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Abstract

We extend spectral graph theory from the integral circulant graphs with prime power order to a Cayley
graph over a finite chain ring and determine the spectrum and energy of such graphs. Moreover, we apply
the results to obtain the energy of some gcd-graphs on a quotient ring of a unique factorisation domain.
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1. Introduction

The study of ring-theoretic graphs includes unitary Cayley graphs, integral circulant
graphs, zero-divisor graphs and gcd-graphs. Mostly, this work involves determining
the eigenvalues (which are real) and computing the energy (the sum of the absolute
values of the eigenvalues) of the graph. The energy is a graph parameter introduced
by Gutman (see [3]) arising from the Hückel molecular orbital approximation for the
total π-electron energy.

Let D be a unique factorisation domain (UFD) and c ∈ D a nonzero nonunit element.
Assume that the commutative ring D/(c) is finite. For a set C of proper divisors of c,
we define the gcd-graph, Dc(C), to be a graph whose vertex set is the quotient ring
D/(c) and whose edge set is

{{x + (c), y + (c)} : x, y ∈ D and gcd(x − y, c) ∈ D×C}.

This gcd-graph on a quotient ring of a unique factorisation domain introduced in [5]
generalises a gcd-graph or an integral circulant graph (whose adjacency matrix is
circulant and all eigenvalues are integers) defined over Zn, n ≥ 2 (see [6, 11]). An
integral circulant graph can also be considered as an extension of a unitary Cayley
graph and has been widely studied (see, for example, [1, 3, 10]).

Since the number of divisors of c = ps1
1 · · · p

sk
k can be very large, the energy of gcd-

graphs (over D/(c) or Zn) is still not thoroughly studied. We shall give the energy
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of gcd-graphs whose divisor set C consists of certain prime powers, by studying the
energy of the Cayley graph over the finite ring D/(psi

i ). When D = Z, this graph is
the integral circulant graph with prime power order studied by Sander and Sander
in [10]. They derived a closed formula for its energy and worked on minimal and
maximal energies for a fixed prime power ps and varying divisor sets. We extend
their results to Cayley graphs over certain finite commutative rings, called finite chain
rings, which have a simple ideal structure. The structure of these rings has been well
studied (see [8, 9]). They are finite local rings which generalise the ring D/(ps) and
the Galois ring Zps [x]/( f (x)), where f (x) is a monic polynomial in Zps [x] and the
canonical reduction f̄ (x) in Zp[x] is irreducible.

We determine the spectrum and energy of a Cayley graph over a finite chain ring,
extending the treatment of integral circulant graphs with prime power order where the
energy is computed via a sum of Ramanujan sums [6, 10]. Our approach here is to
examine all eigenvalues with multiplicities and then obtain the sum of their absolute
values directly, similar to [5]. We also show that the graph defined over a finite chain
ring is indeed an integral circulant graph. The final section presents some applications
of the energy. We give further results for a gcd-graph over a quotient ring of a unique
factorisation domain using a tensor product and a noncomplete extended p-sum.

2. Cayley graphs over a finite chain ring

We begin with some notation in algebraic graph theory and ring theory.
Let A be a symmetric matrix. The set of all eigenvalues of A is called the spectrum

of A. If λ1, . . . , λk are distinct eigenvalues of A of respective multiplicities m1, . . . ,mk,
we use the notation Spec A =

(λ1 ··· λk
m1 ··· mk

)
to describe the spectrum of A. For a graph G,

the eigenvalues of G are the eigenvalues of its adjacency matrix A(G) and we write
Spec G for the spectrum of A(G). The sum of the absolute values of all the eigenvalues
of a graph G is called the energy of G and denoted by E(G).

For two graphs G and H, their tensor product G ⊗ H is the graph with vertices
V(G) × V(H) and where (u, v) is adjacent to (u′, v′) if and only if u is adjacent to u′ in
G and v is adjacent to v′ in H. The adjacency matrix of G ⊗ H is the Kronecker product
of A(G) and A(H), that is, A(G ⊗ H) = A(G) ⊗ A(H).

Proposition 2.1 [1, 12]. Let G and H be graphs. Suppose that λ1, . . . , λn are the
eigenvalues of G and µ1, . . . , µm are the eigenvalues of H (repeated according to their
multiplicities). Then the eigenvalues of G ⊗ H are λiµ j, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Moreover, E(G ⊗ H) = E(G)E(H).

The complement of a graph G, denoted by Ḡ, is the graph with the same vertex set
as G such that two vertices of Ḡ are adjacent if and only if they are not adjacent in G.

Proposition 2.2 [2, 12]. If a graph G with n vertices is k-regular, then G and Ḡ have the
same eigenvectors. The eigenvalue associated with the n-vector ~1n, whose entries are
all 1, is k for G and n − k − 1 for Ḡ. If ~x , ~1 is an eigenvector of G for the eigenvalue
λ, then its eigenvalue in Ḡ is −1 − λ.
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A finite chain ring is a finite local ring such that for any two ideals I1 and I2 of this
ring, either I1 ⊆ I2 or I2 ⊆ I1. Let R be a finite chain ring with unique maximal ideal M
and residue field of q elements. Let s be the nilpotency of R, that is, the least positive
integer such that Ms = {0}. It can be shown that we have the chain of ideals

R = M0 ⊃ M ⊃ M2 ⊃ · · · ⊃ Ms = {0}.

By [9, Lemma 2.4], we also have |Mi| = qs−i for all 0 ≤ i ≤ s and so

|Mi/Mi+1| = q

for all 0 ≤ i < s. Thus, |R| = qs. Moreover, M is principal, generated by some
θ ∈ M\M2, and hence any element x ∈ R can be written as

x = v0 + v1θ + v2θ
2 + · · · + vs−1θ

s−1,

where vi ∈ V = {e0, e1, . . . , ept−1}, a fixed set of representatives of cosets in R/M. Let

C = (Ma1\Ma1+1) ∪ (Ma2\Ma2+1) ∪ · · · ∪ (Mar\Mar+1),

where 0 ≤ a1 < a2 < · · · < ar ≤ s − 1.
Consider the Cayley graph Cay(R,C) whose vertex set is R and where x, y ∈ R are

adjacent if and only if x − y ∈ C. This graph generalises the gcd-graph defined over
Zps with the set D = {pa1 , pa2 , . . . , par } of proper divisors of ps, where two vertices
a, b ∈ Zps are adjacent if and only if gcd(b − a, ps) = pai for some i ∈ {1, 2, . . . , r} [4, 5].
The adjacency condition can be stated in terms of ideals as b − a belongs to the ideal
paiZ but not pai+1Z for some i ∈ {1, 2, . . . , r}.

Suppose that x, y ∈ R have the form

x = v0 + v1θ + v2θ
2 + · · · + vs−1θ

s−1,

y = u0 + u1θ + v2θ
2 + · · · + us−1θ

s−1

for some vi, u j ∈ V. Then
x − y ∈ R\M ⇔ v0 , u0.

Thus, the adjacency matrix for Cay(R,C) is

e1 + M e2 + M · · · eq + M

A0 =



A1 B1 · · · B1
B1 A1 · · · B1
B1 B1 · · · B1
...

...
. . .

...
B1 B1 · · · A1


,

where

B1 =

Jqs−1×qs−1 if R\M ⊆ C,
0qs−1×qs−1 if R\M * C,
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and A1 is a qs−1 × qs−1 submatrix depending on Mi, i ≥ 1. If B1 = 0qs−1×qs−1 , we set

A0 = Iq ⊗ A1 (Process A)

and, if B1 = Jqs−1×qs−1 , we set

A0 = (Iq ⊗ A1). (Process B)

Here, Jn×n is the matrix all of whose entries are 1 and X for an adjacency matrix X of
a graph G denotes the adjacency matrix J − I − X of the complement graph of G.

Next, we consider x, y ∈ M such that

x = v1θ + v2θ
2 + · · · + vs−1θ

s−1,

y = u1θ + v2θ
2 + · · · + us−1θ

s−1,

for some vi, u j ∈ V. Then

x − y ∈ M\M2 ⇔ v1 , u1.

Similarly, we have submatrices

B2 =

Jqs−2×qs−2 if M\M2 ⊆ C,

0qs−2×qs−2 if M\M2 * C,

and A2, which is a qs−2 × qs−2 submatrix depending on Mi for i ≥ 2 such that

A1 =

Iq ⊗ A2 if B2 = 0qs−2×qs−2 ,

(Iq ⊗ A2) if B2 = Jqs−2×qs−2 .

Continuing this process yields the submatrices {A1, . . . , As−1} and {B1, . . . , Bs−1}.

Lemma 2.3. Let i ∈ {1, 2, . . . , s − 1}. Assume that Spec Ai =
(λ1 λ2 ··· λk
m1 m2 ··· mk

)
, where λ1 is the

largest eigenvalue. Then

Spec (Iq ⊗ Ai) =

(
qs−i(q − 1) + λ1 λ1 − qs−i λ1 λ2 · · · λk

1 q − 1 q(m1 − 1) qm2 · · · qmk

)
.

In particular, if m1 = 1, then

Spec (Iq ⊗ Ai) =

(
qs−i(q − 1) + λ1 λ1 − qs−i λ2 · · · λk

1 q − 1 qm2 · · · qmk

)
.

Proof. Observe that the size of Ai is |Mi| = qs−i and the graph associated with Ai is
regular. Then

Spec Ai =

(
qs−i − λ1 − 1 −1 − λ1 −1 − λ2 · · · −1 − λk

1 m1 − 1 m2 · · · mk

)
,
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which implies that

Spec(Iq ⊗ Ai) =

(
qs−i − λ1 − 1 −1 − λ1 −1 − λ2 · · · −1 − λk

q q(m1 − 1) qm2 · · · qmk

)
and so

Spec (Iq ⊗ Ai) =

(
qs−i+1 − (qs−i − λ1 − 1) − 1 −1 − (qs−i − λ1 − 1)

1 q − 1

−1 − (−1 − λ1) −1 − (−1 − λ2) · · · −1 − (−1 − λk)
q(m1 − 1) qm2 · · · qmk

)
=

(
qs−i+1 − qs−i + λ1 λ1 − qs−i λ1 λ2 · · · λk

1 q − 1 q(m1 − 1) qm2 · · · qmk

)
by Propositions 2.1 and 2.2. �

Repeatedly applying (Process A), (Process B) and Lemma 2.3 yields the following
two lemmas.

Lemma 2.4. Let R be a finite chain ring with unique maximal ideal M, residue field of
q elements and nilpotency s. Let

C = (Ma1\Ma1+1) ∪ (Ma2\Ma2+1) ∪ · · · ∪ (Mar\Mar+1)

with 0 ≤ a1 < a2 < · · · < ar ≤ s − 1. If ar = s − 1, then Cay(R,C) has the eigenvalues:

(1) (q − 1)
∑r

i=1 qs−ai−1 with multiplicity qa1 ;
(2) −qs−ak−1−1 + (q − 1)

∑r
i=k qs−ai−1 with multiplicity qak−1 (q − 1) for k = 2, . . . , r;

(3) (q − 1)
∑r

i=k qs−ai−1 with multiplicity qak−ak−1−1 − qak−1+1 for k = 2, . . . , r;
(4) −1 with multiplicity qar (q − 1).

Proof. Since ar = s − 1, Aar = As−1 is the adjacency matrix of the complete graph on
|Mar | = |Ms−1| = q vertices and so

Spec Aar = Spec As−1 =

(
q − 1 −1

1 q − 1

)
.

It follows from Proposition 2.1 and Lemma 2.3 that any eigenvalues of Ai except
λ1 (which is the degree of the regular graph) remain the same after (Process A)
and (Process B). So, −1 is an eigenvalue of Cay(R,C) with multiplicity qar (q − 1).
Next, we consider the eigenvalue q − 1 of As−1. We apply (Process A) until it reaches
ar−1 + 1, which makes its multiplicity qar−ar−1−1, and follow by (Process B). By
Lemma 2.3, the eigenvalues of Aar−1 induced from q − 1 are:

(1) qs−ar−1−1(q − 1) + (q − 1) = qs−ar−1−1(q − 1) + qs−ar−1(q − 1) with multiplicity 1;
(2) q − 1 − qs−ar−1−1 with multiplicity q − 1;
(3) q − 1 with multiplicity q(qar−ar−1−1 − 1).
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By the same reasoning, q − 1 − qs−ar−1−1 and q − 1 are eigenvalues of Cay(R, C)
with multiplicities qar−1 (q − 1) and qar−1+1(qar−ar−1−1 − 1) = qar − qar−1+1, respectively.
Applying these processes to the eigenvalue qs−ar−1−1(q − 1) + (q − 1) until it reaches
ar−2 yields the eigenvalues:

(1) qs−ar−2−1(q − 1) + qs−ar−1−1(q − 1) + (q − 1) with multiplicity 1;
(2) qs−ar−1−1(q − 1) + (q − 1) − qs−ar−2−1 with multiplicity q − 1;
(3) qs−ar−1−1(q − 1) + (q − 1) with multiplicity q(qar−1−ar−2−1 − 1).

Continuing this argument, we obtain the eigenvalues of Cay(R,C) as follows:

(1) (q − 1)
∑r

i=1 qs−ai−1 with multiplicity a1;
(2) −qs−ak−1−1 + (q − 1)

∑r
i=k qs−ai−1 with multiplicity qak−1 (q − 1) for k = 2, . . . , r;

(3) (q − 1)
∑r

i=k qs−ai−1 with multiplicity qak − qak−1+1 for k = 2, . . . , r;
(4) −1 with multiplicity qar (q − 1).

This completes the proof of the lemma. �

Lemma 2.5. Let R be a finite chain ring with unique maximal ideal M, residue field of
q elements and nilpotency s. Let

C = (Ma1\Ma1+1) ∪ (Ma2\Ma2+1) ∪ · · · ∪ (Mar\Mar+1)

with 0 ≤ a1 < a2 < · · · < ar ≤ s − 1. If ar , s − 1, the eigenvalues of Cay(R,C) are:

(1) (q − 1)
∑r

i=1 qs−ai−1 with multiplicity qa1 ;
(2) −qs−ak−1−1 + (q − 1)

∑r
i=k qs−ai−1 with multiplicity qak−1 (q − 1) for k = 2, . . . , r;

(3) (q − 1)
∑r

i=k qs−ai−1 with multiplicity qak − qak−1+1 for k = 2, . . . , r;
(4) −qs−ar−1 with multiplicity qar (q − 1);
(5) 0 with multiplicity qar+1(qs−ar−1 − 1).

Proof. Since ar , s − 1, Aar+1 = 0, so Aar+1 is the adjacency matrix of the complete
graph on |Mar+1| = qs−ar−1 vertices. Then

Spec Aar+1 =

(
qs−ar−1 − 1 −1

1 qs−ar−1 − 1

)
and hence

Spec Iq ⊗ Aar+1 =

(
qs−ar−1 − 1 −1

q q(qs−ar−1 − 1)

)
and

Spec Aar = Spec (Iq ⊗ Aar+1)

=

(
qs−ar − qs−ar−1 −qs−ar−1 0

1 q − 1 q(qs−ar−1 − 1)

)
.

By Lemma 2.3, −qs−ar−1 and 0 are eigenvalues of Cay(R, C) with respective
multiplicities qar (q − 1) and qar+1(qs−ar−1 − 1). The eigenvalue qs−ar − qs−ar−1 =

qs−ar−1(q − 1) of Aar induces the eigenvalues of Aar−1 as follows:
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(1) qs−ar−1−1(q − 1) + qs−ar−1(q − 1) with multiplicity 1;
(2) qs−ar−1(q − 1) − qs−ar−1−1 with multiplicity q − 1;
(3) qs−ar−1(q − 1) with multiplicity q(qar−ar−1−1 − 1).

Similarly, qs−ar−1(q − 1) − qs−ar−1−1 and qs−ar−1(q − 1) are eigenvalues of Cay(R, C)
with multiplicities qar−1 (q − 1) and qar−1+1(qar−ar−1−1 − 1), respectively. Moreover, the
eigenvalue qs−ar−1−1(q − 1) + qs−ar−1(q − 1) of Aar−1 gives the following eigenvalues of
Aar−2 :

(1) qs−ar−2−1(q − 1) + qs−ar−1−1(q − 1) + qs−ar−1(q − 1) with multiplicity 1;
(2) qs−ar−1−1(q − 1) + qs−ar−1(q − 1) − qs−ar−2−1 with multiplicity q − 1;
(3) qs−ar−1−1(q − 1) + qs−ar−1(q − 1) with multiplicity q(qar−1−ar−2−1 − 1).

Repeating this process, we finally obtain the eigenvalues of Cay(R,C):

(1) (q − 1)
∑r

i=1 qs−ai−1 with multiplicity qa1 ;
(2) −qs−ak−1−1 + (q − 1)

∑r
i=k qs−ai−1 with multiplicity qak−1 (q − 1) for k = 2, . . . , r;

(3) (q − 1)
∑r

i=k qs−ai−1 with multiplicity qak − qak−1+1 for k = 2, . . . , r;
(4) −qs−ar−1 with multiplicity qar (q − 1);
(5) 0 with multiplicity qar+1(qs−ar−1 − 1),

as desired. �

Finally, we compute the energy of the graph Cay(R,C).

Theorem 2.6. Let R be a finite chain ring with unique maximal ideal M, residue field
of q elements and nilpotency s. Let

C = (Ma1\Ma1+1) ∪ (Ma2\Ma2+1) ∪ · · · ∪ (Mar\Mar+1)

with 0 ≤ a1 < a2 < · · · < ar ≤ s − 1. Then

E(Cay(R,C)) = 2(q − 1)
(
qs−1r − (q − 1)

r−1∑
k=1

r∑
i=k+1

qs−ai+ak−1
)
.

Proof. Observe that the eigenvalues and multiplicities of items (1)–(3) in Lemmas 2.4
and 2.5 are identical. Moreover, the product of the eigenvalue and its multiplicity in
item (4) of Lemmas 2.4 and 2.5 is −qs−1(q − 1). Thus, both cases have the same energy,
which can be obtained by a direct computation. �

Remark 2.7. When R = Zps , this result is [10, Theorem 2.1].

We shall close this section by showing that our Cayley graph is indeed an integral
circulant.

Let R be a finite chain ring R with unique maximal ideal M and residue field of
q = pt elements. Assume that R is of nilpotency s and M is generated by θ ∈ M\M2.
Then, for each x ∈ R,

x = v0 + v1θ + v2θ
2 + · · · + vs−1θ

s−1,
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where vi ∈ V = {e0, e1, . . . , ept−1}, a fixed set of representatives of cosets in R/M, and

C1 = (Ma1\Ma1+1) ∪ (Ma2\Ma2+1) ∪ · · · ∪ (Mar\Mar+1)

with 0 ≤ a1 < a2 < · · · < ar ≤ s − 1. Note that the ring Zqs = Zpts is a finite chain ring
with the chain

Zpts ⊃ pZpts ⊃ p2Zpts ⊃ · · · ⊃ pts−1Zpts ⊃ ptsZpts = {0}

having
Zpts ⊃ ptZpts ⊃ p2tZpts ⊃ · · · ⊃ p(s−1)tZpts ⊃ pstZpts = {0}

as a subchain. This observation implies that each a ∈ Zpst can be expressed as

a = c0 + c1 pt + c2 p2t · · · + cs−1 p(s−1)t,

where ci ∈ {0, 1, . . . , pt − 1}. Let g : ei 7→ i be a bijection fromV onto {0, 1, . . . , pt − 1}.
Let C2 = {pa1t, pa1t+1, . . . , pa1t+t−1, . . . , par t, par t+1, . . . , par t+t−1}. We shall show that the
graphs Cay(R,C1) and Cay(Zpst ) are isomorphic.

Define f : Cay(R,C1)→ Cay(Zpst ,C2) by

f (v0 + v1θ + · · · + vs−1θ
s−1) = g(v0) + g(v1)pt + g(v2)p2t + · · · + g(vs−1)p(s−1)t.

Then f is a well-defined bijection. To see that f is an isomorphism, we let

x = v0 + v1θ + v2θ
2 + · · · + vs−1θ

s−1 and y = u0 + u1θ + u2θ
2 + · · · + us−1θ

s−1.

Suppose that x and y are adjacent in Cay(R,C1). Then x − y ∈ Mai\Mai+1 for some
ai. This means that vi = ui for i < ai and vai , uai . Thus, g(vi) = g(ui) for i < ai
and g(vai ) , g(uai ), so f (x) − f (y) ∈ paitZpst\p(ai+1)tZpst . Then, as elements of Z,
gcd( f (x) − f (y), pst) = p j, where ait ≤ j < (ai + 1)t and thus f (x) and f (y) are adjacent
in Cay(Zpst ,C2). Conversely, assume that f (x) and f (y) are adjacent in Cay(Zpst ,C2).
Then, as elements of Z, gcd( f (x) − f (y), pst) = p j, where ait ≤ j < (ai + 1)t for some
ai. It follows that for

f (x) = g(v0) + g(v1)pt + g(v2)p2t + · · · + g(vs−1)p(s−1)t and
f (y) = g(u0) + g(u1)pt + g(u2)p2t + · · · + g(us−1)p(s−1)t,

we have g(vi) = g(ui) for i < ai and g(vai ) , g(uai ). Thus, x − y ∈ Mai\Mai+1 and hence
x and y are adjacent in Cay(R,C1). Hence, we have shown the following proposition.

Proposition 2.8. Let R be a finite chain ring with unique maximal ideal M, residue
field of q = pt elements and nilpotency s. Let

C1 = (Ma1\Ma1+1) ∪ (Ma2\Ma2+1) ∪ · · · ∪ (Mar\Mar+1)

with 0 ≤ a1 < a2 < · · · < ar ≤ s − 1. Then

Cay(R,C1) � Cay(Zpst ,C2),

where C2 = {pa1t, pa1t+1, . . . , pa1t+t−1, . . . , par t, par t+1, . . . , par t+t−1}.

https://doi.org/10.1017/S0004972715001380 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001380


[9] Cayley graphs over a finite chain ring and gcd-graphs 361

3. gcd-graphs over a unique factorisation domain

Let D be a unique factorisation domain (UFD) and c ∈ D a nonzero nonunit element.
Assume that the commutative ring D/(c) is finite. Write c = ps1

1 · · · p
sk
k as a product of

irreducible elements.
We now study the gcd-graph Dc(C). Suppose that for each i ∈ {1, 2, . . . , k}, there

exists a set Ci = {pai1
i , pai2

i , . . . , p
airi
i } with 0 ≤ ai1 < ai2 < · · · < airi ≤ si − 1 so that

C = {p
a1t1
1 · · · p

aktk
k : ti ∈ {1, 2, . . . , ri} for all i ∈ {1, 2, . . . , k}}.

Then, for x, y ∈ D/(c),

x is adjacent to y⇔ gcd(x − y, c) ∈ D×C ⇔ gcd(x − y, psi
i ) ∈ D×Ci for all i.

This implies that

Dc(C) = Cay(D/(ps1
1 ),C1) ⊗ · · · ⊗ Cay(D/(psk

k ),Ck),

where each factor on the right is the Cayley graph over the finite chain ring D/(psi
i ) for

which we have already computed the energy in Section 2. Recall from Proposition 2.1
that E(G ⊗ H) = E(G)E(H) for two graphs G and H. Therefore, we have the following
theorem.

Theorem 3.1. Let D be a UFD and let c = ps1
1 · · · p

sk
k be a nonzero nonunit in D

factored as a product of irreducible elements. Assume that D/(c) is finite and, for
each i ∈ {1, 2, . . . , k}, there exists a set Ci = {pai1

i , pai2
i , . . . , p

airi
i } with 0 ≤ ai1 < ai2 <

· · · < airi ≤ si − 1 such that

C = {p
a1t1
1 · · · p

aktk
k : ti ∈ {1, 2, . . . , ri} for all i ∈ {1, 2, . . . , k}}.

Then
E(Dc(C)) = E(Dps1

1
(C1)) · · · E(Dpsk

k
(Ck)).

Remark 3.2. Recall that if a matrix A has eigenvalues λ1, . . . , λn, then the eigenvalues
of A + I are λ1 + 1, . . . , λn + 1. Hence, one can obtain the energy of the gcd-graph
in Theorem 3.1 when Ci contains psi

i using this fact and the eigenvalues computed in
Lemma 2.4 or 2.5.

Now, we study the case where some C j = {ps j

j }. To compute the energy in this case,
we shall use a graph operation which is more general than the tensor product called a
noncomplete extended p-sum [7] defined as follows.

Given a set B ⊆ {0, 1}k and graphs G1, . . . ,Gk, the NEPS (noncomplete extended
p-sum), G = NEPS(G1, . . . ,Gk; B), of these graphs with respect to the basis B has as
its vertex set the Cartesian product of the vertex sets of the individual graphs, that is,
V(G) = V(G1) × · · · × V(Gk). Two distinct vertices x = (x1, . . . , xk) and y = (y1, . . . , yk)
are adjacent in G if and only if there exists some k-tuple (β1, . . . , βk) ∈ B such that
xi = yi whenever βi = 0 and xi, yi are distinct and adjacent in Gi whenever βi = 1. In
particular, when B = {(1, 1, . . . , 1)},

NEPS(G1, . . . ,Gk; B) = G1 ⊗G2 ⊗ · · · ⊗Gk.
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The eigenvalues of the graph NEPS(G1, . . . ,Gk; B) are presented in the next
theorem.

Theorem 3.3 [1]. Let G1, . . . ,Gk be graphs with n1, . . . , nk vertices, respectively, and,
for i ∈ {1, . . . , k}, let λi1, . . . , λini be the eigenvalues of Gi. Then the spectrum of the
graph G = NEPS(G1, . . . ,Gk; B) consists of all possible values

µi1,...,ik =
∑

(β1,...,βk)∈B

λ
β1
1i1
· · · λ

βk
kik

with 1 ≤ il ≤ nl for 1 ≤ l ≤ k.

Next, we consider c = ps1
1 · · · p

sk
k written as a product of irreducible elements.

We suppose that l ≤ k and that, for each i ∈ {1, 2, . . . , l}, there exists a set
Ci = {pai1

i , pai2
i , . . . , p

airi
i } with 0 ≤ ai1 < ai2 < · · · < airi ≤ si − 1 so that

C′ = {p
a1t1
1 · · · p

altl
l psl+1

l+1 · · · p
sk
k : ti ∈ {1, 2, . . . , ri} for all i ∈ {1, 2, . . . , l}}.

Then

Dc(C′) = NEPS(Dps1
1

(C1),Dps2
2

(C2), . . . ,Dpsk
k

(Ck); {(1, . . . , 1︸  ︷︷  ︸
l

, 0, . . . , 0︸  ︷︷  ︸
k−l

)}),

where C j = {ps j

j } for l < j ≤ k. By Theorem 3.3, all eigenvalues of Dc(C′) are the
eigenvalues of

Cay(D/(ps1
1 ),C1) ⊗ · · · ⊗ Cay(D/(psl

l ),Cl)

each repeated
∏k

j=l+1 |D/(ps j

j )| times. We deduce the following result from
Theorem 3.1.

Theorem 3.4. Let D be a UFD and let c = ps1
1 · · · p

sk
k ∈ D a nonzero nonunit factored

as a product of irreducible elements. Let l ≤ k. Assume that D/(c) is finite and
that, for each i ∈ {1, 2, . . . , l}, there exists a set Ci = {pai1

i , pai2
i , . . . , p

airi
i } such that

0 ≤ ai1 < ai2 < · · · < airi ≤ si − 1 and

C′ = {p
a1t1
1 · · · p

altl
l psl+1

l+1 · · · p
sk
k : ti ∈ {1, 2, . . . , ri} for all i ∈ {1, 2, . . . , l}}.

Then

E(Dc(C′)) = E(Dps1
1

(C1)) · · · E(Dpsl
l

(Cl))
k∏

j=l+1

|D/(ps j

j )|.
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