)
4T J -<B J - 0 0 / ( ? , <"J

- sinh (mjrf) sinh (m2z)} £-*(&+•»*) rff rfcoj (4.20)

for the determination of the stress components.
5. Pulses of Pressure Moving Uniformly along the Boundaries. We shall now con-

sider the particular case of pulses of pressure applied to the bounding surfaces and moving
along them with uniform velocity V. If the pulses are symmetrical in the sense of the last
section and if they have " shape " p(x), then we have

p(x, T) = p(x - Vt) = p(x - /?XT),

where & = V/cv Inserting this expression in formula (4.17), performing the integration with
respect to T and making use of the formal properties of the Dirac delta function we find that

+ &£). (5.1)
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where we have written

T (5-2)
— 00

If we then substitute from equation (5.1) into equations (4.14) and (4.15) we find that, after
we perform the integration with respect to w, the expressions for the components of the
displacement vector reduce to

1 f°° 7><ftf3

" = " 1 ^ - tit a t\ K 1 " ^ ) s i n h (*a#) c o s h (*i£z) - "1*2 s m h ("i^) c o s h (K>

w = ~ ZT" TTf R f\ fKl^ ~ ̂ 2) sinh («-2£d) sinh (K^Z) - KX sinh ( K ^ ) sinh («2£z)] dg,

where

01 = 020i = ^ 2 / c i . (5-3)
and

K2 = l - ^ 2 , K | = l - j S | (5.4)

If we assume further that p(8) is an even function of 6, and make a change of variable in
these integrals from 77 to u where u = r/d, the expressions for the components of the dis-
placement vector become

u = -— ; [(1 - £/J|) sinh u2 cosh (zujd) - KXK2 sinh % cosh (ZM2/<Z)]
•^7r/x J 0 j(u)

xsin-T -5——\du (5.5)

and

w = - jr-J- j . . [(1 - |p?) sinh ?
^ W M J o / ( M )

x cos •< j——>du, (5.6)

where we have ^vritten ux = K^U, U2 = K2U, and

f(u) = (1 -ij8|)2 cosh % sinh u2 -K1K2 sinh ux cosh M2 (5.7)

In a similar way we may derive the values of the components of the stress tensor from the
equations

ax + <Tz ~ ~j 7 7 Y s m n M2 c o s h (2Mi/») cos < -—T—^-^aw, (5.8)

ff* - °f* = J ti \ \.KiKi sinh wi cosh (zujd) - (1 - |0i)(l - £j8jj) sinh w2 cosh {zujd)]
nd J 0 / (w)

x cos ^——!-ydu, (5.9)

— ). [sinh u2 sinh (zujd) - sinh % sinh (z«2/d)]
J 0 / (w)7rd!

I t will be observed that the z-component of the displacement vector is zero everywhere
on the medial plane z = 0, so that this solution also applies to the case of an elastic strip of
thickness d resting upon a perfectly rigid foundation whose boundary forms the co-ordinate
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plane z = 0, with a pulse of pressure moving with uniform velocity V along the upper surface
z = d of the elastic strip. The pressure transmitted by this elastic strip to the rigid foundation
is of some interest; it is determined by the formula

1 /

VI
? A)

• \ *

X\
-1 \

1
0

y\\
yv=o
/

FIG. 1

[(1 - i/9|)a sinh M2 - (1 - /8f)1'2(l - jS2)1'2 sinh %]

x cos /(£zZ .(5.11)

In particular, if the loading is a point force of magnitude P, then p(x) = PS(a;)) and
y(i) = P, so that equation (4.31) reduces to

1 [(1 - 1 j32)2 sinh M2 - (1 - fi2)1^! - ft2)1/2 sinh •
' o f(u)(*.):

p r«
••-o — ^

T»J 0
COS du.

This integral can be evaluated easily by Filon's method [8] and the variation of the pressure
(°'Z)J=O

 with x - Vt is shown graphically in Fig. 1, for the case in which A = /x (i.e. Poisson's
ratio is J) and F = (Mcj. For comparison the corresponding pressure in the statical case
V = 0 is also plotted. Comparing the two curves we see that when the force is moving the
pressure is greater immediately below the point of application of the force than it is in the
statical case but that it falls off more rapidly on either side. These calculations would appear
to indicate that in considering the effect of dynamical loads on elastic structures it is not
sufficient to take the values of the stress components given by the statical theory.

6. Solution of the Statical Problem. I t is a simple matter to deduce from the
last section the solution of the statical problem in which the infinite strip - oo < x < + oo,
- d < z < : +dia deformed by the application of normal stresses p(x) to each of the surfaces

z = ± d in the case where p(x) is an even function of x. From the definitions of wx and u2
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it follows from equation (5.7) that, for small values of V,

f(u) = £($ - p\) (sinh 2M + 2M).

Similarly we can show that

(1 - !/?!) sinh M2 sinh (zujd) - sinh ux sinh (zu2/d)
— KPi — Pi) [u c o s n u sinh {zujd) - (zw/d) sinh « cosh (ZM/<Z)] - |j8| sinh M sinh (zu/d),

and that
(1 - i/3§) sinh M2 cosh (zujd) - KtK2 sinh MX cosh (zujd)

= |jSf sinh M cosh (zujd) - \(p\ - j8|) [(zu/d) sinh w sinh (zM/d) + M cosh M cosh (ZM/<Z)].

Inserting these expressions into equations (5.5) and (5.6), letting V tend to zero and making
use of the results

lim J%-= = -(1 -2,), lim -fl^ = -2(1 - , ) ,
FK) Pi - Pi v-+o Pi - Pi

in which v denotes Poisson's ratio, we find that the components of the displacement vector in
the statical case are

1 f" _ /u\ JU cosh M cosh (zu/d) + (zujd) sinh u sinh (zu/d) + (1 - 2v) sinh u cosh (zu/d)\
U = " ^ J o ^ W l sinh 2M + 2M J

xsin(f)dM,

1 J"00 _ fu\Ju cosh M sinh (ZM/C£) - (ZM/<£) sinh M cosh (ZM/<2) +2(1 -1/) sinh M sinh (zujd)\
W = ~^JoP \d)\ sinh 2M + 2M J

/ZMN
x cos ( -r J OM,

in agreement with a known result [7, p. 412].
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