CAYLE G GRAPHS OVER A FINITE CHAIN RING AND GCD-GRAPHS

BORWORN SUNTORNPOCH and YOTSANAN MEEMARK ${ }^{\boxtimes}$

(Received 28 July 2015; accepted 29 September 2015; first published online 22 January 2016)

Abstract

We extend spectral graph theory from the integral circulant graphs with prime power order to a Cayley graph over a finite chain ring and determine the spectrum and energy of such graphs. Moreover, we apply the results to obtain the energy of some gcd-graphs on a quotient ring of a unique factorisation domain.

2010 Mathematics subject classification: primary 05C50.
Keywords and phrases: energy, finite chain rings, gcd-graphs.

1. Introduction

The study of ring-theoretic graphs includes unitary Cayley graphs, integral circulant graphs, zero-divisor graphs and gcd-graphs. Mostly, this work involves determining the eigenvalues (which are real) and computing the energy (the sum of the absolute values of the eigenvalues) of the graph. The energy is a graph parameter introduced by Gutman (see [3]) arising from the Hückel molecular orbital approximation for the total π-electron energy.

Let D be a unique factorisation domain (UFD) and $c \in D$ a nonzero nonunit element. Assume that the commutative ring $D /(c)$ is finite. For a set C of proper divisors of c, we define the $g c d$-graph,$D_{c}(C)$, to be a graph whose vertex set is the quotient ring $D /(c)$ and whose edge set is

$$
\left\{\{x+(c), y+(c)\}: x, y \in D \text { and } \operatorname{gcd}(x-y, c) \in D^{\times} C\right\} .
$$

This gcd-graph on a quotient ring of a unique factorisation domain introduced in [5] generalises a gcd-graph or an integral circulant graph (whose adjacency matrix is circulant and all eigenvalues are integers) defined over $\mathbb{Z}_{n}, n \geq 2$ (see [6, 11]). An integral circulant graph can also be considered as an extension of a unitary Cayley graph and has been widely studied (see, for example, $[1,3,10]$).

Since the number of divisors of $c=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$ can be very large, the energy of gcdgraphs (over $D /(c)$ or \mathbb{Z}_{n}) is still not thoroughly studied. We shall give the energy

[^0]of gcd-graphs whose divisor set C consists of certain prime powers, by studying the energy of the Cayley graph over the finite ring $D /\left(p_{i}^{s_{i}}\right)$. When $D=\mathbb{Z}$, this graph is the integral circulant graph with prime power order studied by Sander and Sander in [10]. They derived a closed formula for its energy and worked on minimal and maximal energies for a fixed prime power p^{s} and varying divisor sets. We extend their results to Cayley graphs over certain finite commutative rings, called finite chain rings, which have a simple ideal structure. The structure of these rings has been well studied (see $[8,9]$). They are finite local rings which generalise the ring $D /\left(p^{s}\right)$ and the Galois ring $\mathbb{Z}_{p^{s}}[x] /(f(x))$, where $f(x)$ is a monic polynomial in $\mathbb{Z}_{p^{s}}[x]$ and the canonical reduction $\bar{f}(x)$ in $\mathbb{Z}_{p}[x]$ is irreducible.

We determine the spectrum and energy of a Cayley graph over a finite chain ring, extending the treatment of integral circulant graphs with prime power order where the energy is computed via a sum of Ramanujan sums [6, 10]. Our approach here is to examine all eigenvalues with multiplicities and then obtain the sum of their absolute values directly, similar to [5]. We also show that the graph defined over a finite chain ring is indeed an integral circulant graph. The final section presents some applications of the energy. We give further results for a gcd-graph over a quotient ring of a unique factorisation domain using a tensor product and a noncomplete extended p-sum.

2. Cayley graphs over a finite chain ring

We begin with some notation in algebraic graph theory and ring theory.
Let A be a symmetric matrix. The set of all eigenvalues of A is called the spectrum of A. If $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of A of respective multiplicities m_{1}, \ldots, m_{k}, we use the notation $\operatorname{Spec} A=\left(\begin{array}{lll}\lambda_{1} & \cdots & \lambda_{k} \\ m_{1} & \ldots & n_{k}\end{array}\right)$ to describe the spectrum of A. For a graph G, the eigenvalues of G are the eigenvalues of its adjacency matrix $A(G)$ and we write $\operatorname{Spec} G$ for the spectrum of $A(G)$. The sum of the absolute values of all the eigenvalues of a graph G is called the energy of G and denoted by $E(G)$.

For two graphs G and H, their tensor product $G \otimes H$ is the graph with vertices $V(G) \times V(H)$ and where (u, v) is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if u is adjacent to u^{\prime} in G and v is adjacent to v^{\prime} in H. The adjacency matrix of $G \otimes H$ is the Kronecker product of $A(G)$ and $A(H)$, that is, $A(G \otimes H)=A(G) \otimes A(H)$.

Proposition $2.1[1,12]$. Let G and H be graphs. Suppose that $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of G and μ_{1}, \ldots, μ_{m} are the eigenvalues of H (repeated according to their multiplicities). Then the eigenvalues of $G \otimes H$ are $\lambda_{i} \mu_{j}$, where $1 \leq i \leq n$ and $1 \leq j \leq m$. Moreover, $E(G \otimes H)=E(G) E(H)$.

The complement of a graph G, denoted by \bar{G}, is the graph with the same vertex set as G such that two vertices of \bar{G} are adjacent if and only if they are not adjacent in G.
Proposition 2.2 [2, 12]. If a graph G with n vertices is k-regular, then G and \bar{G} have the same eigenvectors. The eigenvalue associated with the n-vector $\overrightarrow{1}_{n}$, whose entries are all 1 , is k for G and $n-k-1$ for \bar{G}. If $\vec{x} \neq \overrightarrow{1}$ is an eigenvector of G for the eigenvalue λ, then its eigenvalue in \bar{G} is $-1-\lambda$.

A finite chain ring is a finite local ring such that for any two ideals I_{1} and I_{2} of this ring, either $I_{1} \subseteq I_{2}$ or $I_{2} \subseteq I_{1}$. Let R be a finite chain ring with unique maximal ideal M and residue field of q elements. Let s be the nilpotency of R, that is, the least positive integer such that $M^{s}=\{0\}$. It can be shown that we have the chain of ideals

$$
R=M^{0} \supset M \supset M^{2} \supset \cdots \supset M^{s}=\{0\} .
$$

By [9, Lemma 2.4], we also have $\left|M^{i}\right|=q^{s-i}$ for all $0 \leq i \leq s$ and so

$$
\left|M^{i} / M^{i+1}\right|=q
$$

for all $0 \leq i<s$. Thus, $|R|=q^{s}$. Moreover, M is principal, generated by some $\theta \in M \backslash M^{2}$, and hence any element $x \in R$ can be written as

$$
x=v_{0}+v_{1} \theta+v_{2} \theta^{2}+\cdots+v_{s-1} \theta^{s-1}
$$

where $v_{i} \in \mathcal{V}=\left\{e_{0}, e_{1}, \ldots, e_{p^{t}-1}\right\}$, a fixed set of representatives of cosets in R / M. Let

$$
C=\left(M^{a_{1}} \backslash M^{a_{1}+1}\right) \cup\left(M^{a_{2}} \backslash M^{a_{2}+1}\right) \cup \cdots \cup\left(M^{a_{r}} \backslash M^{a_{r}+1}\right),
$$

where $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq s-1$.
Consider the Cayley graph $\operatorname{Cay}(R, C)$ whose vertex set is R and where $x, y \in R$ are adjacent if and only if $x-y \in C$. This graph generalises the gcd-graph defined over $\mathbb{Z}_{p^{s}}$ with the set $D=\left\{p^{a_{1}}, p^{a_{2}}, \ldots, p^{a_{r}}\right\}$ of proper divisors of p^{s}, where two vertices $a, b \in \mathbb{Z}_{p^{s}}$ are adjacent if and only if $\operatorname{gcd}\left(b-a, p^{s}\right)=p^{a_{i}}$ for some $i \in\{1,2, \ldots, r\}[4,5]$. The adjacency condition can be stated in terms of ideals as $b-a$ belongs to the ideal $p^{a_{i}} \mathbb{Z}$ but not $p^{a_{i}+1} \mathbb{Z}$ for some $i \in\{1,2, \ldots, r\}$.

Suppose that $x, y \in R$ have the form

$$
\begin{aligned}
& x=v_{0}+v_{1} \theta+v_{2} \theta^{2}+\cdots+v_{s-1} \theta^{s-1}, \\
& y=u_{0}+u_{1} \theta+v_{2} \theta^{2}+\cdots+u_{s-1} \theta^{s-1}
\end{aligned}
$$

for some $v_{i}, u_{j} \in \mathcal{V}$. Then

$$
x-y \in R \backslash M \Leftrightarrow v_{0} \neq u_{0} .
$$

Thus, the adjacency matrix for $\operatorname{Cay}(R, C)$ is

$$
\begin{gathered}
e_{1}+M
\end{gathered} e_{2}+M=\cdots \quad e_{q}+M,\left(\begin{array}{cccc}
A_{1} & B_{1} & \cdots & B_{1} \\
B_{1} & A_{1} & \cdots & B_{1} \\
B_{1} & B_{1} & \cdots & B_{1} \\
\vdots & \vdots & \ddots & \vdots \\
B_{1} & B_{1} & \cdots & A_{1}
\end{array}\right), ~ \$, ~ l
$$

where

$$
B_{1}= \begin{cases}J_{q^{s-1} \times q^{s-1}} & \text { if } R \backslash M \subseteq C, \\ \mathbf{o}_{q^{s-1} \times q^{s-1}} & \text { if } R \backslash M \nsubseteq C,\end{cases}
$$

and A_{1} is a $q^{s-1} \times q^{s-1}$ submatrix depending on $M^{i}, i \geq 1$. If $B_{1}=\mathbf{0}_{q^{s-1} \times q^{s-1}}$, we set

$$
A_{0}=I_{q} \otimes A_{1}
$$

(Process A)
and, if $B_{1}=J_{q^{s-1} \times q^{s-1}}$, we set

$$
\begin{equation*}
A_{0}=\overline{\left(I_{q} \otimes \bar{A}_{1}\right)} \tag{ProcessB}
\end{equation*}
$$

Here, $J_{n \times n}$ is the matrix all of whose entries are 1 and \bar{X} for an adjacency matrix X of a graph G denotes the adjacency matrix $J-I-X$ of the complement graph of G.

Next, we consider $x, y \in M$ such that

$$
\begin{aligned}
& x=v_{1} \theta+v_{2} \theta^{2}+\cdots+v_{s-1} \theta^{s-1} \\
& y=u_{1} \theta+v_{2} \theta^{2}+\cdots+u_{s-1} \theta^{s-1}
\end{aligned}
$$

for some $v_{i}, u_{j} \in \mathcal{V}$. Then

$$
x-y \in M \backslash M^{2} \Leftrightarrow v_{1} \neq u_{1} .
$$

Similarly, we have submatrices

$$
B_{2}= \begin{cases}J_{q^{s-2} \times q^{s-2}} & \text { if } M \backslash M^{2} \subseteq C \\ \mathbf{0}_{q^{s-2} \times q^{s-2}} & \text { if } M \backslash M^{2} \nsubseteq C\end{cases}
$$

and A_{2}, which is a $q^{s-2} \times q^{s-2}$ submatrix depending on M^{i} for $i \geq 2$ such that

$$
A_{1}= \begin{cases}I_{q} \otimes A_{2} & \text { if } B_{2}=\mathbf{0}_{q^{s-2} \times q^{s-2}} \\ \overline{\left(I_{q} \otimes \bar{A}_{2}\right)} & \text { if } B_{2}=J_{q^{s-2} \times q^{s-2}}\end{cases}
$$

Continuing this process yields the submatrices $\left\{A_{1}, \ldots, A_{s-1}\right\}$ and $\left\{B_{1}, \ldots, B_{s-1}\right\}$.
Lemma 2.3. Let $i \in\{1,2, \ldots, s-1\}$. Assume that $\operatorname{Spec} A_{i}=\left(\begin{array}{cccc}\lambda_{1} & \lambda_{2} & \ldots & \lambda_{k} \\ m_{1} & m_{2} & \ldots & m_{k}\end{array}\right)$, where λ_{1} is the largest eigenvalue. Then

$$
\operatorname{Spec} \overline{\left(I_{q} \otimes \bar{A}_{i}\right)}=\left(\begin{array}{cccccc}
q^{s-i}(q-1)+\lambda_{1} & \lambda_{1}-q^{s-i} & \lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
1 & q-1 & q\left(m_{1}-1\right) & q m_{2} & \cdots & q m_{k}
\end{array}\right) .
$$

In particular, if $m_{1}=1$, then

$$
\operatorname{Spec} \overline{\left(I_{q} \otimes \bar{A}_{i}\right)}=\left(\begin{array}{ccccc}
q^{s-i}(q-1)+\lambda_{1} & \lambda_{1}-q^{s-i} & \lambda_{2} & \cdots & \lambda_{k} \\
1 & q-1 & q m_{2} & \cdots & q m_{k}
\end{array}\right) .
$$

Proof. Observe that the size of A_{i} is $\left|M^{i}\right|=q^{s-i}$ and the graph associated with A_{i} is regular. Then

$$
\operatorname{Spec} \bar{A}_{i}=\left(\begin{array}{ccccc}
q^{s-i}-\lambda_{1}-1 & -1-\lambda_{1} & -1-\lambda_{2} & \cdots & -1-\lambda_{k} \\
1 & m_{1}-1 & m_{2} & \cdots & m_{k}
\end{array}\right)
$$

which implies that

$$
\operatorname{Spec}\left(I_{q} \otimes \bar{A}_{i}\right)=\left(\begin{array}{ccccc}
q^{s-i}-\lambda_{1}-1 & -1-\lambda_{1} & -1-\lambda_{2} & \cdots & -1-\lambda_{k} \\
q & q\left(m_{1}-1\right) & q m_{2} & \cdots & q m_{k}
\end{array}\right)
$$

and so

$$
\begin{aligned}
\operatorname{Spec} \overline{\left(I_{q} \otimes \bar{A}_{i}\right)} & =\left(\begin{array}{ccccc}
q^{s-i+1}-\left(q^{s-i}-\lambda_{1}-1\right)-1 & -1-\left(q^{s-i}-\lambda_{1}-1\right) \\
1 & q-1
\end{array}\right. \\
-1-\left(-1-\lambda_{1}\right) & -1-\left(-1-\lambda_{2}\right) \\
q\left(m_{1}-1\right) & q m_{2} \\
\cdots & -1-\left(-1-\lambda_{k}\right) \\
& =\left(\begin{array}{ccccc}
q^{s-i+1}-q^{s-i}+\lambda_{1} & \lambda_{1}-q^{s-i} & \lambda_{1} & \lambda_{2} & \cdots \\
1 & q-1 & q\left(m_{1}-1\right) & q m_{2} & \cdots
\end{array}\right)
\end{aligned}
$$

by Propositions 2.1 and 2.2.
Repeatedly applying (Process A), (Process B) and Lemma 2.3 yields the following two lemmas.

Lemma 2.4. Let R be a finite chain ring with unique maximal ideal M, residue field of q elements and nilpotency s. Let

$$
C=\left(M^{a_{1}} \backslash M^{a_{1}+1}\right) \cup\left(M^{a_{2}} \backslash M^{a_{2}+1}\right) \cup \cdots \cup\left(M^{a_{r}} \backslash M^{a_{r}+1}\right)
$$

with $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq s-1$. If $a_{r}=s-1$, then $\operatorname{Cay}(R, C)$ has the eigenvalues:
(1) $(q-1) \sum_{i=1}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{1}}$;
(2) $-q^{s-a_{k-1}-1}+(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k-1}}(q-1)$ for $k=2, \ldots, r$;
(3) $(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k}-a_{k-1}-1}-q^{a_{k-1}+1}$ for $k=2, \ldots, r$;
(4) -1 with multiplicity $q^{a_{r}}(q-1)$.

Proof. Since $a_{r}=s-1, A_{a_{r}}=A_{s-1}$ is the adjacency matrix of the complete graph on $\left|M^{a_{r}}\right|=\left|M^{s-1}\right|=q$ vertices and so

$$
\operatorname{Spec} A_{a_{r}}=\operatorname{Spec} A_{s-1}=\left(\begin{array}{cc}
q-1 & -1 \\
1 & q-1
\end{array}\right) .
$$

It follows from Proposition 2.1 and Lemma 2.3 that any eigenvalues of A_{i} except λ_{1} (which is the degree of the regular graph) remain the same after (Process A) and (Process B). So, -1 is an eigenvalue of $\operatorname{Cay}(R, C)$ with multiplicity $q^{a_{r}}(q-1)$. Next, we consider the eigenvalue $q-1$ of A_{s-1}. We apply (Process A) until it reaches $a_{r-1}+1$, which makes its multiplicity $q^{a_{r}-a_{r-1}-1}$, and follow by (Process B). By Lemma 2.3, the eigenvalues of $A_{a_{r-1}}$ induced from $q-1$ are:
(1) $q^{s-a_{r-1}-1}(q-1)+(q-1)=q^{s-a_{r-1}-1}(q-1)+q^{s-a_{r}-1}(q-1)$ with multiplicity 1 ;
(2) $q-1-q^{s-a_{r-1}-1}$ with multiplicity $q-1$;
(3) $q-1$ with multiplicity $q\left(q^{a_{r}-a_{r-1}-1}-1\right)$.

By the same reasoning, $q-1-q^{s-a_{r-1}-1}$ and $q-1$ are eigenvalues of $\operatorname{Cay}(R, C)$ with multiplicities $q^{a_{r-1}}(q-1)$ and $q^{a_{r-1}+1}\left(q^{a_{r}-a_{r-1}-1}-1\right)=q^{a_{r}}-q^{a_{r-1}+1}$, respectively. Applying these processes to the eigenvalue $q^{s-a_{r-1}-1}(q-1)+(q-1)$ until it reaches a_{r-2} yields the eigenvalues:
(1) $q^{s-a_{r-2}-1}(q-1)+q^{s-a_{r-1}-1}(q-1)+(q-1)$ with multiplicity 1 ;
(2) $q^{s-a_{r-1}-1}(q-1)+(q-1)-q^{s-a_{r-2}-1}$ with multiplicity $q-1$;
(3) $q^{s-a_{r-1}-1}(q-1)+(q-1)$ with multiplicity $q\left(q^{a_{r-1}-a_{r-2}-1}-1\right)$.

Continuing this argument, we obtain the eigenvalues of $\operatorname{Cay}(R, C)$ as follows:
(1) $(q-1) \sum_{i=1}^{r} q^{s-a_{i}-1}$ with multiplicity a_{1};
(2) $-q^{s-a_{k-1}-1}+(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k-1}}(q-1)$ for $k=2, \ldots, r$;
(3) $(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k}}-q^{a_{k-1}+1}$ for $k=2, \ldots, r$;
(4) $\quad-1$ with multiplicity $q^{a_{r}}(q-1)$.

This completes the proof of the lemma.
Lemma 2.5. Let R be a finite chain ring with unique maximal ideal M, residue field of q elements and nilpotency s. Let

$$
C=\left(M^{a_{1}} \backslash M^{a_{1}+1}\right) \cup\left(M^{a_{2}} \backslash M^{a_{2}+1}\right) \cup \cdots \cup\left(M^{a_{r}} \backslash M^{a_{r}+1}\right)
$$

with $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq s-1$. If $a_{r} \neq s-1$, the eigenvalues of $\mathrm{Cay}(R, C)$ are:
(1) $(q-1) \sum_{i=1}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{1}}$;
(2) $-q^{s-a_{k-1}-1}+(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k-1}}(q-1)$ for $k=2, \ldots, r$;
(3) $(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k}}-q^{a_{k-1}+1}$ for $k=2, \ldots, r$;
(4) $-q^{s-a_{r}-1}$ with multiplicity $q^{a_{r}}(q-1)$;
(5) 0 with multiplicity $q^{a_{r}+1}\left(q^{s-a_{r}-1}-1\right)$.

Proof. Since $a_{r} \neq s-1, A_{a_{r}+1}=\mathbf{0}$, so $\bar{A}_{a_{r}+1}$ is the adjacency matrix of the complete graph on $\left|M^{a_{r}+1}\right|=q^{s-a_{r}-1}$ vertices. Then

$$
\operatorname{Spec} \bar{A}_{a_{r}+1}=\left(\begin{array}{cc}
q^{s-a_{r}-1}-1 & -1 \\
1 & q^{s-a_{r}-1}-1
\end{array}\right)
$$

and hence

$$
\operatorname{Spec} I_{q} \otimes \bar{A}_{a_{r}+1}=\left(\begin{array}{cc}
q^{s-a_{r}-1}-1 & -1 \\
q & q\left(q^{s-a_{r}-1}-1\right)
\end{array}\right)
$$

and

$$
\begin{aligned}
\operatorname{Spec} A_{a_{r}} & =\operatorname{Spec} \overline{\left(I_{q} \otimes \bar{A}_{a_{r}+1}\right)} \\
& =\left(\begin{array}{ccc}
q^{s-a_{r}}-q^{s-a_{r}-1} & -q^{s-a_{r}-1} & 0 \\
1 & q-1 & q\left(q^{s-a_{r}-1}-1\right)
\end{array}\right) .
\end{aligned}
$$

By Lemma 2.3, $-q^{s-a_{r}-1}$ and 0 are eigenvalues of $\operatorname{Cay}(R, C)$ with respective multiplicities $q^{a_{r}}(q-1)$ and $q^{a_{r}+1}\left(q^{s-a_{r}-1}-1\right)$. The eigenvalue $q^{s-a_{r}}-q^{s-a_{r}-1}=$ $q^{s-a_{r}-1}(q-1)$ of $A_{a_{r}}$ induces the eigenvalues of $A_{a_{r-1}}$ as follows:
(1) $q^{s-a_{r-1}-1}(q-1)+q^{s-a_{r}-1}(q-1)$ with multiplicity 1 ;
(2) $q^{s-a_{r}-1}(q-1)-q^{s-a_{r-1}-1}$ with multiplicity $q-1$;
(3) $q^{s-a_{r}-1}(q-1)$ with multiplicity $q\left(q^{a_{r}-a_{r-1}-1}-1\right)$.

Similarly, $q^{s-a_{r}-1}(q-1)-q^{s-a_{r-1}-1}$ and $q^{s-a_{r}-1}(q-1)$ are eigenvalues of $\operatorname{Cay}(R, C)$ with multiplicities $q^{a_{r-1}}(q-1)$ and $q^{a_{r-1}+1}\left(q^{a_{r}-a_{r-1}-1}-1\right)$, respectively. Moreover, the eigenvalue $q^{s-a_{r-1}-1}(q-1)+q^{s-a_{r}-1}(q-1)$ of $A_{a_{r-1}}$ gives the following eigenvalues of $A_{a_{r-2}}$:
(1) $q^{s-a_{r-2}-1}(q-1)+q^{s-a_{r-1}-1}(q-1)+q^{s-a_{r}-1}(q-1)$ with multiplicity 1 ;
(2) $q^{s-a_{r-1}^{-1}}(q-1)+q^{s-a_{r}-1}(q-1)-q^{s-a_{r-2}-1}$ with multiplicity $q-1$;
(3) $q^{s-a_{r-1}-1}(q-1)+q^{s-a_{r}-1}(q-1)$ with multiplicity $q\left(q^{a_{r-1}-a_{r-2}-1}-1\right)$.

Repeating this process, we finally obtain the eigenvalues of $\operatorname{Cay}(R, C)$:
(1) $(q-1) \sum_{i=1}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{1}}$;
(2) $-q^{s-a_{k-1}-1}+(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k-1}}(q-1)$ for $k=2, \ldots, r$;
(3) $(q-1) \sum_{i=k}^{r} q^{s-a_{i}-1}$ with multiplicity $q^{a_{k}}-q^{a_{k-1}+1}$ for $k=2, \ldots, r$;
(4) $-q^{s-a_{r}-1}$ with multiplicity $q^{a_{r}}(q-1)$;
(5) 0 with multiplicity $q^{a_{r}+1}\left(q^{s-a_{r}-1}-1\right)$,
as desired.
Finally, we compute the energy of the graph $\operatorname{Cay}(R, C)$.
Theorem 2.6. Let R be a finite chain ring with unique maximal ideal M, residue field of q elements and nilpotency s. Let

$$
C=\left(M^{a_{1}} \backslash M^{a_{1}+1}\right) \cup\left(M^{a_{2}} \backslash M^{a_{2}+1}\right) \cup \cdots \cup\left(M^{a_{r}} \backslash M^{a_{r}+1}\right)
$$

with $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq s-1$. Then

$$
E(\operatorname{Cay}(R, C))=2(q-1)\left(q^{s-1} r-(q-1) \sum_{k=1}^{r-1} \sum_{i=k+1}^{r} q^{s-a_{i}+a_{k}-1}\right) .
$$

Proof. Observe that the eigenvalues and multiplicities of items (1)-(3) in Lemmas 2.4 and 2.5 are identical. Moreover, the product of the eigenvalue and its multiplicity in item (4) of Lemmas 2.4 and 2.5 is $-q^{s-1}(q-1)$. Thus, both cases have the same energy, which can be obtained by a direct computation.

Remark 2.7. When $R=\mathbb{Z}_{p^{s}}$, this result is [10, Theorem 2.1].
We shall close this section by showing that our Cayley graph is indeed an integral circulant.

Let R be a finite chain ring R with unique maximal ideal M and residue field of $q=p^{t}$ elements. Assume that R is of nilpotency s and M is generated by $\theta \in M \backslash M^{2}$. Then, for each $x \in R$,

$$
x=v_{0}+v_{1} \theta+v_{2} \theta^{2}+\cdots+v_{s-1} \theta^{s-1}
$$

where $v_{i} \in \mathcal{V}=\left\{e_{0}, e_{1}, \ldots, e_{p^{t}-1}\right\}$, a fixed set of representatives of cosets in R / M, and

$$
C_{1}=\left(M^{a_{1}} \backslash M^{a_{1}+1}\right) \cup\left(M^{a_{2}} \backslash M^{a_{2}+1}\right) \cup \cdots \cup\left(M^{a_{r}} \backslash M^{a_{r}+1}\right)
$$

with $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq s-1$. Note that the $\operatorname{ring} \mathbb{Z}_{q^{s}}=\mathbb{Z}_{p^{t s}}$ is a finite chain ring with the chain

$$
\mathbb{Z}_{p^{t s}} \supset p \mathbb{Z}_{p^{t s}} \supset p^{2} \mathbb{Z}_{p^{t s}} \supset \cdots \supset p^{t s-1} \mathbb{Z}_{p^{t s}} \supset p^{t s} \mathbb{Z}_{p^{t s}}=\{0\}
$$

having

$$
\mathbb{Z}_{p^{t s}} \supset p^{t} \mathbb{Z}_{p^{t s}} \supset p^{2 t} \mathbb{Z}_{p^{t s}} \supset \cdots \supset p^{(s-1) t} \mathbb{Z}_{p^{t s}} \supset p^{s t} \mathbb{Z}_{p^{t s}}=\{0\}
$$

as a subchain. This observation implies that each $a \in \mathbb{Z}_{p^{s t}}$ can be expressed as

$$
a=c_{0}+c_{1} p^{t}+c_{2} p^{2 t} \cdots+c_{s-1} p^{(s-1) t}
$$

where $c_{i} \in\left\{0,1, \ldots, p^{t}-1\right\}$. Let $g: e_{i} \mapsto i$ be a bijection from \mathcal{V} onto $\left\{0,1, \ldots, p^{t}-1\right\}$. Let $C_{2}=\left\{p^{a_{1} t}, p^{a_{1} t+1}, \ldots, p^{a_{1} t+t-1}, \ldots, p^{a_{r} t}, p^{a_{r} t+1}, \ldots, p^{a_{r} t+t-1}\right\}$. We shall show that the graphs $\operatorname{Cay}\left(R, C_{1}\right)$ and $\operatorname{Cay}\left(\mathbb{Z}_{p^{s t}}\right)$ are isomorphic.

Define $f: \operatorname{Cay}\left(R, C_{1}\right) \rightarrow \operatorname{Cay}\left(\mathbb{Z}_{p^{s t}}, C_{2}\right)$ by

$$
f\left(v_{0}+v_{1} \theta+\cdots+v_{s-1} \theta^{s-1}\right)=g\left(v_{0}\right)+g\left(v_{1}\right) p^{t}+g\left(v_{2}\right) p^{2 t}+\cdots+g\left(v_{s-1}\right) p^{(s-1) t}
$$

Then f is a well-defined bijection. To see that f is an isomorphism, we let

$$
x=v_{0}+v_{1} \theta+v_{2} \theta^{2}+\cdots+v_{s-1} \theta^{s-1} \quad \text { and } \quad y=u_{0}+u_{1} \theta+u_{2} \theta^{2}+\cdots+u_{s-1} \theta^{s-1}
$$

Suppose that x and y are adjacent in $\operatorname{Cay}\left(R, C_{1}\right)$. Then $x-y \in M^{a_{i}} \backslash M^{a_{i}+1}$ for some a_{i}. This means that $v_{i}=u_{i}$ for $i<a_{i}$ and $v_{a_{i}} \neq u_{a_{i}}$. Thus, $g\left(v_{i}\right)=g\left(u_{i}\right)$ for $i<a_{i}$ and $g\left(v_{a_{i}}\right) \neq g\left(u_{a_{i}}\right)$, so $f(x)-f(y) \in p^{a_{i} t} \mathbb{Z}_{p^{s t}} \backslash p^{\left(a_{i}+1\right) t} \mathbb{Z}_{p^{s t}}$. Then, as elements of \mathbb{Z}, $\operatorname{gcd}\left(f(x)-f(y), p^{s t}\right)=p^{j}$, where $a_{i} t \leq j<\left(a_{i}+1\right) t$ and thus $f(x)$ and $f(y)$ are adjacent in $\operatorname{Cay}\left(\mathbb{Z}_{p^{s t}}, \mathcal{C}_{2}\right)$. Conversely, assume that $f(x)$ and $f(y)$ are adjacent in $\operatorname{Cay}\left(\mathbb{Z}_{p^{s t}}, C_{2}\right)$. Then, as elements of $\mathbb{Z}, \operatorname{gcd}\left(f(x)-f(y), p^{s t}\right)=p^{j}$, where $a_{i} t \leq j<\left(a_{i}+1\right) t$ for some a_{i}. It follows that for

$$
\begin{aligned}
& f(x)=g\left(v_{0}\right)+g\left(v_{1}\right) p^{t}+g\left(v_{2}\right) p^{2 t}+\cdots+g\left(v_{s-1}\right) p^{(s-1) t} \quad \text { and } \\
& f(y)=g\left(u_{0}\right)+g\left(u_{1}\right) p^{t}+g\left(u_{2}\right) p^{2 t}+\cdots+g\left(u_{s-1}\right) p^{(s-1) t}
\end{aligned}
$$

we have $g\left(v_{i}\right)=g\left(u_{i}\right)$ for $i<a_{i}$ and $g\left(v_{a_{i}}\right) \neq g\left(u_{a_{i}}\right)$. Thus, $x-y \in M^{a_{i}} \backslash M^{a_{i}+1}$ and hence x and y are adjacent in $\operatorname{Cay}\left(R, C_{1}\right)$. Hence, we have shown the following proposition.

Proposition 2.8. Let R be a finite chain ring with unique maximal ideal M, residue field of $q=p^{t}$ elements and nilpotency s. Let

$$
C_{1}=\left(M^{a_{1}} \backslash M^{a_{1}+1}\right) \cup\left(M^{a_{2}} \backslash M^{a_{2}+1}\right) \cup \cdots \cup\left(M^{a_{r}} \backslash M^{a_{r}+1}\right)
$$

with $0 \leq a_{1}<a_{2}<\cdots<a_{r} \leq s-1$. Then

$$
\operatorname{Cay}\left(R, C_{1}\right) \cong \operatorname{Cay}\left(\mathbb{Z}_{p^{s}}, C_{2}\right)
$$

where $C_{2}=\left\{p^{a_{1} t}, p^{a_{1} t+1}, \ldots, p^{a_{1} t+t-1}, \ldots, p^{a_{r} t}, p^{a_{r} t+1}, \ldots, p^{a_{r} t+t-1}\right\}$.

3. gcd-graphs over a unique factorisation domain

Let D be a unique factorisation domain (UFD) and $c \in D$ a nonzero nonunit element. Assume that the commutative ring $D /(c)$ is finite. Write $c=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$ as a product of irreducible elements.

We now study the gcd-graph $D_{c}(C)$. Suppose that for each $i \in\{1,2, \ldots, k\}$, there exists a set $C_{i}=\left\{p_{i}^{a_{i 1}}, p_{i}^{a_{i 2}}, \ldots, p_{i}^{a_{i i_{i}}}\right\}$ with $0 \leq a_{i 1}<a_{i 2}<\cdots<a_{i r_{i}} \leq s_{i}-1$ so that

$$
C=\left\{p_{1}^{a_{1 t_{1}}} \cdots p_{k}^{a_{k_{k}}}: t_{i} \in\left\{1,2, \ldots, r_{i}\right\} \text { for all } i \in\{1,2, \ldots, k\}\right\} .
$$

Then, for $x, y \in D /(c)$,
x is adjacent to $y \Leftrightarrow \operatorname{gcd}(x-y, c) \in D^{\times} C \Leftrightarrow \operatorname{gcd}\left(x-y, p_{i}^{s_{i}}\right) \in D^{\times} C_{i}$ for all i.
This implies that

$$
D_{c}(C)=\operatorname{Cay}\left(D /\left(p_{1}^{s_{1}}\right), C_{1}\right) \otimes \cdots \otimes \operatorname{Cay}\left(D /\left(p_{k}^{s_{k}}\right), C_{k}\right)
$$

where each factor on the right is the Cayley graph over the finite chain ring $D /\left(p_{i}^{s_{i}}\right)$ for which we have already computed the energy in Section 2. Recall from Proposition 2.1 that $E(G \otimes H)=E(G) E(H)$ for two graphs G and H. Therefore, we have the following theorem.

Theorem 3.1. Let D be a UFD and let $c=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$ be a nonzero nonunit in D factored as a product of irreducible elements. Assume that $D /(c)$ is finite and, for each $i \in\{1,2, \ldots, k\}$, there exists a set $C_{i}=\left\{p_{i}^{a_{i 1}}, p_{i}^{a_{i 2}}, \ldots, p_{i}^{a_{i i_{i}}}\right\}$ with $0 \leq a_{i 1}<a_{i 2}<$ $\cdots<a_{i r_{i}} \leq s_{i}-1$ such that

$$
C=\left\{p_{1}^{a_{t_{1}}} \cdots p_{k}^{a_{k_{k_{k}}}}: t_{i} \in\left\{1,2, \ldots, r_{i}\right\} \text { for all } i \in\{1,2, \ldots, k\}\right\} .
$$

Then

$$
E\left(D_{c}(C)\right)=E\left(D_{p_{1}^{s_{1}}}\left(C_{1}\right)\right) \cdots E\left(D_{p_{k}^{s_{k}}}\left(C_{k}\right)\right)
$$

Remark 3.2. Recall that if a matrix A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A+I$ are $\lambda_{1}+1, \ldots, \lambda_{n}+1$. Hence, one can obtain the energy of the gcd-graph in Theorem 3.1 when C_{i} contains $p_{i}^{s_{i}}$ using this fact and the eigenvalues computed in Lemma 2.4 or 2.5 .

Now, we study the case where some $\mathcal{C}_{j}=\left\{p_{j}^{s_{j}}\right\}$. To compute the energy in this case, we shall use a graph operation which is more general than the tensor product called a noncomplete extended p-sum [7] defined as follows.

Given a set $B \subseteq\{0,1\}^{k}$ and graphs G_{1}, \ldots, G_{k}, the NEPS (noncomplete extended p-sum $), G=\operatorname{NEPS}\left(G_{1}, \ldots, G_{k} ; B\right)$, of these graphs with respect to the basis B has as its vertex set the Cartesian product of the vertex sets of the individual graphs, that is, $V(G)=V\left(G_{1}\right) \times \cdots \times V\left(G_{k}\right)$. Two distinct vertices $x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ are adjacent in G if and only if there exists some k-tuple $\left(\beta_{1}, \ldots, \beta_{k}\right) \in B$ such that $x_{i}=y_{i}$ whenever $\beta_{i}=0$ and x_{i}, y_{i} are distinct and adjacent in G_{i} whenever $\beta_{i}=1$. In particular, when $B=\{(1,1, \ldots, 1)\}$,

$$
\operatorname{NEPS}\left(G_{1}, \ldots, G_{k} ; B\right)=G_{1} \otimes G_{2} \otimes \cdots \otimes G_{k} .
$$

The eigenvalues of the graph $\operatorname{NEPS}\left(G_{1}, \ldots, G_{k} ; B\right)$ are presented in the next theorem.

Theorem 3.3 [1]. Let G_{1}, \ldots, G_{k} be graphs with n_{1}, \ldots, n_{k} vertices, respectively, and, for $i \in\{1, \ldots, k\}$, let $\lambda_{i 1}, \ldots, \lambda_{i n_{i}}$ be the eigenvalues of G_{i}. Then the spectrum of the graph $G=\operatorname{NEPS}\left(G_{1}, \ldots, G_{k} ; B\right)$ consists of all possible values

$$
\mu_{i_{1}, \ldots, i_{k}}=\sum_{\left(\beta_{1}, \ldots, \beta_{k}\right) \in B} \lambda_{1 i_{1}}^{\beta_{1}} \cdots \lambda_{k i_{k}}^{\beta_{k}}
$$

with $1 \leq i_{l} \leq n_{l}$ for $1 \leq l \leq k$.
Next, we consider $c=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$ written as a product of irreducible elements. We suppose that $l \leq k$ and that, for each $i \in\{1,2, \ldots, l\}$, there exists a set $C_{i}=\left\{p_{i}^{a_{i 1}}, p_{i}^{a_{i 2}}, \ldots, p_{i}^{a_{i i_{i}}}\right\}$ with $0 \leq a_{i 1}<a_{i 2}<\cdots<a_{i r_{i}} \leq s_{i}-1$ so that

$$
C^{\prime}=\left\{p_{1}^{a_{l_{l_{1}}}} \cdots p_{l}^{a_{l_{l}}} p_{l+1}^{s_{l+1}} \cdots p_{k}^{s_{k}}: t_{i} \in\left\{1,2, \ldots, r_{i}\right\} \text { for all } i \in\{1,2, \ldots, l\}\right\}
$$

Then

$$
D_{c}\left(C^{\prime}\right)=\operatorname{NEPS}(D_{p_{1}^{s_{1}}}\left(C_{1}\right), D_{p_{2}^{s_{2}}}\left(C_{2}\right), \ldots, D_{p_{k}^{s_{k}}}\left(C_{k}\right) ;\{(\underbrace{1, \ldots, 1}_{l}, \underbrace{0, \ldots, 0}_{k-l})\}),
$$

where $C_{j}=\left\{p_{j}^{s_{j}}\right\}$ for $l<j \leq k$. By Theorem 3.3, all eigenvalues of $D_{c}\left(C^{\prime}\right)$ are the eigenvalues of

$$
\operatorname{Cay}\left(D /\left(p_{1}^{s_{1}}\right), C_{1}\right) \otimes \cdots \otimes \operatorname{Cay}\left(D /\left(p_{l}^{s_{l}}\right), C_{l}\right)
$$

each repeated $\prod_{j=l+1}^{k}\left|D /\left(p_{j}^{s_{j}}\right)\right|$ times. We deduce the following result from Theorem 3.1.

Theorem 3.4. Let D be a UFD and let $c=p_{1}^{s_{1}} \cdots p_{k}^{s_{k}} \in D$ a nonzero nonunit factored as a product of irreducible elements. Let $l \leq k$. Assume that $D /(c)$ is finite and that, for each $i \in\{1,2, \ldots, l\}$, there exists a set $C_{i}=\left\{p_{i}^{a_{i 1}}, p_{i}^{a_{i 2}}, \ldots, p_{i}^{a_{i_{i}}}\right\}$ such that $0 \leq a_{i 1}<a_{i 2}<\cdots<a_{i r_{i}} \leq s_{i}-1$ and

$$
C^{\prime}=\left\{p_{1}^{a_{l_{t}}} \cdots p_{l}^{a_{t_{l}}} p_{l+1}^{s_{l+1}} \cdots p_{k}^{s_{k}}: t_{i} \in\left\{1,2, \ldots, r_{i}\right\} \text { for all } i \in\{1,2, \ldots, l\}\right\}
$$

Then

$$
E\left(D_{c}\left(C^{\prime}\right)\right)=E\left(D_{p_{1}^{s_{1}}}\left(C_{1}\right)\right) \cdots E\left(D_{p_{l}^{s_{l}}}\left(C_{l}\right)\right) \prod_{j=l+1}^{k}\left|D /\left(p_{j}^{s_{j}}\right)\right| .
$$

References

[1] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application, 3rd edn, Pure and Applied Mathematics, 87 (Johann Ambrosius Barth, Heidelberg, 1995).
[2] C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001).
[3] I. Gutman, The Energy of a Graph: Old and New Results, Algebraic Combinatorics and Applications (Springer, Berlin, 2001).
[4] A. Ilić, 'The energy of unitary Cayley graphs', Linear Algebra Appl. 431 (2009), 1881-1889.
[5] D. Kiani, M. M. H. Aghaei, Y. Meemark and B. Suntornpoch, 'Energy of unitary Cayley graphs and gcd-graphs', Linear Algebra Appl. 435(6) (2011), 1336-1343.
[6] W. Klotz and T. Sander, 'Some properties of unitary Cayley graphs', Electron. J. Combin. 14 (2007), R45, 12 pages.
[7] W. Klotz and T. Sander, 'GCD-graphs and NEPS of complete graphs', Ars Math. Contemp. 6 (2013), 289-299.
[8] B. R. McDonald, Finite Rings with Identity (Marcel Dekker, New York, 1974).
[9] G. H. Norton and A. Sǎlǎgean, 'On the structure of linear and cyclic codes over finite chain rings', Appl. Algebra Engrg. Comm. Comput. 10(6) (2000), 489-506.
[10] J. W. Sander and T. Sander, 'The energy of integral circulant graphs with prime power order', Appl. Anal. Discrete Math. 5 (2011), 22-36.
[11] W. So, 'Integral circulant graphs', Discrete Math. 306 (2006), 153-158.
[12] D. B. West, Introduction to Graph Theory, 2nd edn (Prentice-Hall, Englewood Cliffs, NJ, 2000).

BORWORN SUNTORNPOCH,
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: beyond.my.limit@gmail.com

YOTSANAN MEEMARK,
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: yotsanan.m@chula.ac.th

[^0]: The corresponding author is Y. Meemark. The research was supported in part by the 90th Anniversary of Chulalongkorn University Rachadapisek Sompote Fund.
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

