ABSOLUTE CONVEXITY IN SPACES OF STRONGLY SUMMABLE SEQUENCES

I. J. MADDOX AND J. W. ROLES

The space w_p of strongly Cesàro summable sequences of index p>0 has been investigated by several authors. In [2], Kuttner proved that no Toeplitz matrix could sum all sequences in w_p , a result which was extended to coregular matrices by Maddox [5]. In [1], Borwein considered the continuous dual space of w_p . The more general space w(p) has also been considered [3, 4], where $p=(p_k)$ is a strictly positive sequence. The r-convexity of the spaces $w_\infty(p)$ and $w_0(p)$ was dealt with in a partial way in [8]. In the present note we establish criteria for the r-convexity of some general classes of $[A, p]_0$ and $[A, p]_\infty$ spaces (see [6] and [7] for definitions), and in particular we give the necessary and sufficient conditions for the r-convexity of $w_\infty(p)$ and $w_0(p)$. For most of the relevant definitions and notation we refer to [8].

By $A=(a_{nk})$ we denote a non-negative infinite matrix; by $p=(p_k)$ a strictly positive sequence, and by \sum a sum from k=1 to $k=\infty$. Sums taken over empty sets are regarded as zero. We write $A_n(x)=\sum a_{nk}|x_k|^{p_k}$ and define $[A,p]_{\infty}$ to be the set of all sequences $x=(x_k)$ such that $A_n(x)=O(1)$. By $[A,p]_0$ we denote the set of x such that $A_n(x)\to 0$ $(n\to\infty)$. The condition $\sup p_k<\infty$, the supremum taken over k such that $0<\sup_n a_{nk}<\infty$, is sufficient for $[A,p]_{\infty}$ and $[A,p]_0$ to be linear spaces (see [7]).

In connection with r-convexity we shall write, for r>0,

$$s(n) = \left\{ k : 0 < a_{nk}, \sup_{n} a_{nk} < \infty \text{ and } p_k < r \right\}.$$

Some useful inequalities are now stated.

LEMMA 1. Let x, y, λ, μ be complex numbers. Then

(i) 0 implies

$$|x+y|^p \le |x|^p + |y|^p$$
.

(ii) $p \ge 1$ and $|\lambda| + |\mu| \le 1$ imply

$$(|\lambda x| + |\mu y|)^{\mathfrak{p}} \le |\lambda| |x|^{\mathfrak{p}} + |\mu| |y|^{\mathfrak{p}}.$$

(iii) $|x| \le 1$, 0 and <math>N > 1 imply

$$|x|^p < |x|^r (1+N \log N) + N^\pi$$

where $1/\pi + r/p = 1$.

Received by the editors August 20, 1973.

Proof. (i) is well-known. A proof of (ii) is given in [8], and (iii) is a slight generalization of a result used in [9], p. 427.

We first give a sufficient condition for r-convexity $(0 < r \le 1)$ in $[A, p]_{\infty}$. It is supposed that $H = \sup p_k < \infty$ (where the supremum is over k such that $0 < \sup_n a_{nk} < \infty$) and that $[A, p]_{\infty}$ is equipped with the natural distance function

$$g(x) = \sup_{n} \left(A_n(x) \right)^{1/M},$$

where $M = \max(1, H)$.

THEOREM 1. Let $[A, p]_{\infty}$ be a paranormed space, let $0 < r \le 1$ and suppose that there exists an integer N > 1 such that

$$\sup_{n} \sum_{s(n)} N^{\pi_{k}} < \infty,$$

where $1/\pi_k + r/p_k = 1$. Then $[A, p]_{\infty}$ is r-convex.

Proof. For each d>0 we shall construct an absolutely r-convex set U(d) containing the origin $\theta=(0,0,0,\ldots)$, and then show that for $0< d \le 1$ the U(d) form a neighbourhood base of θ .

For each k define $q_k = \max(r, p_k)$ and for each d > 0 define

$$U_1(d) = \left\{ x \in [A, p]_{\infty} : \sup_{n} \sum_{k} (a_{nk} |x_k|^{p_k})^{q_k/p_k} \le d \right\},$$

$$U_2(d) = \left\{ x \in [A, p]_{\infty} : \sup_{n,k} (a_{nk} |x_k|^{p_k}) \le d \right\},\,$$

and $U(d) = U_1(d) \cap U_2(d)$. Now if $x, y \in U(d)$ and $|\lambda|^r + |\mu|^r \le 1$, then $|\lambda| + |\mu| \le 1$. Splitting the cases $q_k < 1$ and $q_k \ge 1$ and applying Lemma 1, (i) and (ii), we obtain

$$|\lambda x_k + \mu y_k|^{a_k} \le |\lambda|^r |x_k|^{a_k} + |\mu|^r |y_k|^{a_k},$$

whence $x, y \in U_1(d)$ implies $\lambda x + \mu y \in U_1(d)$. Also, since $x, y \in U_2(d)$ and $|\lambda| + |\mu| \le 1$ we see that $\lambda x + \mu y \in U_2(d)$. Consequently U(d) is an absolutely r-convex set containing θ .

Let us denote by S(R) the sphere of centre θ and radius R>0, i.e. the set of all $x \in [A, p]_{\infty}$ such that $g(x) \le R$. Then it is easy to show that, for $0 < d \le 1$, we have $U(d) \supset S(d^{1/M})$, so that U(d) is a neighbourhood of θ .

Finally, we show that for each $\varepsilon > 0$ there is a $d = d(\varepsilon) > 0$ such that $0 < d \le 1$ and $U(d) \subseteq S(\varepsilon)$

Denote by t(n) the set of all $k \in s(n)$ such that $p_k < r/2$. By (1) we see that t(n) is a finite set, for each n. Let N(n) be the number of integers in t(n). Then, since $p_k < r/2$ implies $-1 < \pi_k < 0$, we have

$$\sum_{s(n)} N^{\pi_k} \ge \sum_{t(n)} N^{-1} = N^{-1} \cdot N(n),$$

whence

$$(2) H' = \sup_{n} N(n) < \infty.$$

Now let $x \in U(d)$ for some d with $0 < d \le 1$. We shall appraise g(x) by splitting $A_n(x)$ into three sums: \sum_1 over $p_k \ge r$, \sum_2 over $p_k < r/2$ and \sum_3 over $r/2 \le p_k < r$. Since $x \in U_1(d)$ and $p_k = q_k$ when $p_k \ge r$, we have

$$\sum_{1} a_{nk} |x_k|^{p_k} = \sum_{1} (a_{nk} |x_k|^{p_k})^{q_k/p_k} \le d$$

for each $n \ge 1$. Since $x \in U_2(d)$ it follows from (2) that

$$\sum_{2} a_{nk} |x_k|^{p_k} \le d \cdot H'$$

for each $n \ge 1$. Next, we have $q_k = r$ for $r/2 \le p_k < r$, so by Lemma 1 (iii), for each N > 1 and each $n \ge 1$, \sum_3 is less than or equal to

$$(1+N\log N)\sum_{3}(a_{nk}|x_{k}|^{p_{k}})^{q_{k}/p_{k}}+\sum_{3}N^{\pi_{k}}.$$

Now let R be a positive integer. If $r/2 \le p_k < r$ then $\pi_k \le -1$, whence

$$\sum_{3} (RN)^{\pi_{k}} \leq R^{-1} \sum_{s(n)} N^{\pi_{k}},$$

so that $\sup_n \sum_3 N^{\pi_k}$ can be made arbitrarily small by a choice of a suitably large N. Finally, let $\varepsilon > 0$ and choose N > 1 such that

$$\sup_{n} \sum_{3} N^{\pi_{k}} < (\varepsilon/2)^{M}$$

and $0 < d \le 1$ such that $d(2+H'+N\log N) < (\varepsilon/2)^M$. Then, by our previous estimates, and using the fact that $M \ge 1$, we have by Lemma 1 (i), with p replaced by 1/M, that $g(x) < \varepsilon$, whenever $x \in U(d)$. This proves Theorem 1.

We note that $r \le 1$ is essential to the truth of Theorem 1. For example, let r > 1 and $a_{nk} = 1$ for every n and k. Taking $p_k = r$ for every k, we have $[A, p]_{\infty} = \ell_r$. The sum in (1) is zero, since it is taken over the empty set. However, ℓ_r is not r-convex. Later we shall show that (1) is not necessary for the r-convexity of $[A, p]_{\infty}$ in general, though it is necessary in a large number of cases (see Theorem 4).

Next we consider the problem of finding a reasonable necessary condition for the r-convexity of $[A, p]_{\infty}$. With a restriction on the matrix A, such a condition, involving a set inclusion, is given in the next theorem. The matrix B which appears in the set inclusion is defined as follows. If $0 < \sup_n a_{nk} < \infty$ and $a_{nk} > 0$, define $b_{nk} = 1$. Otherwise define $b_{nk} = 0$. By (r) we denote the constant sequence (r, r, r, \ldots) .

THEOREM 2. If $[A, p]_{\infty}$ is r-convex for some r>0, and there is a positive constant α such that for each n and each k such that $0<\sup_n a_{nk}<\infty$ and $a_{nk}>0$, we have $a_{nk}\geq\alpha\cdot\sup_n a_{nk}$, then $[B, (r)]_{\infty}\subset[B, p]$.

Proof. Let $x \in [B, (r)]_{\infty}$. Then there exists $H \ge 1$ such that

$$\sup_{n} \sum_{k} b_{nk} |x_{k}|^{r} \leq H.$$

Define $\lambda_k = x_k / H^{1/r}$ for $k = 1, 2, \ldots$ Since $[A, p]_{\infty}$ is r-convex there is an absolutely r-convex neighbourhood U and d > 0 such that $S(d) \subset U \subset S(1)$. Denote by $e^{(k)}$ the sequence with 1 in the kth place and 0 elsewhere. Let k be such that $0 < \sup_{n} a_{nk} < \infty$. The $e^{(k)} \in [A, p]_{\infty}$ and we may define

$$y^{(k)} = \left(d^M/\sup_n a_{nk}\right)^{1/p_k} \cdot e^{(k)}.$$

It follows that $y^{(k)} \in S(d) \subset U$. Now choose an integer $m \ge 1$ and let \sum denote any finite sum over the k for which $b_{mk} = 1$. Then $\sum |\lambda_k|^r = \sum b_{mk} |x_k|^r H^{-1} \le 1$ so that by absolute convexity of U, $\sum \lambda_k y^{(k)} \in U \subset S(1)$, whence

$$\sum \left(a_{mk} |\lambda_k|^{p_k} d^M / \sup_n a_{nk} \right) \le 1.$$

It follows that $\sum b_{mk} |\lambda_k|^{p_k} \le \alpha^{-1} d^{-M}$, whence, since $H \ge 1$,

$$\sum b_{mk} |x_k|^{p_k} \le H^{M/r} \alpha^{-1} d^{-M},$$

which implies that $x \in [B, p]_{\infty}$.

We now connect the necessary and sufficient conditions for r-convexity through the next theorem, which is purely set-theoretic and independent of r-convexity.

THEOREM 3. Let $B = (b_{nk})$ be any matrix of noughts and ones, p be any strictly positive sequence and r > 0. If B is column finite and $[B, (r)]_{\infty} \subset [B, p]_{\infty}$, then there exists an integer N > 1 such that (1) of Theorem 1 holds, where $s(n) = \{k : b_{nk} = 1 \text{ and } p_k < r\}$.

Proof. By using the same type of argument as that of [9] for the special case of the inclusion $\ell_r \subset \ell(p)$, it is easily shown that the inclusion $[B, (r)]_{\infty} \subset [B, p]_{\infty}$ implies that, for each n, there exists an integer N=N(n) such that

$$\sum_{s(n)} N^{\pi_k} < \infty.$$

Now suppose, if possible, that (1) of Theorem 1 fails. Then there is an integer $n(1) \ge 1$ such that

$$(4) 2 \leq (n(1)) \sum 2^{\pi_k} \leq \infty.$$

Here, and elsewhere, (m) \sum denotes that the summation is restricted to $k \in s(m)$. Since $\pi_k < 0$, (4) implies that there is a $k(1) \ge 1$ such that

$$1 \leq (n(1)) \sum_{k=1}^{k(1)} 2^{\pi_k} < 2.$$

Now by (3) there exists N>1 such that, for $1 \le j \le n(1)$,

$$(j) \sum N^{\pi_k} < \infty.$$

Hence, since $\pi_k < 0$ we may choose $N_1 > 2$ and so large that

$$(j) \sum N^{\pi_k} \leq 1$$

for $1 \le i \le n(1)$ and all $N \ge N_1$.

Since B is column finite and (1) fails there is an integer n(2) > n(1) such that $b_{nk} = 0$ for $n \ge n(2)$ and $1 \le k \le k(1)$ and such that

$$N_1 \le (n(2)) \sum_{1+k(1)}^{\infty} N_1^{\pi_k} \le \infty,$$

whence there is $k(2) \ge k(1)$ such that

$$N_1 - 1 \le (n(2)) \sum_{1+k(1)}^{k(2)} N_1^{\pi_k} \le N_1.$$

Proceeding in this way we construct subsequences (N_i) , (n(i)), (k(i)) of positive integers, such that for each $i \ge 1$,

(5)
$$(j) \sum N^{\pi_k} \le 1, \text{ for } 1 \le j \le n(i) \text{ and } N \ge N_i,$$

(6)
$$b_{nk} = 0 \text{ for } n \ge n(i+1) \text{ and } 1 \le k \le k(i),$$

(7)
$$N_i - 1 \le (n(i+1)) \sum_{1+k(i)}^{k(i+1)} N_i^{\pi_k} \le N_i.$$

Now set k(0)=n(0)=0, $N_0=2$ and define x by $x_k=N_i^{(\pi_k-1)/r}$ for $k \in s(n(i+1))$, $k(i) < k \le k(i+1)$, $i=0, 1, \ldots$, and $x_k=0$ otherwise.

Let $n \ge 1$. Then there exists $i \ge 0$ such that $n(i) < n \le n(i+1)$. Hence, by (6) we have $\sum_k b_{nk} |x_k|^r = (n) \sum_1 + (n) \sum_2 + (n) \sum_3$, where $(n) \sum_1$ is the sum of $|x_k|^r$ over $k(i-1) < k \le k(i)$, $(n) \sum_2$ the sum over $k(i) < k \le k(i+1)$, and $(n) \sum_3$ the sum over k > k(i+1). Now by the definition of x, we have by (7),

$$(n) \sum_{i=1}^{n} \le (n(i)) \sum_{i=1}^{n} N_{i-1}^{\pi_k - 1} \le 1$$
 and $(n) \sum_{i=1}^{n} \le (n(i+1)) \sum_{i=1}^{n} N_i^{\pi_k - 1} \le 1$.

Also, by definition of x, the fact that $\pi_k < 0$, and by (5),

$$(n) \sum_{3} \le (n) \sum_{3} N_{i+1}^{\pi_{k}-1} \le 1.$$

Hence $\sum_k b_{nk} |x_k|^r \le 3$, so that $x \in [B, (r)]_{\infty}$. But for $i \ge 1$, $\sum_k b_{n(i),k} |x_k|^{p_k} \ge N_{i-1} - 1 \to \infty (i \to \infty)$, by (7), which means that $x \notin [B, p]_{\infty}$. This proves Theorem 3. The next result will enable us to characterize r-convexity in $w_{\infty}(p)$.

THEOREM 4. Suppose that A is a column finite matrix which satisfies the α -condition of Theorem 2. Let $0 < r \le 1$. Then the following conditions are equivalent:

- (i) $[A, p]_{\infty}$ is r-convex.
- (ii) $[B,(r)]_{\infty} \subset [B,p]_{\infty}$, where $b_{nk}=1$ if $0 < \sup_n a_{nk} < \infty$ and $a_{nk} > 0$, and $b_{nk}=0$ otherwise.
- (iii) There exists an integer N>1 such that

$$\sup_{n}\sum_{s(n)}N^{\pi_{k}}<\infty,$$

where $s(n) = \{k: 0 < a_{nk}, \sup_{n} a_{nk} < \infty \text{ and } p_k < r\} \text{ and } 1/\pi_k + r/p_k = 1.$

Proof. (i) implies (ii), (ii) implies (iii) and (iii) implies (i) by Theorems 2, 3 and 1 respectively.

COROLLARY. $m(p) = \{x : \sup |x_k|^{p_k} < \infty\}$ is 1-convex if and only if $0 < \inf p_k \le \sup p_k < \infty$.

Proof. This simple result was given in Theorem 2 [8]. It may be deduced from Theorem 4 above by taking A to be the unit matrix and N=2 in (iii).

Let us now recall the definition of the set $w_{\infty}(p)$:

$$w_{\infty}(p) = \left\{ x : \sum_{k=1}^{n} |x_{k}|^{p_{k}} = O(n) \right\}$$
$$= \left\{ x : \sum_{k=1}^{n} |x_{k}|^{p_{k}} = O(2^{n}) \right\}$$

where \sum_{n} denotes a summation over k such that $2^{n} \le k < 2^{n+1}$, with $n \ge 0$.

Thus $w_{\infty}(p)$ may be generated either by the Cesaro matrix $C=(c_{nk})$, where $c_{nk}=1/n$ for $1 \le k \le n$ and $c_{nk}=0(k>n)$, or by $D=(d_{nk})$, given by $d_{nk}=2^{-(n-1)}$ for $2^{n-1} \le k < 2^n$, with $n \ge 1$ and $d_{nk}=0$ otherwise.

It is also easy to see that the matrices C and D give equivalent paranorm topologies for $w_{\infty}(p)$. In the next theorem we regard $w_{\infty}(p)$ as $[D, p]_{\infty}$ with

(8)
$$g(x) = \sup_{n \ge 0} \left(2^{-n} \sum_{n} |x_k|^{p_k} \right)^{1/M}$$

where $M = \max(1, \sup p_k)$, whenever $\sup p_k < \infty$.

THEOREM 5. The following statements are equivalent:

- (i) $w_{\infty}(p)$ is r-convex.
- (ii) $0 < r \le 1$, $0 < \inf p_k \le \sup p_k \le \infty$ and $[B, (r)]_{\infty} \subset [B, p]_{\infty}$, where $b_{nk} = 1$ for $2^{n-1} \le k < 2^n$ and $b_{nk} = 0$ otherwise.
- (iii) $0 < r \le 1$, $0 < \inf p_k \le \sup p_k < \infty$ and there is an integer N > 1 such that

$$\sup_{n}\sum_{s(n)}N^{\pi_{k}}<\infty,$$

where $s(n) = \{k: 2^{n-1} \le k < 2^n \text{ and } p_k < r\}$.

Proof. Let (i) hold. Then we are assuming that g given by (8) is a paranorm on $w_{\infty}(p)$. It follows by Theorem 2 [6] that $0 < \inf p_k \le \sup p_k < \infty$. It was noted in [8] that if a topological linear space was r-convex for some r > 1, then X was the only neighbourhood of the origin. Hence, if $w_{\infty}(p)$ is r-convex then $0 < r \le 1$.

The rest of the theorem follows from Theorem 4 with A=D.

We shall now use Theorem 5 to prove that the existence of N>1 such that (1) of Theorem 1 holds is not necessary for the r-convexity of $[A, p]_{\infty}$ in general. Consider $w_{\infty}(p)$ as given by the Cesaro matrix C and define, for $0 < r \le 1$, $p_k = r/2$ for $k=2^i$, $i=0,1,\ldots$ and $p_k=r$ for $k\ne 2^i$. Then the sets s(n) associated with C are of the form $\{k:1\le k\le n \text{ and } k=2^i \text{ for some } i\ge 0\}$. Condition (1) fails, since

$$\sum_{s(2^n)} N^{\pi_k} = \frac{n+1}{N}$$

for every N>1. However, (iii) of Theorem 5 is satisfied with N=2, whence $[C, p]_{\infty}$ is r-convex.

The above example also shows that the condition $[B,(r)]_{\infty} \subset [B,p]_{\infty}$ is not necessary for the r-convexity of $[A,p]_{\infty}$ in general. For, with A=C, the inclusion $[B,(r)]_{\infty} \subset [B,p]_{\infty}$ is equivalent to the inclusion $\ell_r \subset \ell(p)$. If we now put $a_{1k}=1$ $(k\geq 1)$ and $a_{nk}=0$ (n>1) in Theorem 4, then the hypothesis is satisfied and $[A,p]_{\infty}=[B,p]_{\infty}=\ell(p)$. Hence $\ell_r \subset \ell(p)$ is equivalent to the existence of N>1 such that $\sum N^{\pi_k} < \infty$, where the summation is over $p_k < r$. But this fails since $\pi_k = -1$ for $k=2^i$.

It was shown in Theorem 3 [8] that the inclusion $w_{\infty}(p) \subset w_{\infty}(r)$ was sufficient for the r-convexity of $w_{\infty}(p)$ when $0 < r \le 1$ and $\sup p_k < \infty$. We now show that the inclusion is not necessary.

THEOREM 6. The inclusion $w_{\infty}(p) \subseteq w_{\infty}(r)$ is not necessary for the r-convexity of $w_{\infty}(p)$.

Proof. Let $0 < r \le 1$ and define $p_k = r/2$ for $k = 2^i$ and $p_k = r$ for $k \ne 2^i$. We have already seen that $w_{\infty}(p)$ is r-convex. Now by the corollary to Lemma 2 [8] we have that $w_{\infty}(p) \subseteq w_{\infty}(r)$ is equivalent to

(9)
$$2^{-i} \max_{i} 2^{ir/p_k} = O(1),$$

where the max is taken over k such that $2^{i} \le k < 2^{i+1}$. But in the present situation we have that the left hand side of (9) is equal to 2^{i} , whence the result.

So far we have dealt with $[A, p]_{\infty}$ spaces. Similar results hold for $[A, p]_0$ spaces. For example, we may replace $[A, p]_{\infty}$ in Theorem 4 by $[A, p]_0$, leaving the rest unchanged. The new result is still valid. Again, in Theorem 5, we may replace $w_{\infty}(p)$ by $w_0(p)$ in (i) and remove the restriction $0 < \inf p_k$ in (ii) and (iii), leaving the rest unchanged. We do not require $0 < \inf p_k$, since $w_0(p)$ is paranormed if and only if $\sup p_k < \infty$.

Finally, we consider the normability of some of the special spaces. It is well-known that a topological linear space is normable if and only if it is locally convex (i.e. 1-convex), locally bounded and Hausdorff.

THEOREM 7. Let $S = \{k: 0 < \sup_n a_{nk} < \infty\}$ and $T = \{k: k \in S \text{ and } a_{nk} \rightarrow 0 (n \rightarrow \infty)\}$. Let $[A, p]_{\infty}$ (respectively $[A, p]_0$) be paranormed. Then it is locally bounded if and only if $\inf_S p_k > 0$ (respectively $\inf_T p_k > 0$).

Proof. Consider $[A, p]_{\infty}$. For the sufficiency write $a = \inf_{S} p_{k} > 0$. We shall show that the sphere S(1) of centre θ and radius 1 is a bounded neighbourhood of θ . Let N be any neighbourhood of θ . Then there is a sphere $S(d) \subseteq N$. Choose λ such that $|\lambda| \ge 1$ and $|\lambda|^{-a} < d^{M}$, where $M = \max(1, \sup_{S} p_{k})$. Now if $x \in S(1)$ then

$$g(x/\lambda) = \sup_{n} \left(\sum_{S} a_{nk} |x/\lambda|^{p_k} \right)^{1/M} \le |\lambda|^{-a/M}.$$

Hence $x/\lambda \in S(d) \subseteq N$, so that $S(1) \subseteq \lambda N$, i.e., S(1) is a bounded neighbourhood of θ .

Conversely, suppose that $[A, p]_{\infty}$ is locally bounded. Then there is a bounded neighbourhood B of θ and d>0 such that $S(d) \subseteq B$. Since B is bounded there is a non-zero λ such that

$$\lambda S(d) \subseteq \lambda B \subseteq S(d/2).$$

Now for each $k \in S$ define $x^{(k)} \in S(d)$ by

$$x^{(k)} = \left(d^{M} / \sup_{n} a_{nk} \right)^{1/p_{k}} \cdot e^{(k)}.$$

Then $g(\lambda x^{(k)}) = d |\lambda|^{r_k/M} \le d/2$, whence $\inf_S p_k > 0$.

The proof for $[A, p_0]$ is similar except that we work with the set T instead of S, since if $x \in [A, p]_0$, then for each n,

$$\sum a_{nk} |x_k|^{p_k} = \sum_{T} a_{nk} |x_k|^{p_k},$$

and $e^{(k)} \in [A, p]_0$ if and only if $a_{nk} \rightarrow 0 \ (n \rightarrow \infty)$.

THEOREM 8.

- (i) $c_0(p)$ and m(p) are normable if and only if $0 < \inf p_k \le \sup p_k < \infty$.
- (ii) $\ell(p)$ is normable if and only if $\sup p_k < \infty$ and $\ell(p) \supseteq \ell_1$.
- (iii) $w_0(p)$ and $w_\infty(p)$ are normable if and only if $0 < \inf p_k \le \sup p_k < \infty$ and $[B, (1)]_\infty \subset [B, p]_\infty$, where $b_{nk} = 1$ if $2^{n-1} \le k < 2^n$ and $b_{nk} = 0$ otherwise.

Proof. This follows readily from Theorem 7 and the earlier results on *r*-convexity.

REFERENCES

- 1. D. Borwein, Linear functionals connected with strong Cesàro summability, J. London Math. Soc., 40 (1965), 628-634.
 - 2. B. Kuttner, Note on strong summability, J. London Math. Soc., 21 (1946), 118-122.

- 3. C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc., 68 (1970), 99-104.
- 4. I. J. Maddox, Spaces of strongly summable sequences, Quarterly J. of Math. Oxford, (2) 18 (1967), 345-355.
 - 5. I. J. Maddox, On Kuttner's theorem, J. London Math. Soc., 43 (1968), 285-290.
- 6. I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64 (1968), 335-340.
- 7. I. J. Maddox, Some properties of paranormed sequence spaces, J. London Math. Soc. (2) 1 (1969), 316-322.
- 8. I. J. Maddox and J. W. Roles, Absolute convexity in certain topological linear spaces, Proc. Camb. Phil. Soc., 66 (1969), 541-545.
- 9. S. Simons, The sequence spaces $\ell(p)$ and m(p), Proc. London Math. Soc. (3) 15 (1965); 422-436.

QUEEN'S UNIVERSITY OF BELFAST, NORTHERN IRELAND