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ABSOLUTE CONVEXITY IN SPACES OF STRONGLY
SUMMABLE SEQUENCES

BY
I. J. MADDOX AND J. W. ROLES

The space w,, of strongly Cesaro summable sequences of index p>0 has been
investigated by several authors. In [2], Kuttner proved that no Toeplitz matrix
could sum all sequences in w,, a result which was extended to coregular matrices
by Maddox [5]. In [1], Borwein considered the continuous dual space of w,,.
The more general space w(p) has also been considered [3, 4], where p=(p,) is a
strictly positive sequence. The r-convexity of the spaces w,,(p) and w,(p) was dealt
with in a partial way in [8]. In the present note we establish criteria for the r-
convexity of some general classes of [4, pl, and [4, p],, spaces (see [6] and [7]
for definitions), and in particular we give the necessary and sufficient conditions for
the r-convexity of w,, (p) and wy(p). For most of the relevant definitions and notation
we refer to [8].

By A=(a,;) we denote a non-negative infinite matrix; by p=(p,) a strictly
positive sequence, and by > a sum from k=1 to k=co. Sums taken over empty
sets are regarded as zero. We write 4,(x)=2, a,; |x,|” and define [4, p],, to be
the set of all sequences x=(x;) such that 4,(x)=0(1). By [4, p], we denote the
set of x such that 4,(x)—>0 (n—c0). The condition sup p,< o0, the supremum
taken over k such that 0<sup, a,, <o, is sufficient for [4, p], and [4, p], to
be linear spaces (see [7]).

In connection with r-convexity we shall write, for r>0,

s(n) = {k: 0<a,,supa,;, < oand p, < r} .
Some useful inequalities are now stated.
LeMMA 1. Let x, y, A, u be complex numbers. Then
(i) 0<p<L1 implies
Ix+yI” < [x[*+]yl”

(i) p>1 and 2| +|ul<1 imply

(IAx]+[y))? < 1AL [x[P+ ]l [yI7.
(iii) |x|<1, 0<p<r and N>1 imply

[x]” < |x|"(1+N log N)+N~,
where 1[m+r[p=1.
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Proof. (i) is well-known. A proof of (ii) is given in [8], and (iii) is a slight
generalization of a result used in [9], p. 427.

We first give a sufficient condition for r-convexity (0<r<1) in [4, p],. It is
supposed that H=sup p,<oco (where the supremum is over k£ such that 0<
sup,, a,;,< ) and that [4, p],, is equipped with the natural distance function

g(x) = sup (4,(x)",
where M=max(1, H).

THEOREM 1. Let [A, pl,, be a paranormed space, let 0<r<1 and suppose that
there exists an integer N>1 such that

6] sup > N < oo,

n s(n)
where 1/m+r[p,=1. Then [A, p],, is r-convex.

Proof. For each d>0 we shall construct an absolutely r-convex set U(d) con-
taining the origin 6=(0, 0, 0, . . .), and then show that for 0<d<1 the U(d) form
a neighbourhood base of 0.

For each k define ¢,=max(r, p,) and for each d>0 define

Uyd) = {x €[4, plo: Sup 3 (any xyl?)%/2: < d},

Uyd) = {x € [4, Pl sup (0 4P < d},

and U(d)=U,(d) N Uy(d). Now if x, y € U(d) and |A|"+|p|"<1, then |A|+|u|<1.
Splitting the cases ¢, <1 and ¢, >1 and applying Lemma 1, (i) and (ii), we obtain

1Ax eyl ® AL Il |l el

whence x, y € U,(d) implies Ax+uy € Uy(d). Also, since x,y € Uy(d) and |A|+
|ul<1 we see that Ax+puy € Uy(d). Consequently U(d) is an absolutely r-convex
set containing 6.

Let us denote by S(R) the sphere of centre 6 and radius R>0, i.e. the set of all
x € [4, pl,, such that g(x)<R. Then it is easy to show that, for 0<d<1, we have
U(d)DS(d” M), so that U(d) is a neighbourhood of 0.

Finally, we show that for each ¢>0 there is a d=d(g)>0 such that 0<d<1
and U(@)<S(e)

Denote by #(n) the set of all k£ € s(n) such that p,<r/2. By (1) we see that ¢(n)
is a finite set, for each n. Let N(n) be the number of integers in #(n). Then, since
Pr<r/2 implies —1<m, <0, we have

SN >3 N'= N1 N,

s(n) t(n)
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whence
2 H' = sup N(n) < 0.

Now let x € U(d) for some d with 0<d<1. We shall appraise g(x) by splitting
A, (x) into three sums: >, over p,>r, >, over p,<r/2 and >4 over r/2<p,<r.
Since x € U,(d) and p,=q; when p,>r, we have

> A Xl = 3 (@ x| % < d
1 1
for each n>1. Since x € U,(d) it follows from (2) that
z ank ka[pk S d . HI
2

for each n>1. Next, we have g,=r for r/2< p,<r, so by Lemma 1 (iii), for each
N>1 and each n>1, Y, is less than or equal to

(1+N log N) 3 (@ X%+ 3 N7
3 3
Now let R be a positive integer. If r/2< p,<r then =, < —1, whence
> (RN)™* < RS N™,
3

s(n)
so that sup, >3 N™* can be made arbitrarily small by a choice of a suitably large
N. Finally, let £>0 and choose N>1 such that

sup 23: N < (¢2)M

and 0<d<1 such that d2+H'+N log N)<(a/2)M. Then, by our previous
estimates, and using the fact that M >1, we have by Lemma 1 (i), with p replaced
by 1/M, that g(x)<e, whenever x € U(d). This proves Theorem 1.

We note that r<1 is essential to the truth of Theorem 1. For example, let
r>1 and a,;=1 for every n and k. Taking p,=r for every k, we have [4, p],=/,.
The sum in (1) is zero, since it is taken over the empty set. However, ¢, is not
r-convex. Later we shall show that (1) is not necessary for the r-convexity of [4, p],,
in general, though it is necessary in a large number of cases (see Theorem 4).

Next we consider the problem of finding a reasonable necessary condition for
the r-convexity of [4, p],. With a restriction on the matrix 4, such a condition,
involving a set inclusion, is given in the next theorem. The matrix B which appears
in the set inclusion is defined as follows. If 0<sup, a,, <o and a,, >0, define
b,,=1. Otherwise define b,,=0. By (r) we denote the constant sequence (7, r,

ry...).

THEOREM 2. If [A, pl,, is r-convex for some r>0, and there is a positive constant
o such that for each n and each k such that 0<sup,, a,;, < and a,;,>0, we have
Q20 * SUP, Gy, then [B, (r)], < [B, p.
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Proof. Let x € [B, (r)],. Then there exists H>1 such that
Sup 3 by |x|" < H.

Define 4,=x,/H" for k=1, 2, . ... Since [4, p], is r-convex there is an absolutely
r-convex neighbourhood U and d>0 such that S(d)= U< S(l). Denote by &'
the sequence with 1 in the kth place and O elsewhere. Let k be such that 0<
sup,, a,;< . The ¢™ € [4, p],, and we may define

7 1/p
y(k) — (dM/sup ank) k. e(k).
n

It follows that y'*’ e S(d)< U. Now choose an integer m>1 and let > denote any
finite sum over the k for which b,,;,=1. Then > |4,|"=> b, |x/" H2<1 so that
by absolute convexity of U, 3 4,y € U= S(1), whence

> (amk [ 2] 7% dM/sup anlc) <L

It follows that > b, |4:]7*< orld—M, whence, since H>1,

(%)

S b 1317 < HM7q72 @M,

which implies that x € [B, p].
We now connect the necessary and sufficient conditions for r-convexity through
the next theorem, whichis purely set-theoretic and independent of r-convexity.

THEOREM 3. Let B=(b,;) be any matrix of noughts and ones, p be any strictly
positive sequence and r>0. If B is column finite and [B, (r)], < [B, pl.., then there
exists an integer N>1 such that (1) of Theorem 1 holds, where s(n)={k:b,;,=1
and p,<r}.

Proof. By using the same type of argument as that of [9] for the special case of
the inclusion £,=¢(p), it is easily shown that the inclusion [B, ()], < [B, ple
implies that, for each n, there exists an integer N=N(n) such that

(3) S N < .

s(n)

Now suppose, if possible, that (1) of Theorem 1 fails. Then there is an integer
n(1)>1 such that

“4) 2 < (n() 27 <L oo.

Here, and elsewhere, (m) >, denotes that the summation is restricted to k € s(m).
Since m,<0, (4) implies that there is a k(1)>1 such that

k(1)

1< (n(1) 327 < 2.
k=1
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Now by (3) there exists N>1 such that, for 1<j<n(1),

(J)DN™ < 0.

Hence, since 7, <0 we may choose N;>2 and so large that

(H2ZN=L1
+ for 1<j<n(1) and all N> N,.
Since B is column finite and (1) fails there is an integer n(2)>n(1) such that
b,;,=0 for n>n(2) and 1<k<k(1) and such that

N, <) S Nt < oo,

1+k(1)
whence there is £(2) >k(1) such that

k(2)
Ni—1< ((2) 3 Nt <N,
1+k(1)
Proceeding in this way we construct subsequences (,), (n(i)), (k(i)) of positive
integers, such that for each i>1,

% (2N <L1, for 1<j<n@) and N>N,
(6) b,,=0 for n>n(i+1) and 1<k <Lk(),
k(i+1)
(M N;—1 < (n(i+1)) 3 Nj* < N;.
1+k(3)

Now set k(0)=n(0)=0, N,=2 and define x by x,=N;"*""'" for k € s(n(i+1)),
k() <k<Lk(i+1),i=0,1,..., and x,=0 otherwise.

Let n>1. Then there exists i>0 such that n(i)<n<n(i41). Hence, by (6) we
have 3, b %"= () D1+ (1) Do+ (n) Ds, where (n) X, is the sum of [x;|” over
k(i—1)<k<k(i), (n) X, the sum over k(i)<k<k(i+1), and (1) X5 the sum over
k>k(i+1). Now by the definition of x, we have by (7),

(n) ; < (n(2)) ;NZ’EI <1 and (n) ; < (n(i+1)) ZE N L L
Also, by definition of x, the fact that m, <0, and by (5),
M <M INE <L
Hence D3 b, |x|"<3, so that x € [B, (r)],. But for i>1, >, b, 1x">

N,;_;—1—00(i—00), by (7), which means that x ¢ [B, p],,. This proves Theorem 3.
The next result will enable us to characterize r-convexity in w,(p).
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THEOREM 4. Suppose that A is a column finite matrix which satisfies the o-
condition of Theorem 2. Let 0<r<1. Then the following conditions are equivalent:

(i) [4, pl, is r-convex.
@) [B, (N]o<I[B, ple, where b,=1 if 0<sup,a,<c and a,>0, and
b,;,=0 otherwise.
(iii) There exists an integer N>1 such that
sup > N < oo,
n s(n)
where s(n)={k:0<a,;, sup, a,,< 0 and p,<r} and 1[m+r/p,=1.
Proof. (i) implies (ii), (ii) implies (iii) and (iii) implies (i) by Theorems 2, 3
and 1 respectively.
COROLLARY. m(p)={x:sup |x;|?x< o0} is l-convex if and only if 0<inf p,<
sup p;.< co.
Proof. This simple result was given in Theorem 2 [8]. It may be deduced from

Theorem 4 above by taking 4 to be the unit matrix and N=2 in (iii).
Let us now recall the definition of the set w(p):

WalP) = {x:k_glxklpk - 0(n>}

= {x= 3 eyl = 0(2”)}

where Y, denotes a summation over k such that 2" <k <2, with n2>0.

Thus w,(p) may be generated either by the Cesaro matrix C=(c,;), where
cp=1/n for 1<k<n and c,=0(k>n), or by D=(d,;), given by d,,=2-"1
for 2" 1<k <2", with n>1 and d,;,=0 otherwise.

It is also easy to see that the matrices C and D give equivalent paranorm topol-
ogies for w,,(p). In the next theorem we regard w,(p) as [D, p],, with
UM

® ) = sup (277 3 )
where M=max(1, sup p,), whenever sup p, < 0.
THEOREM 5. The following statements are equivalent:

(i) wo(p) is r-convex.
(ii) 0<r<1, O<inf p,<sup p,< 0 and [B, ()], <I[B, pl.,, where b,,=1 for
2" 1<k <2" and b, =0 otherwise.
(iii) 0<r<1, 0<inf p, <sup p, <o and there is an integer N>1 such that
sup > N™ < oo,
n s(n)

where s(n)={k:2" 1<k <2" and p,<r}.
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Proof. Let (i) hold. Then we are assuming that g given by (8) is a paranorm on
Wo(p). It follows by Theorem 2 [6] that 0<inf p,<sup p,<oo. It was noted in
[8] that if a topological linear space was r-convex for some r>1, then X was the
only neighbourhood of the origin. Hence, if w,(p) is r-convex then 0<r<1.

The rest of the theorem follows from Theorem 4 with 4= D.

We shall now use Theorem 5 to prove that the existence of N>1 such that (1)
of Theorem 1 holds is not necessary for the r-convexity of [4, p], in general.
Consider w,,(p) as given by the Cesaro matrix C and define, for 0<r<1, p,=r/2
for k=2, i=0, 1, ... and p,=r for k2. Then the sets s(n) associated with C
are of the form {k:1<k<n and k=2 for some i >0}. Condition (1) fails, since

zN”k=n—+1

s(2%)
for every N>1. However, (iii) of Theorem 5 is satisfied with N=2, whence [C, p],,
is r-convex.

The above example also shows that the condition [B, (r)],< [B, pl, is not
necessary for the r-convexity of [4, p],, in general. For, with 4=C, the inclusion
[B, (N],<I[B, pl. is equivalent to the inclusion £,=¢(p). If we now put a,,=
1 (k>1) and a,,=0 (n>1) in Theorem 4, then the hypothesis is satisfied and
[4, pl,=[B, plo,=¢(p). Hence £,<{(p) is equivalent to the existence of N>1 such
that > N™< oo, where the summation is over p,<r. But this fails since m,=—1
for k=2°.

It was shown in Theorem 3 [8] that the inclusion w,,(p)<=w,(r) was sufficient
for the r-convexity of w,,(p) when 0<r<1 and sup p; < cc. We now show that the
inclusion is not necessary.

THEOREM 6. The inclusion w,(p)=w,(r) is not necessary for the r-convexity

of w,.(p).

Proof. Let 0<r<1 and define p,=r/2 for k=2* and p,=r for k#2* We have
already seen that w,(p) is r-convex. Now by the corollary to Lemma 2 [8] we
have that w,(p)<=w,(r) is equivalent to

) 2~ max, 277 = O(1),

where the max is taken over k such that 2¢<k <2, But in the present situation
we have that the left hand side of (9) is equal to 2¢, whence the result.

So far we have dealt with [4, p],, spaces. Similar results hold for [4, p], spaces.
For example, we may replace [4, p], in Theorem 4 by [4, pl,, leaving the rest
unchanged. The new result is still valid. Again, in Theorem 5, we may replace
We(p) by wy(p) in (i) and remove the restriction 0<inf p, in (ii) and (iii), leaving
the rest unchanged. We do not require 0<inf p,, since wy(p) is paranormed if and
only if sup p,< .
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Finally, we consider the normability of some of the special spaces. It is well-
known that a topological linear space is normable if and only if it is locally convex
(i.e. 1-convex), locally bounded and Hausdorff.

THEOREM 7. Let S={k:0<sup, a,;, <} and T={k:k € S and a,;—0(n—0)}.
Let [4, pl,, (respectively [A, ply) be paranormed. Then it is locally bounded if and
only if infg p, >0 (respectively inf , p,>0).

Proof. Consider [4, p],. For the sufficiency write a=infg p;,>0. We shall show
that the sphere S(1) of centre 6 and radius 1 is a bounded neighbourhood of 6.
Let N be any neighbourhood of 6. Then there is a sphere S(d)<=N. Choose 4 such
that |A|>1 and ||-*<d™, where M=max(l, supg pr)- Now if x € S(1) then

1/M
¢(x/7) = sup (% . Ix/ll”k) < |,

Hence x/A4 € S(d)= N, so that S(1)< AN, i.e., S(1) is a bounded neighbourhood
of 6.

Conversely, suppose that [A4, p],, is locally bounded. Then there is a bounded
neighbourhood B of 6 and d>0 such that S(d)< B. Since B is bounded there is a
non-zero A such that

AS(d) = 2B < S(d[2).
Now for each k € S define x** € S(d) by

1/

x® = (dM/sup ank) - e,
n

Then g(Ax"*)=d |4|**'¥ < d|2, whence infg p,>0.
The proof for [4, p,] is similar except that we work with the set T instead of S,
since if x € [4, p]y, then for each n,

Z Ay | X5 = Z Qe | X5| 75,
T

(k)

and e € [4, p], if and only if a,;—0 (n—0).

THEOREM 8.

(i) co(p) and m(p) are normable if and only if 0<inf p, <sup p, < co.
(ii) £(p) is normable if and only if sup p,<co and {(p)=¢,.
(iii) wo(p) and wy(p) are normable if and only if 0<inf p,<sup p,<oo and
[B, D] <[B, pl.,, where b, =1 if 2" 1<k <2" and b,;=0 otherwise.

Proof. This follows readily from Theorem 7 and the earlier results on r-convexity.
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