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Abstract

We study the bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one
space variable by modifying a "time map" technique introduced by J. Smoller and A. Wasserman.
We count the exact number of steady-state solutions which are totally ordered in an order
interval. We are then able to find their Conley indices and thus determine their stabilities.
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1. Introduction

We study the bifurcation of steady-state solutions of a scalar reaction-diffu-
sion equation in one space variable

(1.1) ut-uxx-f(u) = 0, (x , r )eQxR + cRxE +

together with the boundary conditions

. 1 ) U\X , I) — U , \X , I) fc O\i X IK

and initial data u(x, 0). For proper choices of / , equation (1.1) models
some chemical and biological diffusion phenomena [2, 4, 10].
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In this paper, we shall concern ourselves with bounded spatial regions
Cl = {\x\ < L} ; this requires that u satisfy bounded boundary conditions at
±L. Then the steady-state equation associated with (1.1) and (l.l ') is the
two-point boundary value problem

(1.2) u" + f(u) = 0, -L<x<L, u(-L) = u{L) = 0.

The real-valued function / : [0, oo) —> R is initially assumed to be C2 and to
have exactly three nonnegative simple roots 0 < sQ < sx < s2 with /(0) > 0.
Furthermore, we also assume that the area of a "hill" exceeds that of the
preceding "valley".

We obtain the local bifurcation diagram of positive solutions u of (1.2)
satisfying

(1-3) 5 0 < | | M | | O O < 5 2 ,

for such a function / ; that is, we count the exact number of nonnegative
solutions in the order interval [0, s2) = {u\0 < u < s2} . Notice that phase-
plane analysis shows /(HMH^) > 0 if M is a positive solution, and if /(0) =
0, then w = 0 is always a steady-state solution (that is, for all L). We are
interested in nonconstant positive solutions other than the trivial solution
u = 0, if it exists.

We study (1.2) through an approach due to J. Smoller and A. Wasserman
[11] who studied (1.2) by the technique of "time map" T(a) to count the
exact number of solutions of (1.2) for / a cubic polynomial. Thus our
method of proof is not new. We show that, for large L, if / satisfies
(2.1)—(2.3), then (1.2) has exactly three totally ordered positive solutions in
the interval (0, s2) if /(0) > 0 and (1.2) has exactly three totally ordered
positive solutions in (0, s2) other than the trivial solution u = 0 if /(0) = 0
and / ( 0 ) < 0.

Note. Our method of proof allows us to relax the C -hypothesis on / ; we
only need / to be C 1 .

The research in this paper is motivated by papers [3, 5] in which a multi-
plicity result of at least three totally ordered positive solutions of the Dirichlet
problem

k.
AM + A/(M) = 0 in Q. (Q is a smooth bounded domain in R (k > 1)),

(1.4) M = 0 o

in the ordered interval (0, s2) was obtained separately by variational and
topological index argument for function / e C1 such that 0 < s0 < sl < s2

and satisfying
(fl) f(y) > 0 on (0,s0), or (fl') /(0) = 0 and f+(0) > 0,
(f2) f(sQ) = f(sl) = f(s2) = 0,
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(f3) //2 f{s)ds>0,
if k is large enough. More precisely, it was shown in [3, 5] that (1.2) has at
least one positive solution satisfying 0 < HMH^ < s0 and at least two positive
solutions satisfying (1.3) if A is large enough. Moreover, these three positive
solutions obtained are totally ordered (see also [7]).

NOTE 1. Conditions (f2) and (f3) correspond to our assumptions (2.1) and
part of (2.3). However, (fl) and (fl;) are different from our assumption in
the case that /(0) = 0 where we assume f+(0) < 0 and where Dancer [5]
assumed / .̂(O) > 0 and where de Figueiredo [3] assumed f+(0) > 0.

NOTE 2. If we make change of variable y = x/L, then (1.2) becomes

(1.5) uyy + L2f(u) = 0, \y\<\, M ( ± 1 ) = 0 ,

so that if X — L2 , we obtain a problem of the type (1.4). We prefer, however,
to consider the equation (1.2) because, as we shall see, its solutions can be
given a nice geometrical interpretation [10, p. 185].

REMARK. A cubic polynomial / cannot satisfy the conditions (2.1)—(2.3)
of Theorem 1 stated in Section 2. Nevertheless, we should remark that for
/ - -(x - so)(x - sx)(x - s2) satisfying (f4) 0 < s0 < st < s2 and (f5)
//2 / ( 5 ) ds > 0 , the problem of the complete bifurcation diagram of solutions
of (1.2) is still open. Only partial results are known; see the first author's
paper [13] for details.

As Smoller and Wasserman did in [11], we rewrite (1.2) as a first order
system

(1.6) u' = v, v' = -f(u), | x | < L ,

and we consider the phase plane for (1.6) locally illustrated in Figure 1 for

It is clear that positive solutions of (1.2) satisfying (1.3) correspond to
those orbits of (1.6) which "begin" on the interval (Ao, Al) (Ao > 0, Al > 0
with A2

Q = 2F(sQ) and A] = 2F(s2), where F(s) = fcf(u)du) on the v-
axis, and "end" on the v-axis, and take "time" (parameter length) 2L to
make the journey [11]. Then, as in [11], we use the time map

(1.7) T(a) — 2 / (F(a) — F(u)) d u , y < a < s 7 ,
Jo

where y e (s{, s2) with Jj f(s) ds = 0. Notice that solutions of (1.6) corre-
spond to curves for which T(a) = L. This led us to investigate the shape of
graph of T; see [10, pp. 186-187]. We write as (1.8) and (1.9) below two
formulas from [11]:
,, „. -*. , ,-3/2 fa 6(a) - 6{u) du

Jo (AF)3 / 2 a
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V

[4]

U

FIGURE 1

where AF = F(a) - F(u) and d(x) = 2F(x) - xf(x);

(1.9) T"(a) + -t[a) > — j - / (AF)'3'2 (c^a) - 0

where 0(JC) = xd'(x) - 6(x).
We analyze the "time map" T by studying the convexity of the curve

y = f(x). We recall that the domain of T is the open interval (y, s2).
Furthermore, from phase-plane analysis, we know that if a is near y or
s2, T(a) must be very large. Since T is a smooth function, we see that
T(a) must have at least one critical point, a minimum on (y, s2), say at
a0. Obviously, T(aQ) > 0 [10].

2. Main Result

THEOREM 1. Suppose f e C2, and there are numbers 0 < s0 < sx < s2

such that the following conditions are satisfied:

(2.1) f(s ) = f(s ) = f{s ) = 0;

(2.2) f'(x) >0forxe (0,5,), f"(x) <0forx€
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\ f(s) ds > 0, and there exists y in (s{, s2) defined by / f(s) ds — 0
Js0 Js0

(2.3)
and such that 2F{y) - yf{y) < 0.

Let T be defined by (1.7). Then T has exactly one critical point, a minimum
in {y , s2) .

EXAMPLE OF FUNCTIONS / . Choose

where s0 = 0, s, = 1, s2 = 3, and y = 1 + y/2, or for 0 < e «C 1 sufficiently
small, choose

J -(x - e)(x - (1 + e))(x - (2 + e)), 0 < x < 1 + e,
I * ( Y M -L p^ r X v ( \ -i- e\ 1 -X~ P **' v <T* ^ I f*
I T ^-V ^ 1 T C j j i - A . — ^ l ~ t ~ C ^ 5 1 T" C V . A ^ J T ^ C j

where 50 = e, ^ = 1 + e, s2 = 3 + e, and y = 1 + -\/2 + e.
REMARK. NO analysis of f" was used in [11]; but it is of importance in

our analysis; see also [14].
NOTE 1. Since 2F(y) - yf(y) - 2F{s0) - yf(y), if s0 = 0 in (2.3), then

the condition 2F{y) - yf(y) = -yf{y) < 0 is automatically satisfied.
NOTE 2. Conditions (2.1) and (2.2) imply (2.4) and (2.5) stated below.

f{x) > 0 for x G [0, sQ) if s0 > 0,
(1 A\ f(x) <: 0 fnr x f= (<t ? 1

f(x) > 0 for x € (si, s2).

(2.5) / ( s o ) < O , / ( s , ) > 0 , and / ( J 2 ) < 0.

PROOF OF THEOREM 1.

Since we know that the "time map" T has at least one critical point on
(y, s2), it suffices to show that T has at most one critical point. For this we
will show

(2.6) r " ( a ) > 0 if T'(a) = 0.

Indeed, we shall show that T'(a) < 0 for y < s < p2 (for p2 defined below)
and (2.6) holds on (p2, s2) so that T'(a) can vanish exactly once there (its
zero lies on (p2, s2)). In (1.8), we have

(2.7) T\a) = 2"3'
3/2
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where d(x) = 2F(x) - xf{x), which gives

(2.8) d\x) = f{x)-xf{x)

and
„ ,, f < 0 if x e (0, s.),

(2.9) 0 {x) = -xf\x)\ .c '
v ' K ' K '\ > 0 ifxe(sl,s2).
Now by (2.1), (2.3), and (2.4),

0(0) = 0,
e(s0) = 2F(s0) = 0 if s0 = 0; 0(so) = 2F(sQ) > 0 if *0 > 0,

' 0(y) < 0 , and
6(s2) = 2F(s2) > 0.

So (i) if s0 > 0 , 6 has one root at zero and at least two distinct positive
roots, qx and q2 with s0 < qx < y < q2 < s2 ; and (ii) if s0 = 0, then 6 has
one root at zero and at least one positive root, q2 , with y < q2 < s2. Also
by (2.5) and (2.8), we know
(2.11)

0'(O)=/(O)>Oifso>O,
d\s0) = -so/(so) = 0 if s0 = 0; d'(s0) = -so/(so) > 0 if s0 > 0,

d'(si) = -slf{si) < 0 , and

6\s2) = -s2/(s2) > 0.

So by (2.9), (i) if sQ > 0, then 0' has exactly two positive roots, px and
p2 with sQ < p{ < 5j < p2 < s2; and (ii) if s0 = 0, then d' has one zero
root and exactly one positive root, p2 with s{ < p2 < s2. By the previous
argument, (i) if s0 > 0, then 6 has exactly two distinct positive roots, qx

and q2 with sQ < qx < y < q2 < s2; and (ii) if s0 — 0, then 6 has exactly
one positive root, q2 , with y < q2 < s2. Note that

(2.12) 0'{p2) = 0 and d{p2) < 0,

which we use to show (2.6).

One sees that the graph of 6 is as in Figure 2 for s0 > 0 . Thus

(2.13) 0(a)-0(u)<Q if y < a < p2 and M < a.

So

(2.14) f(a)<0 if y<a<p2.

Hence, to show (2.6), we need only to consider a> p2.
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o Pi

Now, from (1.9), we find that

FIGURE 2

— 3/21 *•* — 3 /2 »

"(a) + -T'(a)>^-T-
a a JQ

(a) - <j>(u)) du,(2.15)

in which

(2.16) <j>(x)=x6'{x)-6(x).

So by (2.9)

< 0 if

> 0 if .x e (s,, s2).
It is easy to see that by (2.12) and (2.16),

(2.18) 0(0) = 0 , <t>{p2) = p2d'(p2) - 6{p2) = -6{p2) > 0.

Thus, we obtain the graph of </>, given in Figure 3 for s0 > 0; note that
s{<p2<s2.

FIGURE 3
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(a) SQ=O ( b )

FIGURE 4

We conclude that in the integrand of (2.15),

(2.19) (f>(a) - <j)(u) > 0 if p2 < a < s2 and u < a.

Thus

(2.20) T"(a) + -T'(a)>0 for p2 < a < s2 ,

and if T'(a) = 0 for some a, p2 < a < s2, then T"(a) > 0. This and
(2.14) imply (2.6). So Tr vanishes at most once on (y, s2). Hence T has
exactly one critical point, a minimum on (y, s2). This completes the proof
of Theorem 1.

REMARK 1. If one reviews the proof, one sees that the requirements of the
smoothness and convexity conditions on function / in (2.2) can be weak-
ened; we can replace / e C2 by / e C 1 , and weaken (2.2) by requiring that
8 and (f> satisfy

(2.21) d'{x) = f(x) - xf{x) is strictly decreasing in (0,5,) and strictly
increasing in (s{, s2), and

(2.22) (f>(x) = -2F(x) + 2xf(x)-x2f'(x) is s t r ic t ly d e c r e a s i n g in (0,s})
and strictly increasing in (Sj, .s2).

REMARK 2. Condition (2.2) can be weakened as / " > 0 in (0, d), / " <
0 in {d, s2) for d e (cl, c2), where c{ is the critical point of / in (sQ, s{)
and c2 is the critical point of / in (s{, s2).

REMARK 3. If s0 > 0 , then the solution with H"!!^ 6 (0 , s 0 ) cannot
undergo bifurcation. To see this we consider T(a) defined by (1.9) on (y,s2)
and on (0, s0), we define the "time map" S(a) by

(2.23) S(a) - 2- 2~1 / 2 {F{a) - F(u))~l/2 du, 0 < a < s0.

By (2.1) and (2.2), /(0) > 0, /(50) = 0 and / is strictly decreasing in
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(0, s0). It is easy to see that 5(0+) = 0 , S{s~) = +oo and 5 is strictly
increasing in (0, s0); see also [7]. Combining the solution branches of S
and T, we see that the bifurcation diagram of (1.2) takes the form in Figure
4(a), (b). Therefore, for L > Lx, there are exactly three positive solutions
if s0 > 0 and exactly two positive solutions if s0 — 0 in the order interval
(0, s2) for (1.2) if the function / satisfies (2.1)-(2.3).

3. One Generalization

Suppose / has 2m + 1 (m > 2) nonnegative simple roots 0 < s0 < s{ <
s2 < • •• < 52m_, < s2m and also assume that the area of a "hill" exceeds that
of the preceding "valley". Similarly to (1.7), for n = 1, 2, . . . , m, we define
An > 0 by A2

n = 2F(s2n), and the "time map"

(3.1)
Jo

where yn € (s2n_1,s2n) with //" f(s)ds = 0. As before, solutions of
In — 2

(1.6) correspond to curves for which Tn(a) = L. Our argument in Section
2 can be easily modified to show that each "time map" Tn has exactly one
critical point for each n = 1, 2, ... , m. We now state without proof the
following generalized theorem (recall that 6{x) — 2F(x)-xf(x) and <j>{x) —
x6'(x) - d(x) = -2F(x) + 2xf(x) - x2/(x)).

THEOREM 2. Suppose f e C2, and there are numbers 0 < s0 < s, < s2 <
••• < s2m_l < s2m(m > 2) such that the following conditions are satisfied:

(3.2) f(sn) = 0 forn = 0,1, 2,...,2m,

f'(x)>0 forxe(0,Sl),

(3.3) / ' ( x ) < 0 forxe{s2n_l,s2n),n = l,2,...,m,

f \ x ) > 0 forx e (s2n_2,s2n_l), n = l,2, ... ,m,

(3-4) J?2" f(s)ds > 0 , n - 1, 2, ..., m, and there exists a
•"2I1-2

yn ' " (s2n-i's2n^ defined by //" f(s)ds = 0 and such that

(3.5) there exists p2n, a root of f{x) -xf(x) — 0 in (s2n_l, s2n),
for n - 1, 2, ..., m such that the following two conditions
are satisfied:
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L

(a) m = 2 and sn = 0

a

a
S2 72

(b) m = 2 and sQ > 0

FIGURE 5

(1) either P2n<yn for n = 2, 3 , . . . , m

or ifp2n >ynforn = 2,3,...,m then 0(yn) < 9{p2n_2)

and

i.e., - 2F(s2n_2) - S2
2n_2/(s2n_2) < ~2F(p2n) + 2p2J(p2n).

Let Tn be defined by (3.1). Then for n= 1,2, ... ,m, Tn has exactly one
critical point, a minimum.
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REMARK 1. The proof of Theorem 2 is not very different from that of
Theorem 1. Condition (3.5) is assumed to ensure the functions 6 and <$>
have the desired properties and hence give the conclusion of Theorem 2.

REMARK 2. We can weaken the hypotheses on / , 6, and 4> in Theorem
2 as we did in (2.21) and (2.22) in Theorem 1.

REMARK 3. If sQ > 0, on (0, s0) we define the "time map" TQ to be the
"time map" S defined by (2.23). One sees that the bifurcation diagram of
(1.2) if / satisfies (3.2)-(3.5) takes the form given in Figure 5(a) for m = 2
if s0 = 0 in Figure 5(b) for m = 2 if s0 > 0.

Thus for 0 < L < minn=1 m{Ln} , there is only one nonnegative solution
u, with 0 < HwĤ  < s0. But for L = Ln (n = 1, 2, . . . , m), a positive
solution u with s2n_l < H"!^ < s2n appears. While for L > Ln (n =
1,2, ... , m), this solution bifurcates into two positive distinct solutions
U2n-i> U2n ™th S2n-i < HM2*-i Hoc > K J o o < hn'• Therefore, for L >
maxn=i m{^n} , there are exactly 2m + 1 positive solutions if s0 > 0 and
2m positive solutions other than the trivial solution u = 0 if s0 = 0 in the
order interval [0,s2m) for (1.2) if / satisfies (3.2)-(3.5).

4. A Remark on Total Ordering of Multiple Steady-States Solutions

In this short section, we show the 2m + 1 (m > 1) steady-state solutions
uo,ul, u2, ... , ulm_x, u2m of (1.2) obtained in Theorems 1 and 2 for large
L are totally ordered. We have

THEOREM 3.

(4.1) M 0 < M l < M 2 < - - - < M 2 m - l < M 2 m -

Theorem 3 is an easy consequence of a special case of the following lemma,
which can be shown by considering the first order system (1.6) and observing
that the total energy function H(u, v) = v2/2+F(u) is constant along orbits
of (1.6). By w < w , we mean w(x) < w(x), x e (-L, L).

LEMMA 1. Let w and w be any two distinct positive solutions of (1.2)
with 0<||tx;| |oo<| |ta| |oo. Then
(4.2) w < w.

NOTE 1. Lemma 1 says any two distinct positive solutions of (1.2) are
ordered.

NOTE 2. In Lemma 1, / is not necessary to satisfy (3.2) and the first part
of (3.4). We do not require L to be large enough (cf. [3]).

NOTE 3. ||tu|| = w(0) and ||i&|| = w(0). It iseasy toseethat ||t«|| /
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Halloo by t n e e x i s t e n c e and uniqueness theorem for autonomous system [8, 
p. 162]. 

5. A Brief Remark on Stability of the Multiple Steady-State Solutions 

In this section we briefly discuss the stability of these 2m + 1 (m > 1) 
steady-state solutions 

(5-1) "o- " l . M 2 > • • • > M 2 m - 1 > U2m 

obtained in Theorems 1, 2 for L > m a x n = 1 m{Ln} by a powerful topolog
ical tool, the Conley index theory. We get more information about the global 
structure of the multiple steady-states. Much of the exposition given here is 
adapted from Smoller [11]. It can be shown that the Conley index of u2n_l > 
h(u2n_x) = Z 1 , a pointed one-sphere (n = 1,2, ... , m), and the Conley 
index of u2n , h{u2n) = Z ° , a pointed zero-sphere (n = \ ,2, ... , m). Then 
there exist solutions v2n_l and v2n of (1.1), which connect uln_x

 t 0
 u 2 n - 2 

and u2n_x to u2n (n = 1, 2 , . . . , m) respectively; that is, 

(5.2) 
Iwc^v^x, t) = u2n_x(x), tim^v^x, t) = u2n_2(x), 

lim v2n(x, t) = u2n_x(x), lim v2n{x, t) = u2n(x), 
t—» — oo 

t 

uniformly for \x\< L. 
We now state results about the stability of the steady-state solutions of 

(1.1) and ( l . l ' ) . 

PROPOSITION 1. Let f satisfy (3.2)-(3.5), and L > m a x n = 1 m{Ln}. 
Then there are exactly 2m + 1 (m > 1) steady state solutions, un (n = 
0 , 1 , 2 , . . . ,2m) of (1.1) and ( l . l ' ) with 0 < W u ^ < s0, s2n_2 < 
H " 2 » - i l l o o ' l l " 2 « l l o o < s2n (n = 1,2, ... ,m). Each solution u2n is sta
ble and each u2n_x has a one-dimensional unstable manifold which consists 
of orbits connecting u2n_x

 t 0
 " 2 , 1 - 2 a n ^ M 2 « • All solutions of the problem are 

depicted (qualitatively) in Figure 6 . Initial data u(x, 0 ) , which satisfies the 
condition u2n_x(x) < u(x, 0) < u2n(x) (respectively u2n_2(x) < u(x, 0) < 
u2n_x(x)) o n \x\ < L is in the stable manifold of u2n (respectively u2n_2) 
(n = 1, 2 , . . . , m). 
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U2n-2 u2n-i u2n

FIGURE 6
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