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Numerical simulation of an idealised
Richtmyer–Meshkov instability shock
tube experiment
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The effects of initial conditions on the evolution of the Richtmyer–Meshkov instability
(RMI) at early to intermediate times are analysed, using numerical simulations of an
idealised version of recent shock tube experiments performed at the University of Arizona
(Sewell et al., J. Fluid Mech., vol. 917, 2021, A41). The experimental results are bracketed
by performing both implicit large-eddy simulations of the high-Reynolds-number limit
as well as direct numerical simulations (DNS) at Reynolds numbers lower than those
observed in the experiments. Various measures of the mixing layer width h, known to
scale as ∼tθ at late time, based on both the plane-averaged turbulent kinetic energy and
volume fraction profiles are used to explore the effects of initial conditions on θ and are
compared with the experimental results. The decay rate n of the total fluctuating kinetic
energy is also used to estimate θ based on a relationship that assumes self-similar growth
of the mixing layer. The estimates for θ range between 0.44 and 0.52 for each of the
broadband perturbations considered and are in good agreement with the experimental
results. Decomposing the mixing layer width into separate bubble and spike heights
hb and hs shows that, while the bubbles and spikes initially grow at different rates,
their growth rates θb and θs have equalised by the end of the simulations. Overall, the
results demonstrate important differences between broadband and narrowband surface
perturbations, as well as persistent effects of finite bandwidth on the growth rate of
mixing layers evolving from broadband perturbations. Good agreement is obtained with
the experiments for the different quantities considered; however, the results also show that
care must be taken when using measurements based on the velocity field to infer properties
of the concentration field.
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1. Introduction

This paper analyses the effects of initial conditions on the evolution of the
Richtmyer–Meshkov instability (RMI), which occurs when an interface separating two
materials of differing densities is accelerated impulsively, typically by an incident shock
wave (Richtmyer 1960; Meshkov 1969). The instability evolves due to the deposition
of baroclinic vorticity at the interface, caused by a misalignment of density and
pressure gradients during the shock–interface interaction. This occurs either from surface
perturbations on the interface, or when the shock wave is non-uniform or inclined
relative to the interface. The baroclinic vorticity that is deposited on the interface leads
to the growth of surface perturbations and the development of secondary shear layer
instabilities, which drive the transition to a turbulent mixing layer. Unlike the closely
related Rayleigh–Taylor instability (RTI), the RMI is induced for both light to heavy
and heavy to light configurations. In both cases, the initial growth of the interface is
linear in time and can be described by analytical expressions (Richtmyer 1960; Meyer &
Blewett 1972; Vandenboomgaerde, Mügler & Gauthier 1998). However, as the amplitudes
of modes in the perturbation become large with respect to their wavelengths the growth
becomes nonlinear, whereby numerical simulation is required to calculate the subsequent
evolution of the mixing layer. Another key difference between RTI and RMI is that, for
the RMI, baroclinic vorticity is only deposited initially and not continuously generated,
compared with the (classical) RTI where the interface is continuously accelerated. For
a comprehensive and up-to-date review of the literature on both RTI, RMI and the
Kelvin–Helmholtz instability (KHI), the reader is referred to Zhou (2017a,b); Zhou et al.
(2021), as well as Livescu (2020) for an excellent review on variable-density turbulence
more generally.

The understanding of mixing due to RMI is of great importance in areas such as
inertial confinement fusion (ICF) (Lindl et al. 2014), where a spherical capsule containing
thermonuclear fuel is imploded using powerful lasers with the aim of compressing the
contents to sufficient pressures and temperatures so as to initiate nuclear fusion. The
compression is performed using a series of strong shocks, which trigger hydrodynamic
instabilities at the ablation front due to capsule defects and drive asymmetries (Clark et al.
2016). The subsequent mixing of ablator material and fuel that ensues can dilute and cool
the hotspot, which reduces the overall efficiency of the implosion. As a contrast to ICF,
in high-speed combustion such as in a scramjet or rotating detonation engine, RMI due to
weak shocks improves the mixing of fuel and oxidiser leading to more efficient combustion
(Yang, Kubota & Zukoski 1993; Yang, Chang & Bao 2014). An understanding of mixing
due to RMI is also important for many astrophysical phenomena such as supernovae
and the dynamics of interstellar media (Arnett 2000). Note that in such applications RTI
usually occurs alongside RMI and in general it is impossible to separate the effects of both
instabilities. However, there is still great value in studying RMI independently, particularly
when comparing with shock tube experiments that have been designed to isolate its effects
using an Rayleigh–Taylor-stable configuration.

In the applications mentioned above, the most important statistical quantity one would
like to know is typically the mixing layer width, denoted by h. At late time, h scales as
∼t2 for RTI and ∼tθ for RMI, where the exponent θ ≤ 1 has been shown to depend on
initial conditions (Youngs 2004; Thornber et al. 2010). Various approaches have been
taken to define h, which fall into one of two categories. The first is to consider the distance
between two cutoff locations based on a particular threshold of some spatially averaged
profile in the direction normal to the mixing layer (i.e. the direction of the shock-induced
acceleration). Examples include the visual width (Cook & Dimotakis 2001) based on the
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Numerical simulation of idealised RMI shock tube experiment

1 % and 99 % locations of the mean volume fraction profile (the choice of a 1 % threshold
is somewhat arbitrary; see Zhou & Cabot (2019) for a comparison of different thresholds in
the context of RTI). Such measures have the advantage of being easily interpretable but can
be sensitive to statistical fluctuations. The second approach is to define an integral measure
by integrating a particular spatially averaged profile in the normal direction, for example
the integral width (Andrews & Spalding 1990). Integral measures are less susceptible to
statistical fluctuations but are also less interpretable, as different profiles can give the same
integrated value. The recently proposed mixed mass (Zhou, Cabot & Thornber 2016) and
integral bubble and spike heights (Youngs & Thornber 2020a) are attempts to combine the
best aspects of both approaches.

Over the last few decades, both shock tube experiments and numerical simulations have
been performed in order to better understand the fundamentals of RMI, such as the value
of θ at late time. Previous numerical studies have typically used large-eddy simulation
(LES) or implicit LES (ILES) to predict mixing at late time in the high-Reynolds-number
limit (Youngs 1994; Hill, Pantano & Pullin 2006; Thornber et al. 2010; Lombardini,
Pullin & Meiron 2012; Tritschler et al. 2014a; Thornber et al. 2017; Soulard et al. 2018).
Key findings include the dependence of θ on the type of surface perturbation used to
initiate the instability (Youngs 2004; Thornber et al. 2010). Narrowband perturbations,
which include only a small, annular band of modes in wavenumber space, have been
found to give values of θ at late time between 0.25 (Soulard & Griffond 2022) and 0.33
(Youngs & Thornber 2020b) whereas perturbations including additional long wavelength
modes, known as broadband perturbations, have been found to give values of θ as high
as 0.75 (Groom & Thornber 2020). Studies of the effects of initial conditions in RTI have
found similar results for the growth rate α when additional long wavelength modes were
included in the initial perturbation (Ramaprabhu, Dimonte & Andrews 2005; Banerjee
& Andrews 2009). When only short wavelength perturbations are present the growth
rate of RTI is limited by the nonlinear coupling of saturated short wavelength modes
(bubble merger), while additional long wavelength perturbations cause the growth rate
to become limited by the amplification and saturation of long wavelength modes (bubble
competition). Furthermore, Aslangil et al. (2020) considered the case of RTI where the
applied acceleration is completely withdrawn after initial development. The resulting
mixing layer is closely related to an RMI-induced mixing layer, differing only by the
mechanism of the initial acceleration, with the growth rate exponent for narrowband
initial conditions shown to be within the bounds of 0.2–0.28 suggested by Weber, Cook &
Bonazza (2013).

Early shock tube experiments made use of membranes to form the initial perturbation
between the two gases (Vetter & Sturtevant 1995); however, these tended to leave
fragments that dampened the subsequent instability growth, inhibited mixing and
interfered with diagnostics. In order to circumvent this, modern shock tube experiments
use membraneless interfaces, for example by forming by a shear layer between
counter-flowing gases (Weber et al. 2012, 2014; Mohaghar et al. 2017; Reese et al. 2018;
Mohaghar et al. 2019), using a gas curtain (Balakumar et al. 2008; Balasubramanian et al.
2012) or by using loudspeakers to generate Faraday waves at the interface (Jacobs et al.
2013; Krivets, Ferguson & Jacobs 2017; Sewell et al. 2021).

These methods of interface generation typically result in the formation of a broadband
surface perturbation and as such these experiments have obtained values of θ that are
higher than the 0.25–0.33 expected for narrowband initial conditions. For example Weber
et al. (2012, 2014) measured θ in the range 0.43–0.58, while later experiments on the
same facility by Reese et al. (2018) obtained θ = 0.34 ± 0.01 once the concentration field
was adjusted to remove larger-scale structures from the mixing layer prior to averaging
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in the spanwise direction. Jacobs et al. (2013) found that their measurements of mixing
layer width prior to reshock could be partitioned into two groups with different power
law exponents. The particular diagnostic used was the mixing layer half-width, found
by taking the distance between the 10 % and 90 % average concentration locations and
halving this. Prior to reshock, both groups initially had growth rates close to 0.5 (θ = 0.51
and θ = 0.54), while at later times the growth rates were smaller but also more different
(θ = 0.38 and θ = 0.29, respectively). Krivets et al. (2017) also found a wide range of
θ for the integral width prior to reshock, ranging from θ = 0.18 to θ = 0.57, using a
similar experimental set-up. During these experiments the timing of the arrival of the
shock wave relative to the phase of the forcing cycle was not controlled, which resulted
in large variations in the initial amplitudes of the perturbation. More recent experiments
by Sewell et al. (2021) took this into account and divided the results into a low-amplitude
and a high-amplitude group. Using a measure for the mixing layer width based on 5 %
threshold locations of the turbulent kinetic energy profile, they found θ = 0.45 ± 0.08
and θ = 0.51 ± 0.04 for the low- and high-amplitude groups prior to reshock.

In this paper, both ILES and direct numerical simulations (DNS) are performed of
three-dimensional (3-D) RMI with narrowband and broadband perturbations, using a
set-up that represents an idealised version of the shock tube experiments performed at
the University of Arizona (Jacobs et al. 2013; Krivets et al. 2017; Sewell et al. 2021)
to investigate the effects of long wavelength modes in the initial perturbation. A similar
study was performed in Groom & Thornber (2020) but the main aim in that paper was
to approximate the regime where there are always longer and longer wavelength modes
in the initial condition that are yet to saturate (referred to as the infinite bandwidth
limit). Of primary interest here is to explore the impacts of finite bandwidth broadband
perturbations on the mixing layer growth over the length and time scales of a typical shock
tube experiment and compare the results with those of both narrowband perturbations and
broadband perturbations in the infinite bandwidth limit. While the main aim is not to match
the experiments as closely as possible, it is anticipated that the results generated in this
study could in principle be verified experimentally. Direct comparisons are also still able to
be made through appropriate non-dimensionalisations, which has previously been difficult
to do when comparing results between simulations and experiments. An assessment will
also be made as to the validity of using measurements based on the velocity field to draw
conclusions about the concentration field (and vice versa).

The paper is organised as follows. In § 2, an overview of the governing equations and
numerical methods employed to solve these equations is given, as well as a description of
the computational set-up and initial conditions. This section also gives a brief discussion
on some of the challenges associated with performing DNS with broadband surface
perturbations. Section 3 details an analysis of many of the same quantities presented in
Sewell et al. (2021), including turbulent kinetic energy profiles and spectra as well as
various measures of the mixing layer width that are used to estimate the growth rate θ .
The evolution of key length scales and Reynolds numbers is also given for the DNS cases.
Finally, § 4 gives a summary of the main findings, as well as directions for future work on
this problem.

2. Computational set-up

2.1. Governing equations
The computations presented in this paper all solve the compressible Navier–Stokes
equations extended to a five-equation, quasi-conservative system of equations based
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on volume fractions rather than the conventional four-equation, fully conservative
model based on mass fractions for multicomponent flows. This ensures that pressure
and temperature equilibrium is maintained across material interfaces when upwind
discretisations are used and the ratio of specific heats varies across the interface, as
is the case for air and SF6, which greatly improves the accuracy and efficiency of the
computation (Allaire, Clerc & Kokh 2002; Massoni et al. 2002). This is a well-established
approach for inviscid computations and was recently extended to include the effects of
species diffusion, viscosity and thermal conductivity by Thornber, Groom & Youngs
(2018), enabling accurate and efficient DNS to be performed for this class of problems.
The full set of equations for binary mixtures is

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

∂ρu
∂t

+ ∇ · (ρuut + p𝞭) = ∇ · 𝞼, (2.1b)

∂ρe
∂t

+ ∇ · ([ρe + p]u) = ∇ · (𝞼 · u − q) , (2.1c)

∂ρ1f1
∂t

+ ∇ · (ρ1f1u) = ∇ ·
(
ρD12∇W1f1

W

)
, (2.1d)

∂f1
∂t

+ u · ∇f1 = ∇ · (D12∇f1)− MD12∇f1 · ∇f1 + D12∇f1 · ∇N
N
. (2.1e)

In (2.1), ρ is the mass density, u = [u, v,w]t is the mass-weighted velocity vector, p is
the pressure, fn is the volume fraction of species n and e = ei + ek is the total energy per
unit mass, where ek = 1

2 u · u is the kinetic energy and the internal energy ei is given by
the equation of state. Note that only (2.1e) is in non-conservative form, hence the term
quasi-conservative as conservation errors are negligible (only species internal energies are
not conserved). All computations are performed using the ideal gas equation of state

ei = p
ρ(γ̄ − 1)

, (2.2)

where γ̄ is the ratio of specific heats of the mixture. For the five-equation model this is
given by

1
γ̄ − 1

=
∑

n

fn
γn − 1

, (2.3)

which is an isobaric closure (individual species temperatures are retained in the mixture).
The viscous stress tensor 𝞼 for a Newtonian fluid is

𝞼 = −μ̄ [∇u + (∇u)t
] + 2

3 μ̄(∇ · u)𝞭, (2.4)

where μ̄ is the dynamic viscosity of the mixture. Note that in (2.4) the bulk viscosity is
assumed to be zero according to Stokes’ hypothesis. The heat flux q = qc + qd, with the
conductive heat flux qc given by Fourier’s law

qc = −κ̄∇T, (2.5)

where κ̄ is the thermal conductivity of the mixture, and T is the temperature. The thermal
conductivity of species n is calculated using kinetic theory as κn = μn(

5
4 (R/Wn)+ cp,n),

while the thermal conductivity of the mixture (as well as the mixture viscosity) is
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calculated using Wilke’s rule. The enthalpy flux qd, arising from changes in internal
energy due to mass diffusion, is given by

qd =
∑

n

hnJ n, (2.6)

where hn = cp,nT is the enthalpy of species n and cp,n the specific heat at constant pressure.
The diffusion flux on the right-hand side of (2.1d) invokes Fick’s law of binary diffusion,
written in terms of volume fraction; Wn is the molecular weight of species n, W is the
molecular weight of the mixture and the binary diffusion coefficient D12 is calculated by
assuming both species have the same Lewis number (Le1 = Le2 = Le), such that

D12 = κ̄

Leρc̄p
, (2.7)

with c̄p the specific heat at constant pressure for the mixture. Finally in (2.1e), M =
(W1 − W2)/(W1f1 + W2f2) and N = p/kbT is the number density.

2.2. Numerical method
The governing equations presented in § 2.1 are solved using the University of
Sydney code Flamenco, which employs a method of lines discretisation approach
in a structured, multiblock framework. Spatial discretisation is performed using a
Godunov-type finite-volume method, which is integrated in time via a second-order
total-variation-diminishing Runge–Kutta method (Spiteri & Ruuth 2002). The spatial
reconstruction of the inviscid terms uses a fifth-order monotonic upstream-centred scheme
for conservation laws (Kim & Kim 2005), which is augmented by a modification to the
reconstruction procedure to ensure the correct scaling of pressure, density and velocity
fluctuations in the low Mach number limit (Thornber et al. 2008). The inviscid flux
component is calculated using the Harten–Lax–van Leer contact (HLLC) Riemann solver
(Toro, Spruce & Speares 1994), while the viscous and diffusive fluxes are calculated using
second-order central differences. Following Abgrall (1996), the non-conservative volume
fraction equation is written as a conservative equation minus a correction term

∂f1
∂t

+ ∇ · (U f1)− f1(∇ · U) = ∇ · (D12∇f1), (2.8)

with U = u + MD12∇f1 − D12(∇N/N). The additional terms in U that arise from
species diffusion must be included in the calculation of the inviscid flux component, as
even though they are viscous in nature, they modify the upwind direction of the advection
of volume fraction in the solution to the Riemann problem at each cell interface. In the
HLLC Riemann solver used in Flamenco this is achieved by modifying the wave speeds to
incorporate the additional diffusion velocity, see Thornber et al. (2018) for further details.
In the absence of viscosity and thermal conductivity the governing equations reduce to
the inviscid five-equation model of Allaire et al. (2002), which has been used in previous
studies of RMI (Thornber 2016; Thornber et al. 2017). The numerical algorithm described
above has been extensively demonstrated to be an effective approach for both ILES and
DNS of shock-induced turbulent mixing problems (see Thornber et al. 2010, 2011; Groom
& Thornber 2019, 2021).

2.3. Problem description and initial conditions
The computational set-up is similar to previous studies of narrowband and broadband
RMI by Groom & Thornber (2019, 2020) but with a few key differences that will
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Shocked light Light Heavy
y

z x

Figure 1. A schematic of the problem set-up. The major ticks correspond to a grid spacing of �x = 1.0 m.
The interface is initially located at x = 3.0 m and the shock is initially located at x = 2.5 m in the light fluid
and travels from light to heavy.

be described here. A Cartesian domain of dimensions x × y × z = Lx × L × L where
L = 2π m is used for all simulations. The extent of the domain in the x-direction is
either Lx = 1.5π for the ILES cases or Lx = 0.75π for the DNS cases. Periodic boundary
conditions are used in the y- and z-directions, while in the x-direction outflow boundary
conditions are imposed very far away from the test section so as to minimise spurious
reflections from outgoing waves impacting the flow field. The initial mean positions of the
shock wave and the interface are xs = 2.5 m and x0 = 3.0 m respectively, and the initial
pressure and temperature of both (unshocked) fluids is p = 0.915 atm and T = 298 K,
equal to that in the experiments of Jacobs et al. (2013). All computations employ the ideal
gas equation of state with a fixed value of γ for each species. A schematic of the initial
condition is shown in figure 1.

The shock Mach number is M = 1.5, which is higher than the M = 1.2 shock used
in Jacobs et al. (2013) and Krivets et al. (2017) and the M = 1.17 shock used in Sewell
et al. (2021). This is so that the initial velocity jump is larger, which makes more efficient
use of the explicit time stepping algorithm, but not so large that it introduces significant
post-shock compressibility effects. Therefore the post-shock evolution of the mixing layer
is still approximately incompressible in both the present simulations and the experiments
in Jacobs et al. (2013), Krivets et al. (2017) and Sewell et al. (2021). The initial densities
of air and SF6 are ρ1 = 1.083 kg m−3 and ρ2 = 5.465 kg m−3 and the post-shock densities
are ρ+

1 = 2.469 kg m−3 and ρ+
2 = 15.66 kg m−3, respectively. This gives a post-shock

Atwood number of A+ = 0.72, which is essentially the same as the value of 0.71 given
in Jacobs et al. (2013), indicating that the effects of compressibility are minimal. The
variation in ρ and f1 across the interface are computed based on the surface perturbation
described in (2.8) below. The evolution of the interface is solved in the post-shock frame
of reference by applying a shift of �u = −158.08 m s−1 to the initial velocities of the
shocked and unshocked fluids. The initial velocity field is also modified to include an
initial diffusion velocity at the interface, which is calculated as in previous DNS studies
of RMI (Groom & Thornber 2019, 2021). To improve the quality of the initial condition,
three-point Gaussian quadrature is used in each direction to accurately compute the cell
averages required by the finite-volume algorithm.

Table 1 gives the thermodynamic properties of each fluid. The dynamic viscosities of
both fluids are calculated using the Chapman–Enskog viscosity model at a temperature of
T = 298 K, while the diffusivities are calculated under the assumption of Lewis number
equal to unity (hence Prl = Scl). In the DNS calculations, the actual values of viscosity
used are much higher, so as to give a Reynolds number that is able to be fully resolved, but
are kept in the same proportion to each other. This is so that the same domain width L can
be used for each calculation.

Based on the interface characterisation of the low-amplitude set of experiments
performed in Sewell et al. (2021), four different initial surface perturbations of a planar
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Property Air SF6

Wl 28.964 146.057
γl 1.4 1.1
μl 1.836 1.535
Prl 0.71 0.90
Scl 0.71 0.90

Table 1. The molecular weight Wl (g mol−1), ratio of specific heats γ , dynamic viscosities (×105 Pa s) and
Prandtl and Schmidt numbers of air and SF6.

interface are considered which follow an idealised power spectrum of the form

P(k) = Ckm. (2.9)

Three broadband initial conditions are simulated, containing length scales in the
range λmax = L/2 to λmin = L/32 and with a spectral exponent m = −1, −2 and −3,
respectively. The choice of bandwidth R = λmax/λmin = 16 is based on estimates of the
minimum initial wavelength performed in Jacobs et al. (2013) of λmin = 2.9 to 3.2 mm,
relative to a test section width of L = 8.9 × 10−2 m. When scaled to the dimensions
of the experiment, the perturbations in this study all have a minimum wavelength of
λmin = 2.8 mm. Note also that the diagnostic spatial resolution of the particle image
velocimetry (PIV) method used in Sewell et al. (2021) is 1.98 mm, resulting in attenuation
of the measured scales that are smaller than this. The constant C dictates the overall
standard deviation of the perturbations and is set such that all initial amplitudes are linear
and each perturbation has the same amplitude in the band between kmax/2 and kmax,
specifically akmaxkmax = 1. See Groom & Thornber (2020) for further details, noting that,
unlike the broadband perturbations analysed in that study, the perturbations considered
here have different total standard deviations for the same bandwidth.

The power spectra for these three perturbations are shown in figure 2, along with the
mean power spectrum of the low-amplitude experiments from Sewell et al. (2021). In
figure 2 it can be seen that the m = −3 initial condition is the closest match to the
experiments (with an estimated slope of m = −2.99 over the same range of modes), with
the other perturbations included to study the effects of varying m. A fourth perturbation
(not shown) is also considered; a narrowband perturbation with a constant power spectrum
(i.e. m = 0) and length scales in the range λmin = L/16 to λmax = L/32. This is used
to study the effects of additional long wavelength modes in the initial condition and
is essentially the same perturbation as the quarter-scale case in Thornber et al. (2017);
however, the initial amplitudes are larger and are defined such that akmaxkmax = 1, which
is at the limit of the linear regime. Note that in the experiments of Jacobs et al. (2013),
akmaxkmax ranged between 2.82 and 3.14, which is much more nonlinear. The choice of
restricting the mode amplitudes such that all modes are initially linear is made so that the
results may be easily scaled by the initial growth rate and compared with the results of the
previous studies.

The amplitudes and phases of each mode are defined using a set of random numbers
that are constant across all grid resolutions and cases, thus allowing for a grid convergence
study to be performed for each case. The interface is also initially diffuse for this same
reason, with the profile given by an error function with characteristic initial thickness
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Figure 2. Power spectra of the broadband perturbations as well as the mean power spectrum of the
low-amplitude experiments from Sewell et al. (2021). Note that the spectra are scaled to match the dimensions
of the experiment.

δ = λmin/4. The volume fractions f1 and f2 = 1 − f1 are computed as

f1(x, y, z) = 1
2

erfc

{√
π

[
x − S( y, z)

]
δ

}
, (2.10)

where S( y, z) = x0 + A( y, z), with A( y, z) being the amplitude perturbation satisfying
the specified power spectrum and x0 the mean position of the interface. The amplitude
perturbation A( y, z) is given by

A( y, z) =
Nmax∑

m,n=0

[
amn cos(mk0y) cos(nk0z)+ bmn cos(mk0y) sin(nk0z)

+ cmn sin(mk0y) cos(nk0z)+ dmn sin(mk0y) sin(nk0z)
]
, (2.11)

where Nmax = kmaxL/(2π), k0 = 2π/L and amn . . . dmn are selected from a Gaussian
distribution. Crucially, the Mersenne Twister pseudorandom number generator is
employed which allows for the same random numbers to be used across all perturbations.
This facilitates grid convergence studies for DNS and ensures that the phases of each
mode are identical when comparing across perturbations with different values of m; only
the amplitudes are varied. For full details on the derivation of the surface perturbation
see Thornber et al. (2010, 2017) and Groom & Thornber (2020). A visualisation of each
initial perturbation is shown in figure 3. Whilst there is a noticeable difference between the
narrowband and broadband surface perturbations, the differences between the m = −1 and
m = −2 perturbations in particular are quite subtle. Nevertheless, these subtle differences
in the amplitudes of the additional, longer wavelengths are responsible for quite noticeable
differences in the subsequent evolution of the mixing layer, as will be shown in the
following sections. This highlights the importance of understanding the sensitivity to
initial conditions in RMI-induced flows.
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(a) (b)

(c) (d )

Figure 3. Contours of volume fraction f1 for the ILES cases at t = 0 and z = 0. The major ticks on both axes
correspond to a grid spacing of �x = �y =1 m; (a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

For each perturbation, the weighted-average wavelength can be defined as λ̄ = 2π/k̄,
where

k̄ =

√∫ kmax

kmin

k2P(k) dk√∫ kmax

kmin

P(k) dk

. (2.12)

Similarly, the initial growth rate of the perturbation variance is given by

σ̇0 = σ+
0 A+�uk̄/ψ, (2.13)

where σ+
0 = CV(1 −�u/Us)σ0 is the post-shock standard deviation, σ0 is the initial

standard deviation and ψ is a correction factor to account for the diffuse interface (Duff,
Harlow & Hirt 1962; Youngs & Thornber 2020b). Here, CV = (A− + CRA+)/(2CRA+)
is an additional correction factor that is applied to the Richtmyer compression factor
CR = (1 −�u/Us) to give the impulsive model of Vandenboomgaerde et al. (1998).
For the present gas combination and configuration, CV = 1.16 and is used to account
for deficiencies in the original impulsive model of Richtmyer (1960) for certain cases.
Thornber et al. (2017) showed that for a Gaussian height distribution, the integral width
W = ∫ 〈 f1〉〈 f2〉 dx is equal to 0.564σ and therefore Ẇ0 = 0.564σ̇0. For the DNS cases, the
initial Reynolds number is calculated in line with previous studies as

Re0 = λ̄Ẇ0ρ+

μ̄
, (2.14)

where ρ+ = 9.065 kg m−3 is the mean post-shock density. Table 2 gives the initial growth
rate and weighted-average wavelength for each perturbation.

2.4. Direct numerical simulations
Prior to presenting results for each perturbation, it is important to discuss some of
the challenges present when performing DNS of RMI with broadband perturbations.
Previous DNS studies of 3-D multi-mode RMI have focussed exclusively on narrowband
perturbations (Olson & Greenough 2014; Groom & Thornber 2019; Wong, Livescu &
Lele 2019; Groom & Thornber 2021) or perturbations with a dominant single mode
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Numerical simulation of idealised RMI shock tube experiment

Quantity m = 0 m = −1 m = −2 m = −3

R 2 16 16 16
λ̄ 0.278 0.463 0.785 1.33
Ẇ0 16.74 20.03 23.84 34.32

Table 2. The bandwidth, weighted-average wavelength (m) and initial growth rate of integral width (m s−1)
for each of the four perturbations.

(Tritschler et al. 2014b). The present set of broadband DNS uses a perturbation with 8×
the bandwidth of initial modes compared with the narrowband perturbation analysed in
Groom & Thornber (2019, 2021), but still requires the same number of cells per initial
minimum wavelength for a given Reynolds number in order to fully resolve the calculation.
To be considered fully resolved and thus qualify as ‘strict’ DNS, grid convergence must be
demonstrated for statistics that depend on the smallest scales in the flow, such as enstrophy
and scalar dissipation rate. Of the previously cited studies, only Groom & Thornber
(2019, 2021) fully resolve these gradient-dependent quantities and none of the studies
mentioned (as well as the present study) resolve the internal structure of the shock wave.
Demonstration of grid convergence for enstrophy and scalar dissipation rate in the present
set of DNS cases is given in Appendix A; however, this comes at the cost of limiting the
Reynolds number that can be achieved, as discussed below.

Regarding the Reynolds number, using the standard width-based definition Reh = ḣh/ν,
where the width h ∝ tθ , then the Reynolds number, and hence the grid resolution
requirements, can either increase or decrease in time depending on the value of θ since

Reh ∝ θ tθ−1tθ

ν
∝ t2θ−1. (2.15)

Therefore for θ < 1/2 the Reynolds number is decreasing and vice versa for θ > 1/2.
Youngs (2004) and Thornber et al. (2010) showed that the value of θ depends on both the
bandwidth and spectral slope m of the initial condition, which was recently demonstrated
in Groom & Thornber (2020) using ILES for perturbations of the form given by (2.9)
with m = −1, −2 and −3. For the largest bandwidths simulated, these perturbations gave
values of θ = 0.5, 0.63 and 0.75, respectively, which for the m = −1 and −2 cases are
quite close to the theoretical values of θ = 1/2 and θ = 2/3. What these results imply is
that the Reynolds number of a broadband perturbation with m ≤ −1 will either be constant
or increase with time as the layer develops, which make performing fully grid-resolved
DNS more challenging than for a narrowband layer where θ ≤ 1/3 (Elbaz & Shvarts 2018;
Soulard et al. 2018).

For DNS of narrowband RMI the number of cells per λmin can be maximised, which sets
the smallest scale that can be grid resolved and therefore the maximum Reynolds number
that can be obtained on a given grid. For fully developed isotropic turbulence, it is well
known that grid resolution requirements scale as Re9/4 and the total number of floating
point operations required to perform a simulation to a given time scales as Re3 (Pope
2000). For transitional RMI, empirically the scaling appears to be less severe (closer to
Re2), but available computing power still quickly limits the maximum Reynolds number
that can be obtained. The simulations presented in Groom & Thornber (2021) represent the
current state of the art in terms of maximum Reynolds number that can be achieved using
the Flamenco algorithm. Even then, the highest-Reynolds-number simulation in that study
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was still short of meeting the mixing transition requirement for fully developed turbulence
in unsteady flows (Zhou, Robey & Buckingham 2003).

For DNS of broadband RMI, assuming the same grid resolution is used, the larger
bandwidth necessitates a smaller Reynolds number since the number of cells per λmin
required to resolve the shock–interface interaction and subsequent evolution is the same.
This is before any considerations about whether additional grid resolution is required at
later time due to increasing Reynolds number. The requirement that all initial amplitudes
be linear also limits the initial velocity jump (and hence the Reynolds number) that can
be obtained, and the diffuse profile across the interface that is required to properly resolve
the shock–interface interaction in DNS also dampens the initial velocity jump (relative to
if a sharp interface were used). All of this results in the fact that for the current maximum
grid sizes simulated in this and previous studies (e.g. 20482 cross-sectional resolution),
DNS can be performed at either a moderate Reynolds number but small bandwidth (i.e.
too narrow to be indicative of real surface perturbations) as in Groom & Thornber (2021)
or a moderate bandwidth but low Reynolds number (i.e. too diffuse to be indicative of
fully developed turbulence) as in the present study. These observations are not exclusive
to DNS of RMI but also apply to RTI, KHI and other flows where the effects of initial
conditions are important and realistic initial perturbations need to be considered.

In spite of all this, DNS is still a useful tool in the context of this study as it provides
results that may be considered a plausible lower bound to the experimental results in a
similar manner to which ILES results may be considered a plausible upper bound. It is also
necessary for computing statistical quantities that depend on the smallest scales of motion
being sufficiently resolved, such as the turbulent length scales and Reynolds numbers
presented in § 3.6 as well as many other quantities that are important for informing
modelling of these types of flows (see Groom & Thornber (2021); Wong et al. (2022)
for some examples). Comments on how some of the limitations mentioned above might be
resolved are given in § 4.

3. Results

Using the initial conditions and computational set-up described in § 2, six simulations are
performed with Flamenco. These consist of four ILES corresponding to the four different
initial conditions as well as two DNS; one for the m = −1 initial condition and one for
the m = −2 initial condition. The viscosity used in these DNS is μ̄ = 0.3228 Pa s, which
corresponds to initial Reynolds numbers of Re0 = 261 and Re0 = 526 for the m = −1
and m = −2 cases, respectively. While this viscosity is much higher than would occur
experimentally, it is equivalent to using a much smaller value of λ̄ to obtain the same
Reynolds number due to the various simplifications employed in the governing equations,
such as no variation in viscosity with temperature. For each simulation, grid convergence
is assessed using the methodology outlined in Thornber et al. (2017) for ILES and Groom
& Thornber (2019) for DNS. The simulations were run up to a physical time of t = 0.1 s,
at which point some of the spikes were observed to have reached the domain boundaries
in the m = −3 ILES case. The complete set of simulations is summarised in table 3.

Figure 4 shows visualisations of the solution at the latest time of t = 0.1 s for the four
ILES cases. Bubbles of light fluid can be seen flowing into the heavy fluid on the lower
side of the mixing layer, while heavy spikes are penetrating into the light fluid on the
upper side. In the narrowband case the mixing layer has remained relatively uniform over
the span of the domain, whereas in the broadband cases, particularly the m = −2 and
m = −3 cases, large-scale entrainment is starting to occur at scales of the order of the
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Numerical simulation of idealised RMI shock tube experiment

Case m Re0 Simulation time (s) Domain size (m3) Grid resolution

1 0 — 0.1 1.5π × 2π × 2π 384 × 5122

2 −1 — 0.1 1.5π × 2π × 2π 384 × 5122

3 −2 — 0.1 1.5π × 2π × 2π 384 × 5122

4 −3 — 0.1 1.5π × 2π × 2π 384 × 5122

5 −1 261 0.1 0.75π × 2π × 2π 384 × 10242

6 −2 526 0.1 0.75π × 2π × 2π 384 × 10242

Table 3. The initial power spectrum slope, initial Reynolds number (DNS only), total simulation time,
domain size and maximum grid resolution employed for each case.

(a) (b)

(c) (d )

z
x

y z
x

y

z
x

y z
x

y

Figure 4. Contours of volume fraction f1 for the ILES cases at t = 0.1 s and z = 0. The major ticks on both
axes correspond to a grid spacing of�x = �y =1 m; (a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

domain width. Figure 5 shows visualisations at the same physical time for the two DNS
cases. As discussed in § 2.4, these DNS are at quite low Reynolds number so as to be able
to fully resolve the wide range of initial length scales. They are therefore quite diffuse;
however, good agreement can still be observed in the largest scales of motion with the
corresponding ILES cases. The fluctuating kinetic energy spectra presented in § 3.5 also
corroborate this observation. Another noticeable phenomenon is that in the narrowband
case some spikes have penetrated much further away from the main mixing layer than in
the broadband cases. This is shown in greater detail in figure 6 where isosurfaces of volume
fraction f1 = 0.001 and f1 = 0.999 are plotted for both the m = 0 narrowband case and the
m = −2 broadband case to highlight the differences in spike behaviour. Note that in the
narrowband case there are taller structures on the spike side that in some instances have
been ejected from the main layer. See also figure 5 from Youngs & Thornber (2020a) for a
similar visualisation at a lower Atwood number. A plausible explanation for this is that the
slower but more persistent growth of the low wavenumber modes in the broadband cases
cause the main mixing layer to eventually disrupt the trajectory of any spikes that were
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(b)(a)
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Figure 5. Contours of volume fraction f1 for the DNS cases at t = 0.1 s and z = 0. The major ticks on both
axes correspond to a grid spacing of �x = �y =1 m; (a) m = −1, Re0 = 261, (b) m = −2, Re0 = 526.

z
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y z
x

y

(b)(a)

Figure 6. Isosurfaces of volume fraction f1 for the m = 0 (a) and m = −2 (b) ILES cases at t = 0.1 s.

initially ejected from high wavenumber modes. Future work will study this comparison
of spike behaviour between narrowband and broadband mixing perturbations at higher
Atwood numbers that are more relevant to ICF.

3.1. Non-dimensionalisation
The results in the following sections are appropriately non-dimensionalised to allow for
direct comparisons with the experiments in Jacobs et al. (2013) and Sewell et al. (2021).
All length scales are normalised by λmin, which is equal to 0.196 m in the simulations
and is estimated to lie between 2.9 and 3.2 mm in the experiments. As the effects of
different initial impulses are of primary interest, it does not make sense to use Ẇ0 as
the normalising velocity scale, therefore all velocities are normalised by A+�u instead. In
the simulations A+ = 0.72 and �u = 158.08 m s−1, while in the experiments A+ = 0.71
and �u = 74 m s−1. Therefore the non-dimensional time is given by

τ = (t − t0)A+�u
λmin

, (3.1)

where t0 = 0.0011 s is the shock arrival time. This equates to a dimensionless time of
τ = 57.4 at the latest time considered in the simulations (t = 0.1 s), 107 ≤ τ ≤ 118 at
the latest time prior to reshock in the experiments of Jacobs et al. (2013) (t − t0 = 6.5
ms) and 73.9 ≤ τ ≤ 81.5 at the latest time prior to reshock in the experiments of Sewell
et al. (2021) (t − t0 = 4.5 ms), assuming the same range of values for λmin of 2.9–3.2 mm.
Figure 7 shows a subset of the image sequence taken from a typical vertical shock tube
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Numerical simulation of idealised RMI shock tube experiment

3.00 ms 3.50 ms

(b)(a)

Figure 7. Image sequence taken from a typical vertical shock tube experiment using the Mie diagnostic. Times
relative to shock impact are shown in each image. Reshock occurs at t = 6.50 ms. Source: figure 3 of Jacobs
et al. (2013).

experiment in Jacobs et al. (2013) using the Mie diagnostic . For comparison with the
present simulations, a dimensionless time of τ = 57.4 corresponds to a physical time in
the range of t = 3.17 to t = 3.50 ms, which may be compared with the images shown for
times t = 3.00 ms and t = 3.50 ms in figure 7.

3.2. Turbulent kinetic energy and mix width
In this section comparisons are made both between the present simulation results and
those of the experiments, as well as between the methods for calculating those results in
the experiments with methods that have been commonly employed in previous simulation
studies of RMI. To measure the mixing layer width, Jacobs et al. (2013) used Mie
scattering over a single plane, with each image then row averaged to obtain the mean smoke
concentration in the streamwise direction. For each concentration profile, the mixing layer
width is defined as the distance between the 10 % and 90 % threshold locations. This
is similar to the definition of visual width used in simulation studies of both RMI and
RTI (see Cook & Dimotakis 2001; Cook & Zhou 2002; Zhou & Cabot 2019), where
the plane-averaged mole fraction or volume fraction profile is used along with a typical
threshold cuttoff of 1 % and 99 %, e.g.

h = x (〈 f1〉 = 0.01)− x (〈 f1〉 = 0.99) . (3.2)

This is a useful definition of the outer length scale of the mixing layer; however, the choice
of cutoff location is somewhat arbitrary and when used to estimate growth rates the results
are influenced by both the choice of cutoff location as well as statistical fluctuations (Zhou
& Cabot 2019). For that purpose, an integral definition is typically used such as the integral
width (Andrews & Spalding 1990)

W =
∫

〈 f1〉〈 f2〉 dx. (3.3)

If f1 varies linearly with x then h = 6W (Youngs 1994). See also the recent paper by
Youngs & Thornber (2020a) where integral definitions of the bubble and spike heights
are proposed that are of similar magnitude to the visual width. These are presented in
Appendix B and are discussed in § 3.3 below.

In the experiments of Sewell et al. (2021), PIV was used as the main diagnostic and
therefore an alternate definition of the mixing layer width was required. In that study,
the row-averaged turbulent kinetic energy (TKE) was used and a mixing layer width
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Figure 8. Plane-averaged profiles of TKE for each initial condition at time τ = 57.4. Solid lines indicate
ILES results and dotted lines indicate DNS results. Also shown are the volume fraction profiles (grey solid
lines), along with the 5 % cutoff locations (crosses) and the TKE centroid (black dashed lines); (a) m = −1,
(b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

defined as the distance between the x-locations at which the TKE is 5 % of its peak value.
This definition assumes that the turbulent velocity field spreads at the same rate as the
mixing layer. Figure 8 shows streamwise profiles of mean TKE for each of the four initial
conditions, defined as

TKE = 1
2 u′

iu
′
i, (3.4)

where ψ ′ = ψ − ψ̄ indicates a fluctuating quantity and the ensemble average ψ̄ = 〈ψ〉
is calculated as a plane average taken over the statistically homogeneous directions (in
this case y and z). The volume fraction profile 〈 f1〉〈 f2〉 is also shown on the right axis
of each plot, as well as the (outermost) x-locations at which the TKE is 5 % of its peak
value. An important feature worth noting when comparing the narrowband case with the
other broadband cases is that the 5 % cutoff on the spike side (x < xc) is further from the
mixing layer centre xc than in the m = −1 and m = −2 cases, despite these cases having
a greater overall amplitude in the initial perturbation. There is also a greater amount of
mixed material, as measured by the product 〈 f1〉〈 f2〉, at this location than in those two
broadband cases, which is in line with the observations made in figure 4 about the greater
penetration distances of spikes from the main layer in the narrowband case. In all cases
the TKE profile is asymmetric, with the 5 % cutoff on the spike side being located further
away from the mixing layer centre than the corresponding 5 % cutoff on the bubble side.
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Numerical simulation of idealised RMI shock tube experiment

This asymmetry, along with the implications it has for the growth rate exponent θ , is
discussed in further detail § 3.3.

In Sewell et al. (2021) a definition for the mixing layer centre is given as the centroid of
the mean TKE profile, i.e.

xc =

∫
xf (x) dx∫
f (x) dx

, (3.5)

where f (x) is the mean TKE profile. This centroid is also shown in figure 8. This definition
is compared with an alternate definition in terms of the x-location of equal mixed volumes∫ xc

−∞
〈 f2〉 dx =

∫ ∞

xc

〈 f1〉 dx, (3.6)

which has been used previously in both computational (Walchli & Thornber 2017; Groom
& Thornber 2021) and experimental (Krivets et al. 2017) studies of RMI. Figure 9 plots
the temporal evolution of both of these definitions for xc for each initial condition,
showing that the TKE centroid consistently drifts towards the spike side of the layer as
time progresses. The definition in terms of position of equal mixed volumes is much
more robust and remains virtually constant throughout the simulation. There is also little
variation between cases for this definition, unlike the TKE centroid which is more biased
towards the spike side in the m = −3 and m = 0 cases. The choice of definition for the
mixing layer centre is important as it will influence the bubble and spike heights that are
based off it (as well as their ratio), along with any quantities that are plotted at the mixing
layer centre over various points in time.

Figure 10 shows the temporal evolution of the mixing layer width, using both the
visual width definition based on the mean volume fraction (VF) profile (referred to as the
VF-based width) as well as the definition from Sewell et al. (2021) based on the distance
between the 5 % cutoff locations in the mean TKE profile (referred to as the TKE-based
width). The mean VF f1 at these 5 % cutoff locations is ≥ 0.997 on the spike side (x < xc)
and ≤ 0.003 on the bubble side (x > xc) in all cases, hence why the TKE-based width is
larger than the VF-based width in each of the plots as the VF-based width is defined using
a 1 % and 99 % cutoff in the VF profile. Using nonlinear regression to fit a function of
the form h = β(τ − τ0)

θ , the growth rate exponent θ can be obtained for the TKE-based
width, VF-based width and the integral width (not shown in figure 10) for each case.
Following Sewell et al. (2021), the fit is performed only for times satisfying k̄σ̇0t > 1 so
that the flow is sufficiently developed. The estimated value of θ for each case is given
in table 4. Note that the uncertainties reported are merely taken from the variance of the
curve-fit and do not represent uncertainties in the true value of θ .

Analysing the results in table 4, there is good agreement between the values of θ
obtained from the visual and integral widths for all cases. This is mainly a verification
that the results are not severely impacted by a lack of statistical resolution at the lowest
wavenumbers, which would result in the visual width measurements being dependent on
the specific realisation. The small differences in the values of θ reported indicate that there
is still some influence of statistical fluctuations, therefore the estimates made using the
integral width should be regarded as the most accurate. When comparing the TKE-based
and VF-based threshold widths, there is good agreement for the broadband ILES cases
and in particular for the m = −3 ILES case. For the narrowband ILES case, however, the
VF-based (and integral) width is growing at close to the theoretical value of θ = 1/3 for
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Figure 9. Temporal evolution of the mixing layer centre xc, comparing the definition based on the centroid
of the mean TKE profile with the definition based on the x-location of equal mixed volumes; (a) m = −1,
(b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

self-similar decay proposed by Elbaz & Shvarts (2018), whereas the TKE-based width is
growing at a much faster rate of θ = 0.589. This is even faster than any of the broadband
cases and is due to the sensitivity of the TKE-based width to spikes located far from the
mixing layer centre in the narrowband case, which contain very little material but are
quite energetic and which grow at a faster rate than the rest of the mixing layer. For the
broadband DNS, the growth rate of the TKE-based width is slightly lower than that of the
VF-based width for both cases, indicating that turbulent fluctuations are more confined to
the core of the mixing layer. In the m = −1 case, the value of θ obtained from the integral
width is Reynolds-number independent, while for m = −2 the value of θ obtained from
the integral width in the DNS case is converging towards the high-Reynolds-number limit
given by the ILES case. Given that the broadband perturbations, specifically the m = −3
perturbation, are the most relevant to the experiments in Jacobs et al. (2013) and Sewell
et al. (2021), it is reassuring to note that estimates of θ made using TKE-based widths
measured with PIV correspond well with estimates based off the concentration field.

An alternative method for estimating θ is also given in Sewell et al. (2021), which makes
use of the decay rate of total fluctuating kinetic energy and a relationship between this
decay rate n and the mixing layer growth rate θ originally derived by Thornber et al.
(2010). Assuming that h ∝ tθ and the mean fluctuating kinetic energy qk ∝ ḣ2 gives the
relation qk ∝ t2θ−2. Since the total fluctuating kinetic energy is proportional to the width
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Figure 10. Temporal evolution of mixing layer width h based on the distance between cutoff locations using
either the mean TKE or mean VF profiles. Solid lines indicate ILES results and dotted lines indicate DNS
results. Curve fits to the data are also shown, with the relevant data points used given by the symbols in each
plot; (a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

Case m Re0 TKE-based width θ VF-based width θ Integral width θ TKE decay rate θ

1 0 — 0.589 ± 1.20 × 10−2 0.323 ± 4.89 × 10−3 0.330 ± 1.27 × 10−3 0.253 ± 7.00 × 10−3

2 −1 — 0.460 ± 1.03 × 10−2 0.450 ± 1.54 × 10−3 0.442 ± 1.10 × 10−4 0.429 ± 5.65 × 10−3

3 −2 — 0.479 ± 3.92 × 10−3 0.522 ± 3.59 × 10−3 0.514 ± 3.60 × 10−4 0.512 ± 3.47 × 10−3

4 −3 — 0.493 ± 6.25 × 10−3 0.492 ± 1.25 × 10−3 0.510 ± 1.91 × 10−3 0.562 ± 2.22 × 10−3

5 −1 261 0.444 ± 1.41 × 10−2 0.501 ± 8.40 × 10−4 0.441 ± 1.00 × 10−4 0.492 ± 8.08 × 10−3

6 −2 526 0.456 ± 3.69 × 10−3 0.556 ± 2.27 × 10−3 0.549 ± 1.52 × 10−3 0.576 ± 4.69 × 10−3

Table 4. Estimates of the growth rate exponent θ from curve fits to the TKE-based, VF-based and integral
widths, as well as from the decay rate of total TKE.

of the mixing layer multiplied by the mean fluctuating kinetic energy, this gives TKE ∝
t3θ−2 ∝ tn. Directly measuring the decay rate n therefore gives an alternative method for
estimating θ , which is particularly useful in experimental settings where only velocity
field data are available. This predicted value of θ = (n + 2)/3 has been found to be in
good agreement with the measured growth rate from the integral width in multiple studies
of narrowband RMI Thornber et al. (2010, 2017). However, Groom & Thornber (2020)
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Figure 11. Temporal evolution of total fluctuating kinetic energy, integrated between the 5 % cutoff locations.
Solid lines indicate ILES results and dotted lines indicate DNS results. Curve fits to the data are also shown,
with the relevant data points used given by the symbols in each plot; (a) m = −1, (b) m = −2, (c) m = −3,
(d) m = 0 (R = 2).

showed that for RMI evolving from broadband perturbations with bandwidths as large as
R = 128 the measured values of θ do not agree with this theoretical prediction, indicating
that longer periods of growth dominated by just-saturating modes are required than can
currently be obtained in simulations. Figure 11 shows the temporal evolution of TKE,
where the integration has been performed between the 5 % cutoff locations used to define
the TKE-based width. Nonlinear least squares regression is again used to estimate n for
each case, with the fit performed for times greater than the point at which the curvature
becomes convex. The corresponding value of θ for each n using the relation n = 3θ − 2 is
given in table 4.

For the narrowband case the estimate of θ from the TKE decay rate does not agree with
the other estimates, indicating that the mixing layer growth is not sufficiently self-similar
(a key assumption in the derivation) and lags the decay in TKE. This is still true even when
the range of times used in the curve-fitting procedure is restricted to be the same as for the
curve fit to the decay rate (not shown). For the broadband cases there is better agreement,
however, particularly in the m = −1 and m = −2 ILES cases. In all broadband cases the
bandwidth of the initial perturbation is relatively small compared with the perturbations
analysed in Groom & Thornber (2020) and the longest initial wavelength saturates early
on in the overall simulation, therefore the conclusions made in that study regarding the
n = 3θ − 2 relation do not necessarily apply here as the current broadband cases are not in
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the self-similar growth regime. They are also likely not in full self-similar decay, however,
especially if the narrowband case is not, yet the values of θ are in better agreement than in
the narrowband case. Further work is required to determine why this is indeed the case.

Comparing the estimates of θ with those in Sewell et al. (2021) using both the
TKE-based width and TKE decay rate, the m = −3 simulation results are in between
the results of the low-amplitude and high-amplitude experiments. For the low-amplitude
experiments (prior to reshock), the TKE-based width measurements gave θ = 0.45 and
the TKE decay rate measurements gave θ = 0.68 (which would correspond to no decay of
TKE if the layer were homogeneous (Barenblatt, Looss & Joseph 1983)). The equivalent
results in the m = −3 simulation were θ = 0.493 and θ = 0.562, i.e. larger and smaller
than the respective experimental results but both within the experimental margins of error.
Similarly for the high-amplitude experiments, both the TKE-based width measurements
and the TKE decay rate measurements gave θ = 0.51, indicating that the turbulence in the
mixing layer is more developed and closer to self-similar prior to reshock. The m = −3
simulation results are also within the experimental margins of error for these results.
Overall, the combination of experimental and computational evidence indicates that there
are persistent effects of initial conditions when broadband surface perturbations are present
for a much greater period of time than just the time to saturation of the longest initial
wavelength (as considered in previous simulation studies of broadband RMI) and last for
the duration of the first-shock growth in a typical shock tube experiment. Furthermore, a
consideration of the impact of finite bandwidth in the initial power spectrum (also referred
to as confinement) is required when adapting theoretical results for infinite bandwidth
(unconfined, see Youngs 2004; Thornber et al. 2010; Soulard et al. 2018; Soulard &
Griffond 2022) to a specific application.

3.3. Bubble and spike heights
In order to help better explain the estimates for θ given in table 4, it is useful to decompose
the TKE-based and VF-based widths into separate bubble and spike heights, hb and hs,
defined as the distance from the mixing layer centre xc to the relevant cutoff location on
the bubble and spike side of the layer, respectively. Given the drift in time for the centroid
of the TKE profile shown in figure 9, the x-location of equal mixed volumes is used as
the definition of the mixing layer centre for both the VF-based and TKE-based bubble and
spike heights. Figures 12 and 13 show the evolution in time of hb and hs respectively for
heights based off both the 5 % TKE cutoff (referred to as TKE-based heights) and the 1 %
and 99 % VF cutoff (referred to as VF-based heights).

Some important trends can be observed. Firstly, the VF-based heights are smoother than
the corresponding TKE-based heights indicating that they are less sensitive to statistical
fluctuations. Secondly, the TKE-based hb and hs are greater than the corresponding
VF-based heights in all cases and for both measures the spike height is greater than the
bubble height. This can also be seen in figure 14, which plots the ratio hs/hb vs time and
shows that hs/hb > 1 for all cases. The same trend was observed in Youngs & Thornber
(2020a) for both At = 0.5 and At = 0.9 but in a heavy–light configuration where the heavy
spikes are being driven into the lighter fluid in the same direction as the shock wave.
Appendix B plots the same integral definitions of the bubble and spike heights used in
Youngs & Thornber (2020a), verifying that the behaviour is very similar to the VF-based
heights presented here. The ratio of spike to bubble heights using both threshold measures
is also very similar at late time in all cases with the exception of the narrowband case.
The ratio hs/hb also appears to be converging to the same value at late time in all cases
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Figure 12. Temporal evolution of the bubble height hb based on the distance between cutoff locations using
either the mean TKE or mean VF profiles. Solid lines indicate ILES results and dotted lines indicate DNS
results. Curve fits to the data are also shown, with the relevant data points used given by the symbols in each
plot; (a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

except for the TKE-based heights in the narrowband case, suggesting it is only dependent
on the Atwood number.

Figure 14 shows that the ratio of hs/hb is approximately constant by the end of the
simulations. This indicates that a single θ is appropriate for describing the growth of the
mixing layer beyond this point. However, prior to that hb and hs do grow at different rates
as shown in table 5, where the bubble growth rate exponent is denoted by θb and the spike
growth rate exponent is denoted by θs. Two key trends can be observed; the VF-based θb is
greater than the TKE-based θb in all cases other than the narrowband (m = 0) case, while
the VF-based θs is greater than the TKE-based θs in all cases other than the m = −1 ILES
case and the narrowband case. The m = −3 case also has the smallest difference in θb
and θs for both threshold measures. Comparing the DNS cases with their respective ILES
cases, the VF-based hb is almost independent of the Reynolds number in both the m = −1
and m = −2 cases. This is also true for the TKE-based hs in the m = −2 cases. A higher
degree of Reynolds-number dependence is observed for both definitions of hs, which is
consistent with previous observations made about turbulence developing preferentially on
the spike side of the mixing layer (Groom & Thornber 2021). This can also be observed
for the integral definitions of hb and hs given in Appendix B.

This analysis provides evidence that, prior to reshock, hb and hs do grow at different rates
in a typical shock tube experiment. However, their growth rate exponents have equalised by
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Figure 13. Temporal evolution of the spike height hs based on the distance between cutoff locations using
either the mean TKE or mean VF profiles. Solid lines indicate ILES results and dotted lines indicate DNS
results. Curve fits to the data are also shown, with the relevant data points used given by the symbols in each
plot; (a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

the time reshock arrives. This is a complicating factor when estimating a single value for θ
at early times and points to the difficulties in obtaining self-similar growth for RMI in both
experiments and simulations. This also suggests that the ratio of spike to bubble heights
could be used to determine when it is appropriate to start curve fitting for estimating a
single value of θ , and that measurements based on the concentration field are likely more
accurate in this regard than those made using the velocity field.

3.4. Anisotropy
The anisotropy of the fluctuating velocity field is explored using the same two measures
presented in Sewell et al. (2021). The first is a global measure of anisotropy, defined as

TKR = 2 × TKX
TKY + TKZ

, (3.7)

where TKX = 1
2 u′u′, TKY = 1

2v
′v′ and TKZ = 1

2 w′w′, with each quantity integrated
between the cutoff locations based on 5 % of the maximum TKE. The second measure
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Figure 14. Temporal evolution of the ratio of spike to bubble height. Solid lines indicate ILES results and
dotted lines indicate DNS results. Curve fits to the data are also shown, with the relevant data points used given
by the symbols in each plot; (a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

Case m Re0 TKE-based θb VF-based θb TKE-based θs VF-based θs

1 0 — 0.493 ± 2.43 × 10−2 0.441 ± 2.43 × 10−2 0.615 ± 1.72 × 10−2 0.277 ± 5.38 × 10−3

2 −1 — 0.350 ± 8.94 × 10−3 0.514 ± 1.04 × 10−3 0.509 ± 1.57 × 10−2 0.425 ± 2.46 × 10−3

3 −2 — 0.355 ± 1.31 × 10−2 0.466 ± 4.29 × 10−3 0.543 ± 8.58 × 10−3 0.550 ± 3.31 × 10−3

4 −3 — 0.280 ± 2.95 × 10−2 0.282 ± 1.79 × 10−3 0.586 ± 1.07 × 10−2 0.606 ± 1.49 × 10−3

5 −1 261 0.338 ± 1.36 × 10−2 0.461 ± 3.20 × 10−4 0.509 ± 1.61 × 10−2 0.523 ± 1.46 × 10−3

6 −2 526 0.284 ± 8.39 × 10−3 0.458 ± 2.57 × 10−3 0.561 ± 4.89 × 10−3 0.613 ± 2.23 × 10−3

Table 5. Estimates of the growth rate exponents θb and θs from curve fits to the TKE-based and VF-based
bubble and spike heights.

is the Reynolds stress anisotropy tensor, whose components are defined by

bij =
u′

iu
′
j

1
2

u′
iu

′
i

− 1
3
ij. (3.8)

This tensor, specifically the x-direction principal component b11 for this particular flow,
is a measure of anisotropy in the energy-containing scales of the fluctuating velocity field
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Figure 15. Temporal evolution of the global anisotropy measure, with each component integrated between
the 5 % cutoff locations. Solid lines indicate ILES results and dotted lines indicate DNS results; (a) m = −1,
(b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

with a value of 0 indicating isotropy in the direction of that component. The local version
of TKR (i.e. with TKX, TKY and TKZ not integrated in the x-direction) can be written in
terms of b11 as

2u′u′

v′v′ + w′w′ = 2b11 + 2/3
2/3 − b11

, (3.9)

allowing the two measures to be related to one another.
Figure 15 shows the temporal evolution of the global anisotropy measure TKR for each

case. Compared with the equivalent figure 13 in Sewell et al. (2021) the peak in anisotropy
at early time is less pronounced; however, this is due to only integrating TKX, TKY and
TKZ between the 5 % cutoff locations. Figure 10 in Groom & Thornber (2019) shows the
same measure without this limit on the integration for a similar case, with the peak in
anisotropy much closer to that observed in Sewell et al. (2021). This indicates that much
of the anisotropy observed at very early times is due to the shock wave. At an equivalent
dimensionless time to the latest time simulated here, the anisotropy ratio presented in
Sewell et al. (2021) is approximately 2 for the high-amplitude experiments and 3 for the
low-amplitude experiments. For the m = −3 perturbation that most closely matches those
experiments the TKR at the latest time is 2.46, while for the other ILES cases the late-time
TKR decreases as m increases. For the m = 0 narrowband case the late-time value is 1.55,
which is within the range of 1.49–1.66 observed across codes on the θ -group quarter-scale
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Figure 16. Spatial distribution of the x-direction principal component of the Reynolds stress anisotropy tensor
at time τ = 57.4. Solid lines indicate ILES results and dotted lines indicate DNS results. Also shown is the
mixing layer centre defined by the TKE centroid (black dashed lines); (a) m = −1, (b) m = −2, (c) m = −3,
(d) m = 0 (R = 2).

case (Thornber et al. 2017); a case which is essentially the same perturbation but at a
lower Atwood number. For the DNS cases a very different trend is observed where the
anisotropy continually grows as time progresses. This is due to the very low Reynolds
numbers of these simulations, with the lack of turbulence preventing energy from being
transferred to the transverse directions.

The spatial variation in anisotropy is shown in figure 16, plotted between the 5 % cutoff
locations for each case. For the broadband cases the anisotropy is slightly higher on the
spike side of the layer, with the greatest increase in the m = −3 case. This mirrors the
results shown in Sewell et al. (2021) for b11, with quite good agreement observed between
the m = −3 case at the latest time and the low-amplitude experiments just prior to reshock.
In the narrowband case the increase in anisotropy from the mixing layer centre to the spike
side is greater but the overall magnitude of b11 is lower, consistent with what was observed
for TKR. The DNS results show that the biggest increase in anisotropy at low Reynolds
numbers is in the centre of the mixing layer; there is a smaller difference in anisotropy
between the DNS and ILES cases at either edge.

Figure 17 shows the temporal evolution of b11 at the mixing layer centre, both for the
definition of xc in terms of the TKE centroid (shown in figure 16) as well as the alternate
definition in terms of the position of equal mixed volumes. The results for both definitions
are similar across all cases, with the anisotropy at the position of equal mix being slightly
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Figure 17. Temporal evolution of x-direction principal component of the Reynolds stress anisotropy tensor
at the mixing layer centre plane. Solid lines indicate ILES results and dotted lines indicate DNS results;
(a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

lower in all cases. In the DNS cases b11 is approximately constant in time, indicating that
the growth in anisotropy that was observed for TKR in figure 15 is occurring on either
side of the mixing layer centre. The range of values are also comparable to those given in
Wong et al. (2019) prior to reshock.

3.5. Spectra
The distribution of fluctuating kinetic energy per unit mass across the different scales of
motion is examined using radial power spectra of the transverse and normal components,
calculated as

Ei(κ) = û′
i
†
û′

i, (3.10)

where κ = √
κy + κz is the (dimensionless) radial wavenumber in the y–z plane at x = xc

(given by the x-location of equal mixed volumes), (̂. . .) denotes the 2-D Fourier transform

taken over this plane and (̂. . .)† is the complex conjugate of this transform. As isotropy is
expected in the transverse directions, the Ey(κ) and Ez(κ) spectra are averaged to give a
single transverse spectrum Eyz(κ).

The normal and transverse spectra are shown in figure 18 for each of the ILES and DNS
cases at the latest simulated time. Curve fits are made to the data to determine the scaling
of each spectrum, with some interesting trends observed. For broadband cases evolving

964 A21-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.362


M. Groom and B. Thornber

10–1

10–2

10–3

10–4

10–5

10–6

100 101

Eyz(κ)

s = –1.31 s = –1.47

s = –1.69
s = –1.13

s = –2.01

s = –1.49

s = –1.73

s = –1.34

s = –2.37

s = –1.54

s = –2.02

s = –1.14

s = –1.39

s = –0.97

Ex(κ)

Curve-fit

Eyz(κ)

Ex(κ)

Curve-fit

Eyz(κ)

E(κ)

E(κ)

κ κ

Ex(κ)

Curve-fit

Eyz(κ)

Ex(κ)

Curve-fit

103

100

10–1

10–2

10–3

10–4

10–5

10–6

100 101 103

100

10–1

10–2

10–3

10–4

10–5

10–6

100 101 103

10–2

10–3

10–4

10–5

10–6

100 101 103

(a) (b)

(c) (d )

Figure 18. Transverse and normal components of fluctuating kinetic energy per unit mass at the mixing
layer centre plane at time τ = 57.4. Solid lines indicate ILES results and dotted lines indicate DNS results;
(a) m = −1, (b) m = −2, (c) m = −3, (d) m = 0 (R = 2).

from perturbations of the form given in (2.9), a scaling of E(κ) ∼ κ(m+2)/2 is expected
for the low wavenumbers at early time while the growth of the mixing layer is being
dominated by the just-saturating mode (Groom & Thornber 2020). This is not observed
in figure 18 since saturation of the longest wavelength occurs quite early relative to the
end time of the simulations; however, some lingering effects can still be seen at the lowest
wavenumbers. For all three broadband ILES cases there are two distinct ranges in both the
normal and transverse spectra, which approximately correspond to wavenumbers lower
and higher than κmax = kmax(L/2π) = 32. Thornber et al. (2010) modified the analysis of
Zhou (2001) to take into account the effects of the initial perturbation spectrum, resulting
in an expected scaling for broadband perturbations of the form E(κ) ∼ κ(m−6)/4. This
scaling is observed for the transverse spectra at wavenumbers greater than κmax, while
for the normal spectra a scaling of E(κ) ∼ κ(m−5)/4 is observed, the reason for which is
currently unclear.

For wavenumbers less than κmax the normal spectra scale as κ−3/2 in the m = −2 and
m = −3 cases, which is in good agreement with previous calculations for narrowband
perturbations (Thornber 2016; Groom & Thornber 2019). The narrowband case presented
here has a slightly less steep scaling for both the normal and transverse spectra, although it
has not been run to as late of a dimensionless time as in previous studies such as Thornber
et al. (2017). The normal spectrum in the m = −1 case also has a scaling that is less
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steep than κ−3/2. A possible explanation for this is that saturation occurs a lot later in this
case than the other broadband cases and therefore it may still be transitioning between a
E(κ) ∼ κ(m+2)/2 and a κ−3/2 scaling. For the transverse spectra in each of the broadband
cases at wavenumbers less than κmax a similar trend is observed, with each spectrum
having a scaling that is shallower than κ−3/2. The same argument of transition between an
E(κ) ∼ κ(m+2)/2 and a κ−3/2 scaling may also be applied here; however, simulations to
later time would be required to confirm this.

Finally, for the DNS cases no inertial range is observed due to the low Reynolds numbers
that are simulated. For the normal spectra there is quite good agreement between the
DNS and ILES data in the energy-containing scales at low wavenumbers. The transverse
spectra contain less energy at these wavenumbers in the DNS cases due to suppression
of secondary instabilities that transfer energy from the normal to transverse directions.
Sewell et al. (2021) did not observe an inertial range in their TKE spectra prior to reshock;
however, they noted that there is likely some attenuation of the spectra at scales smaller
than the effective window size of their PIV method, which is equivalent to a dimensionless
wavenumber of κ = 47. This makes it difficult to compare and verify the current findings
with their existing experimental set-up.

3.6. Turbulent length scales and Reynolds numbers
In order to give a better indication of how the present set of results compare with the
experiments of Jacobs et al. (2013) and Sewell et al. (2021), the outer-scale Reynolds
numbers and key turbulent length scales used to evaluate whether a flow has transitioned
to turbulence are computed using the DNS data. For the purposes of comparison, both the
TKE-based and VF-based threshold widths are used as the outer length scale h from which
to compute the outer-scale Reynolds number as

Reh = ρ+hḣ
μ̄

. (3.11)

Figure 19 shows the temporal variation for both definitions of the outer-scale Reynolds
number. The outer-scale Reynolds numbers using the TKE-based definition for h are
roughly a factor of 2 larger, mostly due to the TKE-based width being a lot larger than the
VF-based width in all cases, with neither definition close to reaching the critical value of
Reh � 1–2 × 104 for fully developed turbulence (Dimotakis 2000). For both the m = −1
and m = −2 perturbations the VF-based Reynolds number is approximately constant in
time, consistent with the measured values of θ given in table 4.

Dimotakis (2000) showed that, for stationary flows, fully developed turbulence is
obtained when λL/λV ≥ 1 where λL = 5λT is the Liepmann–Taylor length scale and
λV = 50λK is the inner-viscous length scale, with λT and λK the Taylor and Kolmogorov
length scales respectively. These length scales may be related to the outer-scale Reynolds
number by

λL = 5Re−1/2
h h, (3.12)

λV = 50Re−3/4
h h, (3.13)

from which it can be shown that Reh ≥ 104 for fully developed turbulence. For a
time-dependent flow, Zhou et al. (2003) showed that an additional length scale λD =
5(νt)1/2 that characterises the growth rate of shear-generated vorticity must be considered,
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Figure 19. Outer-scale Reynolds numbers vs time; (a) m = −1, (b) m = −2.
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Figure 20. The Liepmann–Taylor (circles), inner-viscous (squares) and diffusion length scales vs time for
both definitions of the outer-scale Reynolds number; (a) m = −1, (b) m = −2.

referred to as the diffusion layer scale. The condition for fully developed turbulence then
becomes

min(λL, λD) > λV . (3.14)

Figure 20 shows the temporal variation of each length scale in (3.14), with λL and λV
calculated from the outer-scale Reynolds number using both definitions for h. In both cases
there is good agreement between the length scales calculated from either definition of Reh.
The inner-viscous length scale is greater than the Liepmann–Taylor scale at all times in
both cases, consistent with other observations in this paper on the lack of fully developed
turbulence in the DNS cases at the Reynolds numbers capable of being simulated currently.

Sewell et al. (2021) also observed λL < λV at all times prior to reshock in their
low-amplitude experiments. The authors note that, because of the different dependence
of each length scale on Reh, for θ ≤ 0.5 the flow can never transition to turbulence as λV
will grow faster than λD. Furthermore, the definition for λD implies that it will be 0 at
time t = 0, which would seem to imply that an RMI-induced flow with θ ≤ 0.5 can never
become turbulent. However, the virtual time origin is neglected in the original definition
for λD; if it is included then this allows for the possibility that λV < λD at early time. In
that situation, transition to turbulence will occur provided the initial velocity jump is strong
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enough to produce λL > λV for some period of time. The turbulence will still be decaying
over time if θ ≤ 0.5 though and will eventually no longer be fully developed, reflecting
a fundamental difficulty to obtaining universal behaviour in experiments or numerical
simulations of RMI.

4. Conclusions

This paper has presented simulations of an idealised shock tube experiment between air
and sulphur hexafluoride that builds upon the previous results and analysis presented in
Groom & Thornber (2020, 2021). In particular, the effects of additional long wavelength
modes in the initial perturbation were explored by comparing the results obtained using
a narrowband surface perturbation (similar to the one presented in Groom & Thornber
2021) and three broadband perturbations (similar to those presented in Groom & Thornber
2020). Both ILES of the high-Reynolds-number limit as well as DNS at Reynolds
numbers lower than those observed in the experiments were performed with the Flamenco
finite-volume code.

Various measures of the mixing layer width, based on both the plane-averaged turbulent
kinetic energy and VF profiles, were compared in order to explore the effects of initial
conditions as well as the validity of using measurements based on the velocity field to
draw conclusions about the concentration field (and vice versa) as is commonly done in
experiments due to the difficulties of using diagnostics for both fields simultaneously. The
effects of initial conditions on the growth rate exponent θ were analysed by curve fitting
the expected power law behaviour for the mixing layer width h to two different definitions
of h; one based on a threshold of 5 % of the peak TKE and the other based on 1 % and
99 % of the mean VF. A third method for estimating θ was also considered, based on the
relationship between the total fluctuating kinetic energy decay rate n and θ that is derived
under the assumption that the mixing layer growth is self-similar.

In general, estimates of θ using either definition for h were found to be in good
agreement with one another, particularly for the m = −3 broadband perturbation that is
the most representative of the initial conditions used in the experiments of Sewell et al.
(2021). The estimates of θ based on h for all three broadband cases were between 0.44
and 0.52, which is in very good agreement with the experimental estimates in Sewell et al.
(2021), who found θ = 0.45 ± 0.08 for their low-amplitude cases and θ = 0.51 ± 0.04 for
their high-amplitude cases prior to reshock. When the TKE decay rate was used to estimate
θ the results were generally close to the estimates based on h, indicating that the mixing
layer growth is close to self-similar by the end of the simulation. Comparing the ILES and
DNS results also shows that there is only a small Reynolds-number dependence, which
is consistent with previous observations in Groom & Thornber (2019) that the integral
quantities are mostly determined by the largest scales of motion. When the mixing widths
were decomposed into individual bubble and spike heights hb and hs, it was found that
hb ∼ tθb and hs ∼ tθs with θb /= θs at early time. However, it was shown that θb ≈ θs by
the end of each simulation by examining the ratio of hs/hb and showing this to be tending
towards a constant at late time.

The particular regime being analysed here is different to the self-similar growth regime
analysed in Groom & Thornber (2020) as the current set of broadband perturbations have
a much smaller bandwidth and therefore saturate quite early relative to the total simulation
time. The present findings, which are supported by the experiments, are that while the
growth rate in the saturated regime is less sensitive to the specific power spectrum of the
initial conditions, the effects of additional long wavelength modes are quite persistent over
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the duration of a typical shock tube experiment and give rise to growth rates much higher
than for narrowband perturbations.

Comparing θ for the two definitions of h in the narrowband case also leads to some
interesting observations. For the TKE-based mixing layer width the value of θ that is
measured is almost a factor of two higher than the value that is measured for the VF-based
width. This is due to spikes that penetrate further into the lighter fluid and in some cases
are ejected from the main layer. These spikes have been observed in previous studies
of similar cases, such as Thornber & Zhou (2012) and Youngs & Thornber (2020a),
and are quite energetic but contain very little heavy material. Therefore they affect the
TKE-based width much more than the VF-based width, which can be seen in the greater
relative difference between the two measures for the spike height hs than the bubble
height hb. Presumably if such spikes are ejected at early time in the broadband cases
then they get overtaken by the linear growth of the low wavelength modes; future work
will investigate this in further detail as it is potentially quite an important phenomenon
for applications where multiple interfaces are located in close proximity to one another.
Future work will also aim to further quantify the effects of finite bandwidth on θ and other
important integral quantities, see Soulard & Griffond (2022) for an initial discussion in this
direction.

Analysing the anisotropy of the fluctuating velocity field showed that the mixing
layer is persistently anisotropic in the direction of the shock wave in all cases, in good
agreement with previous experiments (prior to reshock) as well as numerical studies. For
the broadband ILES cases, the energy spectra in both the normal and transverse directions
showed two distinct scalings either side of the highest wavenumber kmax in the initial
perturbation and which were dependent on the specific initial condition. These scalings
were also different for the normal vs transverse energy spectrum in each case. This was
also observed in the narrowband case but only for wavenumbers higher than kmax. Finally,
calculations of outer-scale Reynolds numbers and turbulent length scales in the DNS cases
showed that the outer-scale Reynolds numbers are approximately constant throughout the
simulations, as expected from the estimates of θ ≈ 0.5, and that good agreement was
obtained between the turbulent length scales calculated using either the TKE-based or
VF-based width as the outer length scale.

Overall, the results of this study show that, in general, care needs to be taken when using
measurements based on the velocity field to infer properties of the concentration field such
as the growth rate θ . This is particularly true when using thresholds rather than integral
quantities to represent the mixing layer width. At early times (i.e. prior to reshock in a
typical shock tube experiment) the mixing layer is not growing self-similarly, which makes
it difficult to determine the value for the growth rate exponent θ as a single value may not
even be appropriate. However, at the latest time simulated here (just prior to reshock in the
experiments of Jacobs et al. 2013; Sewell et al. 2021) the mixing layer is tending toward
self-similarity and good agreement was able to be obtained with the experimental results
across a wide range of quantities, providing additional insight on how to correctly interpret
such results and when it is valid to use a single growth rate to describe the mixing layer.
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Figure 21. Temporal evolution of domain integrated enstrophy for each grid resolution employed in the DNS
cases; (a) Re0 = 261, (b) Re0 = 526.
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in the DNS cases; (a) Re0 = 261, (b) Re0 = 526.
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Appendix A. Grid convergence of DNS

Following the methodology presented in Olson & Greenough (2014) for demonstrating
grid convergence, two quantities are used that depend on gradients of the velocity and
concentration fields and which are therefore sensitive to the smallest scales in the flow.
These are the domain-integrated enstrophy Ω and scalar dissipation rate χ , given by

Ω(t) =
∫∫∫

ρωiωi dx dy dz (A1)

and

χ(t) =
∫∫∫

D12
∂Y1

∂xi

∂Y1

∂xi
dx dy dz, (A2)

where ωi is the vorticity in direction i (summation over i is implied). Figures 21 and 22
demonstrate grid convergence in the domain-integrated enstrophy and scalar dissipation
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Figure 23. Temporal evolution of the bubble height hb based on the integral definitions of Youngs &
Thornber (2020a); (a) m = −1, (b) m = −2, (c) m = −3 and m = 0.
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Figure 24. Temporal evolution of the spike height hs based on the integral definitions of Youngs & Thornber
(2020a); (a) m = −1, (b) m = −2, (c) m = −3 and m = 0.

rate for both DNS cases. Each case is shown to be suitably converged for both of these
integral quantities at the finest grid resolution considered, even during the early-time
period prior to the shock exiting the domain.

Appendix B. Integral definitions of bubble and spike heights

In Youngs & Thornber (2020a) novel definitions were given for the bubble and spike
heights hb and hs as weighted average distances from the mixing layer centre:

h( p)
s =

⎡⎢⎢⎣ ( p + 1)( p + 2)
2

∫ xc

−∞
|x|p(1 − 〈 f1〉) dx∫ xc

−∞
(1 − 〈 f1〉) dx

⎤⎥⎥⎦
1/p

, (B1a)

h( p)
b =

⎡⎢⎢⎣ ( p + 1)( p + 2)
2

∫ ∞

xc

|x|p〈 f1〉 dx∫ ∞

xc

〈 f1〉 dx

⎤⎥⎥⎦
1/p

. (B1b)

Figures 23 and 24 plot the bubble and spike heights (with p = 3), while figure 25 plots
their ratio hs/hb. The results are quite similar to the VF-based bubble and spike heights
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Figure 25. Temporal evolution of the ratio of spike to bubble heights based on the integral definitions of
Youngs & Thornber (2020a); (a) m = −1, (b) m = −2, (c) m = −3 and m = 0.

shown in figures 12–14, albeit smoother and therefore more suitable for estimating θb and
θs. While the main purpose of this paper is to compare the quantities typically measured in
experiments based on thresholds of the TKE or VF profiles, it is recommended that future
studies focus on using integral definitions such as the ones given here.
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