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ABSOLUTE CONVEXITY IN SPACES OF STRONGLY 
SUMMABLE SEQUENCES 

BY 

I. J. MADDOX AND J. W. ROLES 

The space wp of strongly Cesàro summable sequences of index /?>0 has been 
investigated by several authors. In [2], Kuttner proved that no Toeplitz matrix 
could sum all sequences in wP, a result which was extended to coregular matrices 
by Maddox [5]. In [1], Borwein considered the continuous dual space of wp. 
The more general space w(p) has also been considered [3, 4], where jp=(pA.) is a 
strictly positive sequence. The r-convexity of the spaces w^ip) and w0(p) was dealt 
with in a partial way in [8]. In the present note we establish criteria for the r-
convexity of some general classes of [A,p]0 and [A9p]^ spaces (see [6] and [7] 
for definitions), and in particular we give the necessary and sufficient conditions for 
the r-convexity of w^ip) and w0(p). For most of the relevant definitions and notation 
we refer to [8]. 

By A=(ank) we denote a non-negative infinite matrix; by p=(pk) a strictly 
positive sequence, and by 2 a s u m fr°m & = 1 to &=oo. Sums taken over empty 
sets are regarded as zero. We write An(x)=y£,ank \xk\

Vk and define [A.p]^ to be 
the set of all sequences x=(xk) such that An(x)=0(l). By [A,p]0 we denote the 
set of x such that An(x)->0 (n->co). The condition sup/?fc<oo, the supremum 
taken over k such that 0<supw anJfc<oo, is sufficient for [A,p]^ and [A,p]0 to 
be linear spaces (see [7]). 

In connection with r-convexity we shall write, for r > 0 , 

s(n) = jfe: 0 < ank9 sup ank < oo and pk < A . 

Some useful inequalities are now stated. 

LEMMA 1. Let x,y, A, \x be complex numbers. Then 

(i) 0< /?< l implies 

(ii) P^\ and |A| + |/^|<1 imply 

(lAxi+Mr^mixr+i^iiyi». 
(iii) \x\ < 1, 0 < p < r and iV> 1 imply 

\x\»<\x\r{\+N log N)+N*, 
where l/Tr+r/p^l. 
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Proof, (i) is well-known. A proof of (ii) is given in [8], and (iii) is a slight 
generalization of a result used in [9], p. 427. 

We first give a sufficient condition for r-convexity ( 0 < r < l ) in [A.p]^. It is 
supposed that H=suppk<co (where the supremum is over k such that 0 < 
supw ank< co) and that [A^p]^ is equipped with the natural distance function 

g(x) = sup(An(x))1/M, 
n 

where M=max( l , H). 

THEOREM 1. Let [A^p]^ be aparanormed space, let 0 < r < l and suppose that 
there exists an integer N> 1 such that 

(1) sup J W* < °°> 
n s{n) 

where l/7rfc+r//?fc=l. Then [A^p]^ is r-convex. 

Proof. For each d > 0 w e shall construct an absolutely r-convex set U(d) con­
taining the origin 0 = (O, 0, 0, . . . ) , and then show that for 0 < d < l the U(d) form 
a neighbourhood base of 6. 

For each k define qk=max(r,pk) and for each J > 0 define 

Ut(d) = Jx e [A, p]„ : sup £ (ank \xk\^f^ < dj, 

U2(d) = x G [A, p L : sup (ank \xk\**) < d\, 

and U(d)=Ux(d) n U2(d). Now ifx9ye U(d) and | A | r + M r ^ l , then |A| + | / / |<L 
Splitting the cases qk<\ and qk>\ and applying Lemma 1, (i) and (ii), we obtain 

whence x , j e t/x(J) implies A X + ^ J G Ux(d). Also, since X , J G t/2(J) and |A| + 
\p\ < 1 we see that Xx+fiy e U2(d). Consequently U(d) is an absolutely r-convex 
set containing 6. 

Let us denote by S(R) the sphere of centre 6 and radius R>0, i.e. the set of all 
x G [A^p]^ such that g(x)<R. Then it is easy to show that, for 0<d<l, we have 
U(d)=>S(d1/M), so that U(d) is a neighbourhood of 0. 

Finally, we show that for each e>0 there is a d=d(e)>0 such that 0<*/<l 
and U(d)<=S(e) 

Denote by t(n) the set of all k e s(n) such that pk<r[2. By (1) we see that t(n) 
is a finite set, for each n. Let iV(«) be the number of integers in t(n). Then, since 
pk<rjl implies — l<7ffc<0, we have 

2 JV* > 2 w1 = w1 • #(*), 
s(n) £(n) 
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whence 

(2) H' = sup N(n) < oo. 
n 

Now let x e U(d) for some d with 0 < d < l . We shall appraise g(x) by splitting 
An(x) into three sums: 2 i oyevpk>r, ^2 over pk<r/2 and 2a over rj2<pk<r. 

Since x G ^ ( J ) andpk=qk when pk>r, we have 

i i 

for each « > 1 . Since x G £72(/0 it follows from (2) that 

2ank\xk\»*<d-H' 
2 

for each n>\. Next, we have qk—r for r/2<pk<r, so by Lemma 1 (iii), for each 
N> 1 and each n>l,^3is less than or equal to 

(1+JV log N) 2 (ank \xk\**y>'**+ 2 N'*. 
3 3 

Now let R be a positive integer. If r/2<pk<r then ^ jC — 1 , whence 

£ (£#)**< IT 1 JiV**, 
3 s(n) 

so that supn ^ 3 -W** c a n be made arbitrarily small by a choice of a suitably large 
N. Finally, let e>0 and choose JV>1 such that 

sup 2 W* < 0/2)M 

w 3 

and 0 < Û T < 1 such that d(2+H'+NlogN)<(sl2)M. Then, by our previous 
estimates, and using the fact that M > 1 , we have by Lemma 1 (i), with/? replaced 
by 1/M, that g(x)<e, whenever x e U(d). This proves Theorem 1. 

We note that r<\ is essential to the truth of Theorem 1. For example, let 
r > l and ank=l for every n and k. Takingpk=r for every k, we have [A,p]o0= €r. 
The sum in (1) is zero, since it is taken over the empty set. However, £r is not 
r-convex. Later we shall show that (1) is not necessary for the r-convexity of [A, p]^ 
in general, though it is necessary in a large number of cases (see Theorem 4). 

Next we consider the problem of finding a reasonable necessary condition for 
the r-convexity of [A.p]^. With a restriction on the matrix A, such a condition, 
involving a set inclusion, is given in the next theorem. The matrix B which appears 
in the set inclusion is defined as follows. If 0<supwawfc<oo and ank>0, define 
bnk=\. Otherwise define bnk=0. By (r) we denote the constant sequence (r, r, 

THEOREM 2. If [A.p]^ is r-convexfor some r > 0 , and there is a positive constant 
a such that for each n and each k such that 0<supw ank< oo and anfc>0, we have 
ank>* ' supn ank, then [B, (>)]«,<= [B,p]. 
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Proof. Let x e [B, (r)]^. Then there exists H>\ such that 

WV2bnMr<:H. 
n 

Define hk=xklH
1/r for fc= 1,2, Since [A.p]^ is r-convex there is an absolutely 

r-convex neighbourhood U and d>0 such that S(d)<^ U^S(l). Denote by e(k) 

the sequence with 1 in the fcth place and 0 elsewhere. Let k be such that 0 < 
supn ank< oo. The e{7c) e [A^p]^ and we may define 

/*> = ldMlsupank)
lfl>*'e{k\ 

It follows that y k ) 6 S(d)<^ U. Now choose an integer m> 1 and let 2 denote any 
finite sum over the k for which bmk=l. Then 2 W = 2 *w* \xk\

r H"1^! so that 
by absolute convexity of U, 2 ^J<&) G ^C -S( l ) } whence 

2 ( ^ i 4 r f t ^ / s u P ^ <i. 

It follows that 2 *,»* I4r f c <a - 1 ^~ M
5 whence, since # > 1 , 

which implies that x e [i?,/?]^. 
We now connect the necessary and sufficient conditions for r-convexity through 

the next theorem, whichis purely set-theoretic and independent of r-convexity. 

THEOREM 3. Let B=(bnk) be any matrix of noughts and ones, p be any strictly 
positive sequence and r > 0 . If B is column finite and [B, ( r ^ c [B9p]O09 then there 
exists an integer 7V>1 such that (1) of Theorem 1 holds, where s(ri)={k:bnk=l 
andpk<r}. 

Proof. By using the same type of argument as that of [9] for the special case of 
the inclusion €r^-{{p), it is easily shown that the inclusion [B, ( r ) ] ^ [B^p]^ 
implies that, for each n, there exists an integer N=N(ri) such that 

(3) 2 #** < oo. 
s(n) 

Now suppose, if possible, that (1) of Theorem 1 fails. Then there is an integer 
n(l)>l such that 

(4) 2 ^ (n(l)) 2 2"k < oo. 

Here, and elsewhere, (m) ]? denotes that the summation is restricted to k e s(m). 
Since irk<09 (4) implies that there is a &(1)>1 such that 

MI) 

l^(n(l))22'*<2. 
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Now by (3) there exists N> 1 such that, for 1 <j<n(l), 

U) !**'*< oo. 

Hence, since 7rA.<0 we may choose Nx>2 and so large that 

(DIN** <1 
for 1</<«(1) and all N>NX. 

Since B is column finite and (1) fails there is an integer «(2)>«(1) such that 
bnk=0 for n>n{2) and \<k<k{\) and such that 

# i < (n(2)) f Nl* < oo, 
i+fc(i) 

whence there is k(2)>k(l) such that 

k(2) 

JVi-1 <(n(2)) 2 Nl*<Nv 
l+k(l) 

Proceeding in this way we construct subsequences (N{), (n(i)), (k(i)) of positive 
integers, such that for each />1 , 

(5) U)2W*£1, for l<j<n(i) and N > Ni9 

(6) bnk = 0 for ?i>n(f+l) and 1 < k < k(f), 

k(i+l) 

(7) JV<-1 < (n(i+l)) 2 JVT* < JV,. 
l+fc(«) 

Now set &(0)=»(0)=0, JV0=2 and define x by xfc=7Vi^"1)/r for A: es(n(i+l))9 

k(i)<k<k(i+l), i=0, 1,. . . , and ^ = 0 otherwise. 
Let n>l. Then there exists />0 such that n(i)<n<n(i+l). Hence, by (6) we 

have 2 f cin3b |^r=(/i)2i+(w)22+( / |)23> w h e r e 00 2 i i s t h e s u m o f \xk\r over 
fc(f—l)<fc<fc(0, («) ̂ 2 ^ e s u m o v e r k(i)<k<k(i+l), and («) ̂ 3 the sum over 
k>k(i+l). Now by the definition of x, we have by (7), 

(n) 2 < (n(0) 2 iV^r1 ^ 1 and (n) 2 < (n(i+i)) 2 iVf*"1 < 1. 
1 1 2 2 

Also, by definition of x, the fact that 7rfc<0, and by (5), 

3 3 

Hence 2kKkMr<3, so that xe[B,(r)]„. But for />1 , 2**w(,)ifc \xk\»*> 
Ni_1—l-*ao(i-+co), by (7), which means that x $ [B,p]^. This proves Theorem 3. 

The next result will enable us to characterize r-convexity in w^ip). 
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THEOREM 4. Suppose that A is a column finite matrix which satisfies the oe-
condition of Theorem 2. Let 0 < r < l . Then the following conditions are equivalent: 

(i) [^,p]oo is r-convex. 
(ii) [B, (r)]œ<=[£,/?]«,, where bnk=l if 0<s\npnank<co and ank>0, and 

bnk=0 otherwise. 
(iii) There exists an integer N> 1 such that 

sup J Nv* < oo, 
n s(n) 

where s(n) = {k:Q<ank, supn ank<co andpk<r} and 1 / ^ + ^ = 1 . 

Proof, (i) implies (ii), (ii) implies (iii) and (iii) implies (i) by Theorems 2, 3 
and 1 respectively. 

COROLLARY. m(p)={x:sup \xk\
pk<oo} is l-convex if and only if 0<inîpk< 

s\xppk<co. 

Proof. This simple result was given in Theorem 2 [8]. It may be deduced from 
Theorem 4 above by taking A to be the unit matrix and iV=2 in (iii). 

Let us now recall the definition of the set w^(p): 

Woo(p) = ( x : i K ^ = 0(n)] 

= {*:|l**l* = 0(2n)} 
where ^n denotes a summation over k such that 2n<k<2n+1, with n>0. 

Thus w^ip) may be generated either by the Cesaro matrix C=(cwfc), where 
cnk=l/n for \<k<n and cnk=0(k>n), or by D=(dnk), given by dnk=2~(<n-1) 

for 2n-1<fc<2w , with n>\ and rfnfc=0 otherwise. 
It is also easy to see that the matrices C and D give equivalent paranorm topol­

ogies for w^ip)- In the next theorem we regard wœ(p) as [D,p]^ with 

( \1/M 

n J 

where M=max( l , suppfc), whenever sup/?fc<oo. 

THEOREM 5. The following statements are equivalent: 

0) woo(p) w r-convex. 
(ii) 0 < r < l , 0<inf/7A;<sup/7fc<oo ^ [£, ( r ) ]wc [B,/?]«,, wAen? ftnJfc=l /or 

2n~1<k<2n andbnk=0 otherwise. 
(iii) 0 < r < l , 0<inf/7fc<sup/?A;<oo and there is an integer N>1 such that 

sup 2 N*k < oo, 
n s(n) 

where s(n)={k:2n~1<k<2n andpk<r}. 
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Proof. Let (i) hold. Then we are assuming that g given by (8) is a paranorm on 
w^ip). It follows by Theorem 2 [6] that 0<.mfpk<s\ippk<co. It was noted in 
[8] that if a topological linear space was r-convex for some r > l , then X was the 
only neighbourhood of the origin. Hence, if w^(p) is r-convex then 0 < r < l . 

The rest of the theorem follows from Theorem 4 with A = D. 
We shall now use Theorem 5 to prove that the existence of 7V>1 such that (1) 

of Theorem 1 holds is not necessary for the r-convexity of [A^p]^ in general. 
Consider w^(p) as given by the Cesaro matrix C and define, for 0 < r < l , pk=r/2 
for k=2\ i=Q, 1, . . . and pk=r for k^l*. Then the sets s(n) associated with C 
are of the form {k:l<k<n and k=2l for some />0}. Condition (1) fails, since 

s(2n) N 

for every 7V>1. However, (iii) of Theorem 5 is satisfied with N=2, whence [C,/?]^ 
is r-convex. 

The above example also shows that the condition [B, ( r ^ c [B,p]^ is not 
necessary for the r-convexity of [A.p]^ in general. For, with A = C, the inclusion 
[B, (rXLc L#,/?]oo is equivalent to the inclusion £r<^€(p). If we now put alk= 
1 (k>l) and ank=0 («>1) in Theorem 4, then the hypothesis is satisfied and 
[A,p]O0 = [B,p]O0=^(p). Hence / r <=/(/?) is equivalent to the existence of JV>1 such 
that 2 TV77*< GO, where the summation is over pk<r. But this fails since 7Tk— — l 
for k=2\ 

It was shown in Theorem 3 [8] that the inclusion wQ0(p)(^wo0(r) was sufficient 
for the r-convexity of w^(p) when 0 < r < 1 and sup/?fc< oo. We now show that the 
inclusion is not necessary. 

THEOREM 6. The inclusion wCG(p)<^-w(X){r) is not necessary for the r-convexity 

ofwaoip). 

Proof. Let 0 < r < l and define pk=r/2 for k=2* and pk—r for &T*2\ We have 
already seen that w^ip) is r-convex. Now by the corollary to Lemma 2 [8] we 
have that w^ip)^ w^r) is equivalent to 

(9) 2"*max i2' r /^ = 0(l), 

where the max is taken over k such that 2{<k<2i+1. But in the present situation 
we have that the left hand side of (9) is equal to 2% whence the result. 

So far we have dealt with [A^p]^ spaces. Similar results hold for [A,p]0 spaces. 
For example, we may replace [A, p]^ in Theorem 4 by [A,p]0, leaving the rest 
unchanged. The new result is still valid. Again, in Theorem 5, we may replace 
Woo00 by w0(p) in (i) and remove the restriction 0<inf/?A in (ii) and (iii), leaving 
the rest unchanged. We do not require 0<inf/?A., since w0(p) is paranormed if and 
only if suppk<co. 
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Finally, we consider the normability of some of the special spaces. It is well-
known that a topological linear space is normable if and only if it is locally convex 
(i.e. 1-convex), locally bounded and Hausdorff. 

THEOREM 7. Let S={fc:0<supn ank<co} and T={k\k e S and ank-+0(n-+co)}. 
Let [A.p]^ {respectively [A,p]0) be paranormed. Then it is locally bounded if and 
only if infspk>0 (respectively infT/?fc>0). 

Proof. Consider [A,p]^. For the sufficiency write a=infspk>0. We shall show 
that the sphere S(l) of centre 6 and radius 1 is a bounded neighbourhood of 6. 
Let N be any neighbourhood of 0. Then there is a sphere S(d)^N. Choose X such 
that \X\>\ and \À\~a<dM, where Af=max(l, supspk). Now if x e S(\) then 

( \1/M 
2ank\xlX\»A <\X\~alM. 
s ! 

Hence xjXe S(d)<^N, so that S(l)^XN, i.e., S(l) is a bounded neighbourhood 
of0. 

Conversely, suppose that [A^p]^ is locally bounded. Then there is a bounded 
neighbourhood B of 0 and d>0 such that S(d)<^B. Since B is bounded there is a 
non-zero X such that 

XS(d) c 2 5 c S(d/2). 

Now for each k e S define x{k) e S(d) by 

*<*>= Id^suvaS^'e^. ( V d^/sup ank\ 

Then g(jbcu))=</ |A|**/Jlf ̂ <//2, whence infspk>0. 
The proof for [̂ f, /?0] is similar except that we work with the set T instead of S9 

since if x e [A,p]Q, then for each n, 

2 *»* \xk\** = 2 ank \xk\\ 
T 

and e{k) e [A,p]0 if and only if ank-+0 (n->co). 

THEOREM 8. 

(i) c0(p) and m(p) are normable if and only if 0<inf pk<sup pk< oo. 
(ii) €(p) is normable if and only if sup pk<co and€{p)^€x, 

(iii) w0(p) and w^{p) are normable if and only if 0<infjpA.<sup/?fc<cx) and 
[B, (l)]ooC= [£,/?L, where bnk=l if2n~1<k<2n andbnk=0 otherwise. 

Proof. This follows readily from Theorem 7 and the earlier results on r-convexity. 
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