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Abstract
We consider a holomorphic family 𝑓 : 𝒳 → 𝑆 of compact complex manifolds and a line bundle ℒ → 𝒳. Given
that ℒ−1 carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor 𝒟, the
direct image 𝑓∗(𝐾𝒳/𝑆 ⊗𝒟 ⊗ℒ) carries a smooth hermitian metric. If ℒ is relatively positive, we give an explicit
formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover, we show that
it improves the general positivity result of Berndtsson-Păun in a special situation of a big line bundle.
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1. Introduction

We consider a proper holomorphic submersion 𝑓 : 𝒳 → 𝑆 of complex manifolds and a snc divisor 𝒟
on 𝒳 whose restriction 𝐷𝑠 := 𝒟|𝑋𝑠 to each fibre 𝑋𝑠 = 𝑓 −1(𝑠) is also simple normal crossing. Given

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2022.79 Published online by Cambridge University Press

doi:10.1017/fms.2022.79
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.79&domain=pdf
https://doi.org/10.1017/fms.2022.79


2 Philipp Naumann

a line bundle ℒ → 𝒳 that carries a hermitian metric that is smooth on 𝒳′ := 𝒳 \ 𝒟 and whose
inverse has Poincaré growth near the divisor 𝒟, we study the spaces of square integrable canonical
forms on the open fibres 𝑋 ′

𝑠 := 𝑋𝑠 \ 𝐷𝑠 that have values in 𝐿𝑠 := ℒ |𝑋 ′
𝑠
. By the work of Zucker [24] and

Fujiki [8], we can identify these 𝐿2-Dolbeault cohomology groups 𝐻0
(2) (𝑋

′
𝑠 , 𝐾𝑋 ′

𝑠
⊗ 𝐿𝑠) with the spaces

𝐻0 (𝑋𝑠 , 𝐾𝑋𝑠 ⊗ 𝐷𝑠 ⊗ 𝐿𝑠). More globally, we will see that these spaces are the fibres of the coherent sheaf
𝑓∗(𝐾𝒳/𝑆 ⊗ 𝒟 ⊗ ℒ) on the base S. Under the condition that this sheaf is locally free, the natural 𝐿2-
metrics on the 𝐿2-Dolbeault spaces induce a smooth hermitian metric on the direct image. We give an
explicit curvature formula for it in the case the hermitian metric on ℒ is positive along the fibres 𝑋 ′

𝑠 . If
ℒ is globally positive on 𝒳′ := 𝒳 \𝒟, the direct image 𝑓∗(𝐾𝒳/𝑆 ⊗𝒟 ⊗ℒ) is also positive. The result
applies to families of log-canonically polarized pairs, where the Poincaré type Kähler-Einstein metrics
induce such a singular hermitian metric on the relative canonical bundle. We give another application
to illustrate how our result improves the general positivity theorem from [3] in a special situation.

2. Differential geometric setup and statement of results

Let 𝑓 : 𝒳 → 𝑆 be a proper holomorphic submersion of complex manifolds with connected fibres and
ℒ a line bundle on 𝒳. We assume that ℒ has a hermitian metric h that is smooth on the complement of
a relative simple normal crossing divisor 𝒟 =

∑𝑙
𝑖=1 𝒟𝑖 on 𝒳 with the following asymptotic behaviour

along 𝒟

ℎ−1 |𝒳′ = exp(𝑢) ·
ℎ𝐶∞

ℒ−1∏𝑙
𝑖=1 | |𝜎𝑖 | |2𝑖 log2 | |𝜎𝑖 | |2𝑖

, (2.1)

where the notation is as follows:

◦ ℎ𝐶∞

ℒ−1 is a smooth metric on ℒ−1.
◦ | |𝜎𝑖 | |𝑖 is the norm of the canonical section cutting outD𝑖 with regard to a smooth metric s.t. | |𝜎𝑖 | |𝑖 < 1.
◦ u is a function on 𝒳′ s.t. 𝑢 |𝑋 ′

𝑠
∈ 𝒞𝑘,𝛼 (𝑘 ≥ 2) for all s, and the map 𝑠 ↦→ 𝑢 |𝑋 ′

𝑠
is Fréchet differentiable.

◦ 𝜔𝑠 := −i𝜕𝜕 log(ℎ) |𝑋 ′
𝑠

is a Poincaré type Kähler metric on each fibre 𝑋 ′
𝑠 .

Here we have used the Hölder space of functions 𝒞𝑘,𝛼 = 𝒞𝑘,𝛼 (𝑋 ′
𝑠0) on an open fibre 𝑋 ′

𝑠0 that were
introduced in [6, 14, 21] and do not depend on the fibre. We refer to this by saying that the inverse
metric ℎ−1 has Poincaré type singularities along 𝒟. We write 𝒟

𝑖
↩→ 𝒳

𝑓
→ 𝑆 for the family of smooth

log pairs (𝑋𝑠 , 𝐷𝑠).
The reason for choosing this asymptotic will become clear when we consider the family of Poincaré

type Kähler-Einstein metrics for a family of log canonically polarized manifolds. We remark that it
includes the case where the function u is smooth on 𝒳, and it implies that u and its derivatives in the
base and fibre direction we will consider are bounded on 𝒳′. In a local description, the norm squared
of a local trivialising section 𝑒ℒ of ℒ near a point 𝑝 ∈ 𝒟 is given by

|𝑒ℒ |2ℎ (𝑧, 𝑠) =
(

𝑟∏
𝑖=1

|𝑧𝑖 |2 log2 (|𝑧𝑖 |2)
)
· 𝑣(𝑧, 𝑠), 𝑣 ∈ 𝐶𝑘

loc (𝒳
′),

where the divisor is given by 𝒟 = {𝑧1 · · · 𝑧𝑟 = 0} with respect to local holomorphic coordinates (𝑧, 𝑠)
around p with 𝑧 = 𝑧1, . . . , 𝑧𝑛 and 𝑠 = 𝑠1, . . . , 𝑠𝑚 such that 𝑓 (𝑧, 𝑠) = 𝑠. Here, 𝑛 := dim 𝑋𝑠 and𝑚 := dim 𝑆.

The curvature form of the hermitian line bundle (ℒ, ℎ) restricted to 𝒳′ := 𝒳 \𝒟 is given by

𝜔𝒳′ := −
√
−1𝜕𝜕 log ℎ.

This means we view h as a singular hermitian metric on ℒ whose curvature current restricted to 𝒳′

is given by the smooth form 𝜔𝒳′ . Our assumption on h guarantees that each restriction 𝜔𝒳′ |𝑋 ′
𝑠

is
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quasi-isometric to the model metric

√
−1

(
𝑘∑

𝑖=1

𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖

|𝑧𝑖 |2 log2(1/|𝑧𝑖 |2)
+

𝑛∑
𝑖=𝑘+1

𝑑𝑧𝑖 ∧ 𝑑𝑧𝑖

)
near the point p.

We consider the case where the hermitian line bundle (ℒ, ℎ) |𝒳′ is relatively positive, which means

𝜔𝑠 := 𝜔𝒳′ |𝑋 ′
𝑠

are Kähler forms on the open fibres 𝑋 ′
𝑠 := 𝑋𝑠 \ 𝐷𝑠 . This implies that ℒ ⊗ 𝒟 is relatively big and nef.

Then one has the notion of the horizontal lift 𝑣𝑖 of a tangent vector 𝜕𝑖 on the base S (see Section 6.1 for
the precise definition), and we get a representative of the Kodaira-Spencer class by

𝐴𝑖 := 𝜕 (𝑣𝑖) |𝑋 ′
𝑠
,

which is a 𝒞𝑘,𝛼-tensor by [18, Lemma 3] and thus square integrable. Furthermore, one sets

𝜑𝑖 𝚥 := 〈𝑣𝑖 , 𝑣 𝑗〉𝜔𝒳′ ,

which is called the geodesic curvature. We note that (𝜑𝑖 𝚥)𝑖 𝚥 is positive (semi-)definite if and only if ℒ
is globally (semi-)positive on 𝒳′. Again, our assumption on 𝑢(𝑧, 𝑠) guarantees that each 𝜑𝑖 𝚥 is a 𝒞𝑘,𝛼

function and thus in particular bounded on each fibre.
Now we turn to the direct image sheaf we want to study. On a fibre 𝑋𝑠 , we denote by Ω𝑛

𝑋𝑠
(log𝐷𝑠) =

𝐾𝑋𝑠 ⊗ 𝐷𝑠 the locally free sheaf of germs of logarithmic n-forms with log-poles along 𝐷𝑠 . This sheaf is
the restriction of Ω𝑛 (log𝒟)𝒳/𝑆 = 𝐾𝒳/𝑆 ⊗ 𝒟, the sheaf of relative logarithmic n-forms with log-poles
along 𝒟, to the fibres 𝑋𝑠 .

We assume that the dimension of the cohomology groups

𝐻0(𝑋𝑠 ,Ω
𝑛
𝑋𝑠
(log𝐷𝑠) (𝐿𝑠))

is constant on S, which in general only holds outside a proper subvariety. Under this assumption, we get
the local freeness of the coherent sheaf

𝑓∗(Ω𝑛 (log𝒟)𝒳/𝑆 (ℒ))

whose fibres are canonically isomorphic to the cohomology groups 𝐻0 (𝑋𝑠 ,Ω𝑛
𝑋𝑠
(log𝐷𝑠) (𝐿𝑠)). By the

work of Zucker [24] and Fujiki [8], we can identify these groups with the 𝐿2-Dolbeault cohomology
groups 𝐻0

(2) (𝑋
′
𝑠 , 𝐾𝑋 ′

𝑠
⊗ 𝐿𝑠). Hence, the latter spaces also form a vector bundle on the base, which we

denote by

𝑓∗(𝐾𝒳′/𝑆 ⊗ ℒ |𝒳′ )𝐿2 .

It turns out that this is nothing but the bundle 𝑓∗(Ω𝑛 (log𝒟)𝒳/𝑆 (ℒ)). Now we can represent local
sections of this bundle by holomorphic sections of Ω𝑛 (log𝒟)𝒳/𝑆 (ℒ) whose restrictions to the open
fibres 𝑋 ′

𝑠 are thus 𝐿2-integrable and holomorphic (𝑛, 0)-forms with values in 𝐿𝑠 . Let {𝜓1, . . . , 𝜓𝑟 } be
a local frame of the direct image consisting of such sections around a fixed point 𝑠 ∈ 𝑆. We denote
by {(𝜕/𝜕𝑠𝑖) | 𝑖 = 1, . . . , 𝑚} a basis of the complex tangent space 𝑇𝑠𝑆 of S over C, where 𝑠𝑖 are local
holomorphic coordinates on S. The components of the metric tensor for the 𝐿2-metric on the direct
image are then defined by

𝐻𝑙𝑘 (𝑠) := 〈𝜓𝑘 , 𝜓𝑙〉 := 〈𝜓𝑘 |𝑋 ′
𝑠
, 𝜓𝑙 |𝑋 ′

𝑠
〉(𝑠) :=

∫
𝑋 ′
𝑠

𝜓𝑘 |𝑋 ′
𝑠
· 𝜓𝑙 |𝑋 ′

𝑠
𝑑𝑉 = i𝑛

2
∫

𝑋 ′
𝑠

(𝜓𝑘 |𝑋 ′
𝑠
∧ 𝜓𝑙 |𝑋 ′

𝑠
)ℎ .
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Here we use the notation 𝜓𝑙 := 𝜓𝑙 for the sections 𝜓𝑙 and write 𝑑𝑉 = 𝜔𝑛
𝑋 ′
𝑠
/𝑛!. The pointwise inner

product 𝜓𝑘 ·𝜓𝑙 is the one given by𝜔𝑠 and ℎ|𝑋 ′
𝑠
. In the last equality, we used the Hodge-Riemann bilinear

relation because the holomorphic (𝑛, 0)-forms are primitive. Note that by working on the open fibres
𝑋 ′

𝑠 , the metrics involved are smooth so that we have a harmonic theory for square integrable forms lying
in the domain of the Laplacian.

Let 𝐴𝛼
𝑖𝛽
(𝑧, 𝑠)𝜕𝛼𝑑𝑧

𝛽 = 𝜕 (𝑣𝑖) |𝑋 ′
𝑠

be the 𝜕-closed representative of the Kodaira-Spencer class of
𝜕𝑖 described above. We know that 𝐴𝑖 lies in the space of smooth and 𝐿2-integrable (0, 1)-forms
𝐴0,1
(2) (𝑋

′
𝑠 , 𝑇𝑋 ′

𝑠
). Hence these, together with contraction, define a map

𝐴𝛼
𝑖𝛽
𝜕𝛼𝑑𝑧

𝛽∪ : 𝐻0 (𝑋𝑠 ,Ω
𝑛
𝑋𝑠
(log𝐷𝑠) (𝐿𝑠)) → 𝐴0,1

(2) (𝑋
′
𝑠 ,Ω

𝑛−1
𝑋 ′
𝑠
(𝐿𝑠)).

When applying the Laplace operator to (𝑝, 𝑞)-forms with values in 𝐿 |𝑋 ′
𝑠

on the fibres 𝑋 ′
𝑠 , we have

�𝜕 − ��̄� = (𝑛 − 𝑝 − 𝑞) · id

due to the definition 𝜔𝑋 ′
𝑠
= 𝜔𝒳′ |𝑋 ′

𝑠
and the Bochner-Kodaira-Nakano identity. Thus, we write � = �𝜕 =

��̄� in the case 𝑞 = 𝑛 − 𝑝. The main result is

Theorem 2.1. Let 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆 be a family of smooth log pairs and (ℒ, ℎ) → 𝒳 a hermitian line

bundle as described above. With the objects just described, the 𝐿2-metric on 𝑓∗(Ω𝑛 (log𝒟)𝒳/𝑆 (ℒ)) is
smooth, and its curvature is given by

𝑅𝑙𝑘
𝑖 𝚥 (𝑠) =

∫
𝑋 ′
𝑠

𝜑𝑖 𝚥 · (𝜓𝑘 · 𝜓𝑙) 𝑑𝑉

+
∫

𝑋 ′
𝑠

(� + 1)−1(𝐴𝑖 ∪ 𝜓𝑘 ) · (𝐴 𝚥 ∪ 𝜓𝑙) 𝑑𝑉.

In particular, 𝑓∗(𝐾𝒳/𝑆 ⊗ 𝒟 ⊗ ℒ) is Nakano (semi-)positive if ℒ is (semi-)positive on 𝒳′ and positive
along the fibres 𝑋 ′

𝑠 .
We remark that if ℒ is (semi-)positive, the direct image 𝑓∗(𝐾𝒳/𝑆 ⊗ 𝒟 ⊗ ℒ) is locally free by the

Ohsawa-Takegoshi extension theorem. The result applies to families of log-canonically polarized pairs
where the relative canonical bundle 𝐾𝒳′/𝑆 plays the role of ℒ. Here the hermitian metric is induced
from the fibrewise Poincaré type Kähler-Einstein metrics. In this case, we first prove

Theorem 2.2 (= Theorem 4.1). Let 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆 be a family of smooth log-canonically polarized

pairs. Then the curvature of the hermitian metric on 𝐾𝒳′/𝑆 that is induced by the Poincaré type Kähler-
Einstein metrics on the fibres is semipositive. If the family is effectively parametrised, then 𝐾𝒳′/𝑆 is
strictly positive.

This answers a question raised in [11, Remark 7.1]:

Corollary 1 (= Corollary 5). For a family of smooth log-canonically polarized pairs 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆, the

relative log-canonical bundle 𝐾𝒳/𝑆 ⊗ 𝒟 equipped with the metric induced from the fibrewise Kähler-
Einstein metrics is nef. If the family is effectively parametrised, 𝐾𝒳/𝑆 ⊗𝒟 is big. Here, S is assumed to
be compact.

By combining both theorems, we get

Corollary 2. For a family of log-canonically polarized pairs 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆, the direct image sheaf

𝑓∗((𝐾𝒳/𝑆 ⊗ 𝒟) ⊗ 𝐾𝒳/𝑆) is semipositive in the sense of Nakano. If the family of log pairs is effectively
parametrised, this direct image is Nakano positive.

To implement the method of computation given in [19, 17], we have to pass from the compact fibres
𝑋𝑠 to the open part 𝑋 ′

𝑠 , where the metrics in consideration are smooth. This requires imposing the 𝐿2
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condition on the spaces of forms on 𝑋 ′
𝑠 . To show that all steps in the computation are still justified, we

have to check integrability. This is possible due to knowledge of the asymptotic behaviour of our sections.
Hölder spaces are another important tool with respect to quasi-coordinates. We give the details below.

A proof of the more general curvature formula, including the higher direct images, was claimed
in [22]. However, the arguments in this work seem to be incomplete. One major issue is the smooth
dependency of the fibrewise harmonic projections without the usual assumption of having constant
dimension for the space of fibrewise harmonic forms; compare to [22, Lemma 2]. This is impossible
given that linear independency is an open property; compare to the argument in the proof of [15, Lemma
7.7]. Moreover, it is unclear how to derive the square integrability of some Lie-differentiated forms from
the arguments given in [22, pp. 2958f], which is another key ingredient in the computation. In the
present independent work, we give the detailed arguments for the case of the zeroth direct image. The
key is that one has a precise asymptotic for square integrable holomorphic sections due to the Laurent
series expansion that is lacking for the case of general harmonic forms.

3. Preparations

3.1. 𝐿2-integrable forms

We start with a fibrewise consideration. Let (𝑋, 𝐷 =
∑𝑙

𝑖=1 𝐷𝑖) be a smooth log pair, and set 𝑋 ′ = 𝑋\𝐷.
We consider a holomorphic line bundle L on X together with a metric h that is smooth on 𝑋 ′ and whose
inverse has the asymptotic behaviour from equation (2.1)

ℎ−1 |𝑋 ′ = exp(𝑢) ·
ℎ𝐶∞

𝐿−1∏𝑙
𝑖=1 | |𝜎𝑖 | |2𝑖 log2 | |𝜎𝑖 | |2𝑖

,

where the notation is as follows:
◦ ℎ𝐶∞

𝐿−1 is a smooth metric on ℒ−1.
◦ | |𝜎𝑖 | |𝑖 is the norm of the canonical section cutting out𝐷𝑖 with regard to a smooth metric s.t. | |𝜎𝑖 | |𝑖 < 1.
◦ u is a function in 𝒞𝑘,𝛼 (𝑋 ′).
◦ 𝜔𝑋 ′ := −i𝜕𝜕 log(ℎ) |𝑋 ′ is a Poincaré type Kähler metric.
Then we can identify the holomorphic and locally 𝐿2-integrable (𝑛, 0)-forms with values in L:
Proposition 1. We denote by 𝒪(2) (Ω𝑛

𝑋 ′ (𝐿 |𝑋 ′ ), ℎ|𝑋 ′ ) the sheaf of holomorphic L-valued n-forms on 𝑋 ′,
which are locally 𝐿2 on X with respect to ℎ|𝑋 ′ . Then

𝒪(2) (Ω𝑛
𝑋 ′ (𝐿 |𝑋 ′ ), ℎ|𝑋 ′ ) = 𝒪(Ω𝑛

𝑋 (log𝐷) (𝐿)).

The proof follows immediately from a Laurent series argument together with the estimates of Poincaré
type metrics: sections that are locally square integrable with respect to a metric with a Poincaré type
metric extend holomorphically as forms with logarithmic poles to the given snc divisor D (and vice
versa). �

Let 𝒜𝑛,𝑞
(2) (𝐿 |𝑋 ′ ) denote the sheaf on X of L-valued (𝑛, 𝑞)-forms that are locally 𝐿2 integrable with

respect to 𝜔𝑋 ′ and ℎ|𝑋 ′ and whose 𝜕-exterior derivatives, taken in the current sense, are also locally 𝐿2.
We refer to [25] or [5] for more details on the 𝐿2-complex of sheaves.
Proposition 2. The complex (𝒜𝑛,•

(2) (𝐿 |𝑋 ′ ), 𝜕) of sheaves on X is a fine resolution of
𝒪(2) (Ω𝑛

𝑋 ′ (𝐿 |𝑋 ′ ), ℎ|𝑋 ′ ). Thus the 𝐿2-Dolbeault cohomology group 𝐻0
(2) (𝑋

′,Ω𝑛
𝑋 ′ (𝐿 |𝑋 ′ )) can be identified

with 𝐻0 (𝑋,Ω𝑛 (log𝐷) (𝐿)), which is of finite dimension.
Proof. We decompose the vector bundle locally as a sum of line bundles and apply [8, Prop. 2.1]; also
compare to [8, p.870]. This shows that we have a resolution. The fact that we get a fine resolution is
not automatic (compare to [25, p.175]) because we need cut-off functions with bounded differential.
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But this holds in the context of Poincaré geometry; see [24], where it was successfully employed in the
one-dimensional case. �

3.2. Quasi-coordinates and Hölder spaces

We recall from [6] that a quasi-coordinate map is a holomorphic map from an open set 𝑉 ⊂ C into 𝑋 ′

if it is of maximal rank everywhere in V. In this case, V together with the Euclidean coordinates of C𝑛

is called a local quasi-coordinate of 𝑋 ′. According to [6, 14, 21], we have the following:
Proposition 3. There exists a family 𝒱 = {

(
𝑉 ; 𝑣1, . . . , 𝑣𝑛

)
} of local quasi-coordinates of 𝑋 ′ with the

following properties:
(i) 𝑋 ′ is covered by the images of the quasi-coordinates in 𝒱.

(ii) The complement of some open neighbourhood of the divisor D in X is covered by the images of
finitely many of the quasi-coordinates in 𝒱, which are local coordinates in the usual sense.

(iii) For each (𝑉 ; 𝑣1, . . . , 𝑣𝑛) ∈ 𝒱, 𝑣 ⊂ C𝑛 contains an open ball of radius 1
2 .

(iv) There are constants 𝑐 > 0 and 𝐴𝑘 > 0, 𝑘 + 0, 1, . . . , such that for every (𝑉 ; 𝑣1, . . . , 𝑣𝑛) ∈ 𝒱, the
following inequalities hold:
◦ We have

1
𝑐
(𝛿𝑖 𝚥) < (𝑔𝑖 𝚥) < 𝑐(𝛿𝑖 𝚥)

as matrices in the sense of positive definiteness.
◦ For any multi-indices 𝐼 = (𝑖1, . . . , 𝑖𝑝) and 𝐽 = ( 𝑗1, . . . , 𝑗𝑞) of order |𝐼 | = 𝑖1 + . . . + 𝑖𝑝 ,

respectively |𝐽 | = 𝑗1 + . . . + 𝑗𝑞 , we have�����𝜕 |𝐼 |+ |𝐽 |𝑔𝑖 𝚥

𝜕𝑣𝐼 𝜕𝑣𝐽

����� < 𝐴 |𝐼 |+ |𝐽 | ,

where 𝜕𝑣𝐼 = (𝜕𝑣1)𝑖1 · · · (𝜕𝑣𝑝)𝑖𝑝 and 𝜕𝑣𝐽 = (𝜕𝑣1) 𝑗1 · · · (𝜕𝑣𝑞) 𝑗𝑞 .
A complete Kähler manifold (𝑋 ′, 𝑔), which admits a family 𝒱 of local quasi-coordinates satisfying

the conditions of the proposition, is called being of bounded geometry (of order ∞).
Although the coordinate system from Proposition 3 is not a coordinate system in the ordinary sense

because of the covering map involved, it makes sense to talk about the components of a tensor field on
𝑋 ′ (or a neighbourhood 𝑈 (𝑝) = (Δ∗)𝑘 × Δ𝑛−𝑘 ) with respect to these ‘coordinates’ 𝑣𝑖 by first lifting it
to a tensor field Δ𝑛. The behaviour of the tensor on𝑈 (𝑝) can thus be examined by looking at the lifted
function in a neighbourhood of (1, . . . , 1, ∗, . . . , ∗) in Δ .

We mention here the transition of tensors from a local coordinate function 𝑧𝑖 , where a component
𝐷𝑖 is given by {𝑧𝑖 = 0} to a quasi-coordinate 𝑣𝑖 , |𝑣𝑖 | < 𝑅 < 1, which is given by

𝑑𝑧𝑖

𝑧𝑖 log |𝑧𝑖 |2
=

|𝑣𝑖 − 1|2

(𝑣𝑖 − 1)2
𝑑𝑣𝑖

1 − |𝑣𝑖 |2
∼ 𝑑𝑣𝑖 , (3.1)

because v is bounded away from 1. The respective equation for 𝜕/𝜕𝑧1 reads

𝑧𝑖 log |𝑧𝑖 |2 𝜕

𝜕𝑧𝑖
∼ 𝜕

𝜕𝑣𝑖
. (3.2)

This transformation rule is used to derive estimates from Hölder regular functions and tensors that we
will now define. The Hölder spaces 𝒞𝑘,𝛼 (𝑋 ′) are defined in terms of quasi-coordinates for sufficiently
large values of k and 0 < 𝛼 < 1. The Hölder norms are computed in terms of the infinite number of
quasi-coordinate systems. Following [6, 14, 21], we define
Definition 1. Let 𝑘 ∈ N0 and 𝛼 ∈ (0, 1), and denote by 𝐶𝑘 (𝑋 ′) the space of k-times differentiable
functions 𝑢 : 𝑋 ′ → C. For 𝑢 ∈ 𝐶𝑘 (𝑋 ′), let

https://doi.org/10.1017/fms.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.79


Forum of Mathematics, Sigma 7

‖𝑢‖𝑘,𝛼 = sup
(𝑉 ,𝑣1 ,...,𝑣𝑛) ∈𝒱

��sup
𝑧∈𝑉

∑
|𝐼 |+ |𝐽 | ≤𝑘

|𝜕𝐽
𝑣 𝜕

𝐽

𝑣𝑢(𝑧) | + sup
𝑧,𝑧′ ∈𝑉

∑
|𝐼 |+ |𝐽 |=𝑘

|𝜕𝐼
𝑣 𝜕

𝐽

𝑣𝑢(𝑧) − 𝜕𝐼
𝑣 𝜕

𝐽

𝑣𝑢(𝑧′) |
|𝑧 − 𝑧′|𝛼

���
be the 𝒞𝑘,𝛼-norm of u, where 𝜕𝐼

𝑣 𝜕
𝐽

𝑣 = 𝜕|𝐼 |+|𝐽 |

𝜕𝑣 𝐼 𝜕𝑣𝐽 . Then let

𝒞𝑘,𝛼 := 𝒞𝑘,𝛼 (𝑋 ′) := {𝑢 ∈ 𝐶𝑘 (𝑋 ′) : ‖𝑢‖𝑘,𝛼 < ∞}

be the function space of 𝒞𝑘,𝛼 functions on 𝑋 ′ with respect to 𝒱.

In a similar way, we can define 𝒞𝑘,𝛼-tensors by pulling back via the quasi-coordinate maps. Exterior
derivatives and covariant derivatives of 𝒞𝑘,𝛼-tensors are of the same type (with k being replaced by
𝑘 − 1). The arguments from [14] using Hölder spaces 𝒞𝑘,𝛼 (with respect to quasi-coordinates) are valid
for all large fixed numbers 𝑘 ≥ 𝑘0, where 𝑘0 denotes some minimal degree. During the computations,
we will have to take derivatives, products and contractions of such tensors, arriving at 𝒞𝑘,𝛼-tensors for
some lower value of k. In each of these steps, we will have to increase the lower bound 𝑘0. Only finitely
many such steps will be necessary. We will increase 𝑘0 tacitly.

Let 𝜔𝑋 ′ be the complete Poincaré type Kähler form from the previous section.

Lemma 3.1. Any 𝒞𝑘,𝛼-tensor on 𝑋 ′ is globally square-integrable.

The proof follows immediately from the given uniform bounds of such tensors in terms of the above
quasi-coordinate systems and the metric 𝜔𝑋 ′ with respect to the transition equations of the type in
equation (3.1): take the pointwise norm of such a tensor with respect to the given metric. We consider
the resulting function a bounded𝒞𝑘,𝛼-tensor (for some value of k), which means it is uniformly bounded
in terms of quasi-coordinate systems (or any other coordinate systems). Finally, we use the boundedness
of the volume of 𝑋 ′. �

3.3. Hodge theory on the open fibres

In this section, we summarise the Hodge theory on the complete, noncompact Kähler manifold (𝑋 ′, 𝜔𝑋 ′ ),
for which we refer to the book of Marinescu and Ma [16, Chapter 3]. We consider the holomorphic
vector bundle 𝐸 = 𝐾𝑋 ′ ⊗ 𝐿 |𝑋 ′ equipped with the hermitian metric ℎ|𝑋 ′ .

For the operator 𝜕 defined on the smooth, compactly supported forms 𝐴0,𝑞
0 (𝑋 ′, 𝐸) ⊂ 𝐿0,𝑞

(2) (𝑋
′, 𝐸),

we consider its formal adjoint 𝜕∗. For 𝑠1 ∈ 𝐿0,𝑞
(2) (𝑋

′, 𝐸), we can calculate 𝜕𝑠1 in the sense of currents:
𝜕𝑠1 is the current defined by

〈𝜕𝑠1, 𝑠2〉 = 〈𝑠1, 𝜕
∗𝑠2〉 for 𝑠2 ∈ 𝐴(0,𝑞+1)

0 (𝑋 ′, 𝐸).

Then we have

Lemma 3.2 [16, Lemma 3.1.1]. The operator 𝜕max defined by

Dom(𝜕max) = {𝑠 ∈ 𝐿0,𝑞
(2) (𝑋

′, 𝐸) : 𝜕𝑠 ∈ 𝐿0,𝑞+1
(2) (𝑋 ′, 𝐸)}

𝜕max𝑠 = 𝜕𝑠 for 𝑠 ∈ Dom(𝜕max)

is a densely defined, closed extension called the maximal extension of 𝜕.

In the sequel, we work with the maximal extension and simply write 𝜕 = 𝜕max. The Hilbert space
adjoint of 𝜕max is denoted by 𝜕∗𝐻 . We note that 𝜕∗𝐻 ⊂ (𝜕∗)𝐻 and 𝜕max = (𝜕∗𝐻 )∗𝐻 . From now on, we work
with 𝜕∗𝐻 and just write 𝜕∗.

The Laplacian� = 𝜕𝜕∗+𝜕∗𝜕 is a densely defined, positive operator, so one can consider its Friedrichs
extension. But in the context of 𝐿2 cohomology, it is useful to consider another extension:
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Proposition 4 [16, Proposition 3.1.2]. The operator defined by

Dom(�) = {𝑠 ∈ Dom(𝜕) ∩ Dom(𝜕∗) : 𝜕𝑠 ∈ Dom(𝜕∗), 𝜕∗𝑠 ∈ Dom(𝜕)},
�𝑠 = 𝜕∗𝜕𝑠 + 𝜕𝜕∗𝑠 for 𝑠 ∈ Dom(�)

is a positive self-adjoint extension of the Laplacian, called the Gaffney extension.

We note that this result relies on Gaffney’s generalisation of Stokes’ theorem that we will use tacitly
during our computation:

Proposition 5 [9]. Let (𝑀, 𝑔) be an orientable complete Riemannian manifold of real dimension 2𝑛
whose Riemann tensor is of class 𝐶2. Let 𝛾 be a (2𝑛 − 1)-form on M of class 𝐶1 such that both 𝛾 and
𝑑𝛾 are in 𝐿1. Then ∫

𝑀
𝑑𝛾 = 0.

We define the space of harmonic forms ℋ0,𝑞 (𝑋 ′, 𝐸) ⊂ 𝐿0,𝑞
(2) (𝑋

′, 𝐸) by

ℋ0,𝑞 (𝑋 ′, 𝐸) := Ker(�) = {𝑠 ∈ Dom(�) : �𝑠 = 0}.

We see that

ℋ0,𝑞 (𝑋 ′, 𝐸) = Ker(𝜕) ∩ Ker(𝜕∗).

The qth 𝐿2 Dolbeault cohomology is defined by

𝐻0,𝑞
(2) (𝑋

′, 𝐸) := Ker(𝜕) ∩ 𝐿0,𝑞
(2) (𝑋

′, 𝐸)
/

Im(𝜕) ∩ 𝐿0,𝑞
(2) (𝑋

′, 𝐸) ,

which is of course the same as the group 𝐻𝑞
(2) (𝑋

′, 𝐾 𝑝
𝑋 ′ (𝐿 |𝑋 ′ )) from Proposition 2, because the 𝐿2-

cohomology can be also computed by smooth forms. From this, we also get

Proposition 6. The 𝐿2-Dolbeault cohomology 𝐻0,𝑞
(2) (𝑋

′, 𝐸) is finite-dimensional, and we have

𝐻0,𝑞
(2) (𝑋

′, 𝐸) �ℋ0,𝑞 (𝑋 ′, 𝐸).

Moreover, the images of 𝜕 and 𝜕∗ are closed in 𝐿 (2) (𝑋 ′, 𝐸), and thus there exists a constant 𝐶 > 0 such
that

| |𝑠 | |2
𝐿2 ≤ 𝐶

(
| |𝜕𝑠 | |2

𝐿2 + ||𝜕∗𝑠 | |2
𝐿2

)
(3.3)

for all 𝑠 ∈ Dom(𝜕) ∩ Dom 𝜕∗ ∩ 𝐿0,𝑞
(2) (𝑋

′, 𝐸), 𝑠 ⊥ ℋ0,𝑞 (𝑋 ′, 𝐸).

Proof. By Proposition 2, we know that we can identify the 𝐿2-Dolbeault cohomology with the sheaf
cohomology of the locally free sheaf Ω𝑝 (log𝐷) ⊗ 𝐾𝑋 on the compactification X; hence it must be
finite-dimensional. This immediately implies that the images of 𝜕 (and hence also of 𝜕∗) are closed ([5,
Proposition 3.5]) and the isomorphism with the space of harmonic forms ([5, Corollary 3.6]). The stated
estimate for the 𝐿2-norm for a section s that is orthogonal to the space of harmonic forms follows from
the closedness of Im(𝜕) and Im(𝜕∗) ([16, Prop. 3.1.6]). �
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Corollary 3. We have the strong Hodge decomposition, which is orthogonal:

𝐿0,𝑞
(2) (𝑋

′, 𝐸) = ℋ0,𝑞 (𝑋 ′, 𝐸) ⊕ Im(�) = ℋ0,𝑞 (𝑋 ′, 𝐸) ⊕ Im(𝜕𝜕∗) ⊕ Im(𝜕∗𝜕),

Ker(𝜕) ∩ 𝐿0,𝑞
(2) (𝑋

′, 𝐸) = ℋ0,𝑞 (𝑋 ′, 𝐸) ⊕
(
Im(𝜕) ∩ 𝐿0,𝑞

(2) (𝑋
′, 𝐸)

)
.

Moreover, there exists a bounded operator G on 𝐿0,𝑞
(2) (𝑋

′, 𝐸), called the Green operator, such that

�𝐺 = 𝐺� = Id−𝐻, 𝐻𝐺 = 𝐺𝐻 = 0,

where H is the orthogonal projection form 𝐿0,𝑞
(2) (𝑋

′, 𝐸) onto ℋ0,𝑞 (𝑋 ′, 𝐸).

Proof. See [16, Theorem 3.1.8]. �

Remark 3.3. By the usual elliptic regularity theory, we get that harmonic sections are in fact smooth.
G maps smooth forms to smooth forms so that we can cut down the Hodge decomposition to the space
of smooth 𝐿2 sections:

𝐴0,𝑞
(2) (𝑋

′, 𝐸) = ℋ0,𝑞 (𝑋 ′, 𝐸) ⊕ Im(�).

3.4. Families of logarithmic pairs

Let (𝒳,𝒟) be a smooth log pair: that is, 𝒳 a complex manifold and 𝒟 ⊂ 𝒳 a reduced snc divisor.
The boundary divisor 𝒟 is written as a sum of its irreducible components 𝒟 = D1 + . . . + 𝒟𝑘 . If
𝐼 ⊂ {1, . . . , 𝑘} is any non-empty subset, we consider the intersection 𝒟𝐼 := ∩𝑖∈𝐼𝒟𝑖 .

Definition 2 [13, Def. 3.4]. For a smooth log pair (𝒳,𝒟) and a proper holomorphic submersion
𝑓 : 𝒳 → 𝑆, we say that 𝒟 is relatively snc or that f is a snc morphism if for any set I with 𝐷 𝐼 ≠ ∅, all
the restricted morphisms 𝑓 |𝒟𝐼 → 𝑆 are also smooth of relative dimension dim𝒳 − dim 𝑆 − |𝐼 |.

If 𝑠 ∈ 𝑆 is any point, set 𝑋𝑠 = 𝑓 −1(𝑠) and 𝐷𝑠 := 𝒟 ∩ 𝑋𝑠 . Then 𝑋𝑠 is smooth and (𝑋𝑠 , 𝐷𝑠) is
a snc pair. Moreover, the number of irreducible components of 𝐷𝑠 is also k, which is the number of
irreducible components of 𝒟. This excludes phenomena like the deformation of the smooth hyperbola
{𝑤𝑧 = 𝑠 ≠ 0} into the snc divisor {𝑧𝑤 = 0} that has two components. The reason for this will become
clear later. Moreover, the definition implies

Lemma 3.4. For a smooth log pair (𝒳,𝒟) and a smooth snc morphism 𝑓 : 𝒳 → 𝑆, we can find (after
shrinking S to a contractible neighbourhood) a differentiable trivialisation Φ : 𝒳 ∼−→ 𝑋 × 𝑆 such that
the restriction Φ|𝒟 : 𝒟 ∼−→ 𝐷 × 𝑆 is also a smooth trivialisation.

The lemma says that we can trivialise the pair (𝑋𝑠 , 𝐷𝑠) in a differentiable way. By restriction to
𝒳′ := 𝒳 \𝒟, we find a smooth trivialisation of 𝒳′ � 𝑋 ′ × 𝑆.

Given a smooth log pair (𝑋, 𝐷) and a point x, there exists an open neighbourhood 𝑈 = 𝑈 (𝑥) and
holomorphic coordinates 𝑧1, . . . , 𝑧𝑛 such that 𝐷 ∩𝑈 = {𝑧1 · · · 𝑧𝑟 } for some 0 ≤ 𝑟 ≤ 𝑛. The following
is the relative analogue of this fact:

Lemma 3.5 [13, Lemma 3.7]. Let (𝒳,𝒟) be a smooth snc pair and 𝑓 : 𝒳 → 𝑆 an snc morphism. For
any point 𝑥 ∈ 𝒳, there exist open neighbourhoods 𝑉 = 𝑉 ( 𝑓 (𝑥)) ⊂ 𝑆 and 𝑈 = 𝑈 (𝑥) ⊂ 𝑓 −1(𝑉) ⊂ 𝒳

and holomorphic coordinates 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛+1, . . . , 𝑧𝑛+𝑚 around x and 𝑠1, . . . , 𝑠𝑚 around 𝑓 (𝑥) and a
number 0 ≤ 𝑟 ≤ 𝑛 such that the following hold:

(i) We have 𝑧𝑛+𝑖 = 𝑠𝑖 ◦ 𝑓 for all indices 1 ≤ 𝑖 ≤ 𝑚.
(ii) 𝒟 ∩𝒳 = {𝑧1 · · · 𝑧𝑟 = 0}.

In the following, we will make use of these adapted coordinates tacitly. In the applications, we also
consider the following families:
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Definition 3. A holomorphic family of log-canonically polarised pairs consists of a smooth snc pair
(𝒳,𝒟) and a snc morphism 𝑓 : 𝒳 → 𝑆 such that 𝐾𝑋𝑠 + 𝐷𝑠 is ample for each 𝑠 ∈ 𝑆.

In particular, our families are logarithmic deformations in the sense of [12] and generalise the
deformations considered in [18] to the case of singular snc divisors.

Remark 3.6. By the 𝐶∞ trivialisation 𝒳′ � 𝑋 ′ × 𝑆 and the fact that nearby fibres (𝑋𝑠 , 𝑔𝑠) and bundles
𝐸 ′

𝑠 = 𝐾𝑋 ′
𝑠
⊗ 𝐿 |𝑋 ′

𝑠
are quasi-isometric implies that the 𝐿2-spaces 𝐿0,𝑞

(2) (𝑋
′
𝑠 , 𝐸

′
𝑠) and the domain of the

Laplacians Dom(�𝑠) do not depend on the fibre 𝑋 ′
𝑠 . The same holds for the Hölder spaces 𝒞𝑘,𝛼 (𝑋 ′

𝑠).

3.5. L2-integrable Kodaira-Spencer forms

We consider a holomorphic family of smooth log pairs 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆 and a hermitian holomorphic line

bundle (ℒ, ℎ) on 𝒳 whose inverse metric has Poincaré type singularities along 𝒟, as already described
in the introduction. Moreover, we recall that we have defined on 𝒳′ the global (1, 1)-form

𝜔𝒳′ = −i𝜕𝜕(log ℎ) = i𝜕𝜕 log(ℎ𝐶∞

ℒ−1 ) −
𝑙∑

𝑖=1
i𝜕𝜕 log(| |𝜎𝑖 | |2 log2 | |𝜎𝑖 | |2) + i𝜕𝜕𝑢,

whose restrictions to the open fibres 𝑋 ′
𝑠 give a smooth family of Poincaré type Kähler forms𝜔𝑠 = 𝜔𝒳′ |𝑋 ′

𝑠
.

By using the local description

𝜔𝒳′ =
√
−1

(
𝑔𝛼𝛽𝑑𝑧

𝛼 ∧ 𝑑𝑧𝛽 + 𝑔𝑖𝛽𝑑𝑠
𝑖 ∧ 𝑑𝑧𝛽 + 𝑔𝛼𝚥𝑑𝑧

𝛼 ∧ 𝑑𝑠 𝚥 + 𝑔𝑖 𝚥𝑑𝑠
𝑖 ∧ 𝑑𝑠 𝚥

)
with respect to the local coordinates (𝑧, 𝑠), we can say that the restrictions of 𝜔𝒳′ as well as restrictions
of contractions depend in a 𝐶∞ way upon the parameter.

Lemma 3.7. The restrictions

𝜔𝒳′�(𝜕/𝜕𝑠𝑖) |𝑋 ′
𝑠 = 𝑔𝑖𝛽𝑑𝑧

𝛽 |𝑋 ′
𝑠

𝜔𝒳′�(𝜕/𝜕𝑠 𝚥) |𝑋 ′
𝑠 = 𝑔𝛼𝚥𝑑𝑧

𝛼 |𝑋 ′
𝑠

𝜔𝒳′�(𝜕/𝜕𝑠𝑖 ∧ 𝑑𝑠 𝚥) |𝑋 ′
𝑠 = 𝑔𝑖 𝚥 |𝑋 ′

𝑠

are 𝒞𝑘,𝛼-tensors that depend in a 𝐶∞ way upon the parameter 𝑠 ∈ 𝑆. In particular, they are smooth
and 𝐿2 integrable tensors (𝒜(2) -tensors for short). The analogous statement holds if 𝜔𝒳′ is replaced
by 𝜔𝒳′ , where the first two tensors do not change.

Proof. The only critical term appearing in the expression of 𝜔𝒳′ is the one coming from u. The purely
vertical components are dealt with the fact that 𝑢 |𝑋 ′

𝑠
lies in ∈ 𝒞𝑘,𝛼. But now, by assumption, the map

𝑠 ↦→ 𝑢(𝑧, 𝑠) ∈ 𝒞𝑘,𝛼 is Fréchet differentiable, so that the (locally defined) partial derivatives in the base
direction of the function u are again of class 𝒞𝑘,𝛼. �

Horizontal lifts of tangent vectors from S to the total space 𝒳′ are defined as perpendicular to the
fibres of 𝒳′ → 𝑆 with respect to 𝜔𝒳′ . Here we only need the property that the restrictions of 𝜔𝒳′ to
the fibres are positive definite.

We denote by (𝑔𝛽𝛼) the inverses of the metric tensors 𝑔𝛼𝛽 of 𝜔𝑠 on the fibres 𝑋 ′
𝑠 . Covariant

derivatives are always taken with respect to these metrics. We will use both the semicolon notation and
the ∇-notation. We continue using Greek indices for tensors in fibre direction and 𝜕𝛼 = 𝜕/𝜕𝑧𝛼.

The horizontal lift 𝑣𝑖 of a tangent vector 𝜕𝑖 = 𝜕/𝜕𝑠𝑖 is a differentiable lift of 𝜕𝑖 to 𝒳′, which is
orthogonal to the fibres with respect to the sesquilinear form 𝜔𝒳′ :

〈𝑣𝑖 , 𝜕𝛼〉𝜔𝒳′ = 0 for all 𝛼 = 1 . . . 𝑛.
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This is well defined since the form𝜔𝒳′ is positive when restricted to the fibres. In terms of the coefficients
of 𝜔𝒳, it is given by

𝑣𝑖 = 𝜕𝑖 + 𝑎𝛼
𝑖 𝜕𝛼,

where
𝑎𝛼

𝑖 = −𝑔𝛽𝛼𝑔𝑖𝛽 .

Lemma 3.8. Let 𝐴𝑖 = 𝜕𝑣𝑖 |𝑋 ′
𝑠: that is,

𝐴𝑖 = 𝐴𝛼
𝑖𝛽
𝜕𝛼𝑑𝑧

𝛽 .

Then 𝐴𝑖 is of class 𝒞𝑘,𝛼 and satisfies 𝜕𝐴𝑖 = 0. In particular, it lies in 𝐴0,1
(2) (𝑋

′
𝑠 , 𝑇𝑋 ′

𝑠
).

The proof is the same as in [18, Lemma 3]. �

The Kodaira-Spencer map for a family 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆

𝜌𝑠 : 𝑇𝑠𝑆 → 𝐻1
(2) (𝑋

′
𝑠 , 𝑇𝑋 ′

𝑠
)

was already defined in [18]. Analogous results like those of Section 3.1 hold for the sheaf of holomorphic
vector fields:

The sequence (𝒜0,•
(2) (T𝑋 ′

𝑠
), 𝜕) is a fine resolution of the sheaf of 𝐿2 holomorphic vector fields

𝒪(2) (𝑇𝑋 ′
𝑠
), which is isomorphic to 𝑇𝑋𝑠 (− log𝐷𝑠) := (Ω1

𝑋𝑠
(log𝐷𝑠))∨.

In particular,

𝐻1
(2) (𝑋

′
𝑠 , 𝑇𝑋 ′

𝑠
) � 𝐻1(𝑋𝑠 , 𝑇𝑋𝑠 (− log𝐷𝑠)),

and the above explicit construction yields a 𝐿2-Dolbeault representative 𝐴𝛼
𝑖𝛽
𝜕𝛼𝑑𝑧

𝛽 of 𝜌𝑠 (𝜕/𝜕𝑠𝑖), where
the Kodaira-Spencer map is taken as map

𝜌𝑠 : 𝑇𝑠𝑆 → 𝐻1
(2) (𝑋

′
𝑠 , 𝑇𝑋 ′

𝑠
).

We will also need the following fact that follows from the definition.

Lemma 3.9. Let 𝐴𝛼𝜎
𝑖 = 𝑔𝛽𝜎𝐴𝛼

𝑖𝛽
. Then

𝐴𝛼𝜎
𝑖 = 𝐴𝜎𝛼

𝑖 .

Finally, the pointwise inner product with respect to 𝜔𝒳′ of two horizontal lifts

𝜑𝑖 𝚥 := 〈𝑣𝑖 , 𝑣 𝑗〉𝜔𝒳′ ,

called the geodesic curvature, has an expression

𝜑𝑖 𝚥 = 𝑔𝑖 𝚥 − 𝑔𝛼𝚥𝑔𝑖𝛽𝑔
𝛼𝛽

so that we conclude from Lemma 3.7 that this function lies in 𝒞𝑘,𝛼.

3.6. Bundles of L2-integrable forms

Now we consider the 𝐿2 condition on the total space 𝒳. Because the form 𝜔𝒳′ is fibrewise positive,
for any 𝑠0 ∈ 𝑆 after replacing S by a neighbourhood (contractible and Stein), there exists a positive
hermitian form 𝜔𝑆 such that 𝜔′

𝒳
= 𝜔𝒳′ + 𝑓 ∗𝜔𝑆 is a positive form on 𝒳′.
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The previous arguments imply that the statements of Proposition 1 and Proposition 2 hold for the total
spaces (𝒳′, 𝜔𝒳′ ). The sheaves of locally 𝐿2 sections 𝒪(2) (Ω𝑛

𝒳′ (ℒ |𝒳′ ), 𝜔𝒳′ , ℎ|𝒳′ ) on the whole total
space 𝒳 are equal to Ω𝑛

𝒳
(log𝒟) (ℒ), and an analogous fine resolution in terms of square-integrable

forms exists. However, the sheaves Ω𝑛
𝒳
(logD) of log n-forms on the total space 𝒳 are not suitable for

our methods.
Instead, we will need the coherent sheaf Ω𝑛 (logD)𝒳/𝑆 (ℒ) and the sheaves

𝒪(2) (Ω𝑛
𝒳′/𝑆 (ℒ |𝒳′ ), 𝜔𝒳′ , ℎ|𝒳′ )

of relative ℒ-valued holomorphic n-forms that are square-integrable with respect to the Kähler form
𝜔𝒳′ = 𝜔𝒳′ + 𝑓 ∗𝜔𝑆 and the hermitian metric ℎ|𝒳′ , where integrability does not depend upon the choice
of a hermitian form 𝜔𝑆 .

Let

𝒜
0,𝑞
(2) (Ω

𝑛
𝒳′/𝑆 (ℒ), 𝜔𝒳′ , ℎ|𝒳′ )

denote the sheaf of (0, 𝑞)-currents on the total space 𝒳′with values in the coherent sheaf Ω𝑛
𝒳′/𝑆 (ℒ)

that are square-integrable along with their exterior 𝜕-derivatives.

Proposition 7.

(i)

𝒪(2) (Ω𝑛
𝒳′/𝑆 (ℒ |𝒳′ ), 𝜔𝒳′ , ℎ|𝒳′ ) � Ω𝑛 (logD)𝒳/𝑆 (ℒ).

(ii) The complex

(𝒜0,•
(2) (Ω

𝑛
𝒳′/𝑆 (ℒ), 𝜔𝒳′ , ℎ|𝒳′ ), 𝜕)

is a fine resolution of 𝒪(2) (Ω𝑛
𝒳′/𝑆 (ℒ), 𝜔𝒳′ , ℎ|𝒳′ ).

Proof. To simplify notation, we assume that dim 𝑆 = 1. We note that

𝜔𝑛+1
𝒳′ =

√
−1𝜔𝑛

𝒳′/𝑆 𝜑 𝑑𝑠 ∧ 𝑑𝑠 + 𝜔𝑛
𝒳′/𝑆 ∧ 𝑓 ∗𝜔𝑆

and the function 𝜑 is (locally with regard to S uniformly) bounded. For an open set 𝑈 ⊂ 𝒳, we thus
have for the 𝐿2-norm of a section 𝑢 ∈ Ω𝑛

𝒳′/𝑆 (ℒ) that∫
𝑈
|𝑢 |2𝜔𝒳′/𝑆 ,ℎℒ

𝜔𝑛+1
𝒳′ ∼

∫
𝑓 (𝑈 )

(∫
𝑋𝑠∩𝑈

(𝑢 ∧ 𝑢)ℎ
)
𝜔𝑆 .

The first statement follows from Fubini’s theorem, the fact that nearby fibres and bundles are quasi-
isometric, and Proposition 1. For the second statement, we decompose the vector bundle Ω𝑛

𝒳′/𝑆 (ℒ |𝒳′ )
locally as a sum of line bundles and apply [8, Prop. 2.1]; also compare to [8, p.870]. This shows that
we have a resolution. By Proposition 2, fibrewise we find cut-off functions with bounded differentials.
Because, in the differentiable sense, we have a product situation, this also holds on the total space.
Hence, the sheaves of locally 𝐿2 integrable smooth sections are again fine. �

Corollary 4. The (local) holomorphic sections of 𝑓∗(Ω𝑛 (logD)𝒳/𝑆 (ℒ)) are given by holomorphic sec-
tions ofΩ𝑛 (logD)𝒳/𝑆 (ℒ) on the total space that are precisely the holomorphic sections ofΩ𝑛

𝒳′/𝑆 (ℒ |𝒳′ )
that are 𝐿2-integrable along the fibres. In particular, their restrictions to the open fibres yield holomor-
phic and 𝐿2-integrable (𝑛, 0)-forms with values in L.
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3.7. Fibre integrals and Lie derivatives

Given our family 𝑓 : 𝒳′ → 𝑆 of open complex manifolds 𝑋 ′
𝑠 of dimension n and a relative (𝑛, 𝑛)-form

𝜂 on 𝒳′ that is smooth there and integrable along the fibres, the fibre integral∫
𝒳′/𝑆

𝜂

gives a function on the base S (see [19, Sect. 2.1] and [10, Ch. VII] for the general definition of fibre
integrals). In our case, the components 𝐻𝑙𝑘 of the metric tensor on the direct image are defined by such
fibre integrals, where 𝜂 is given by the inner product/wedge product of the sections 𝜓𝑘 :

𝜂 (𝑠) = 𝜓𝑘 |𝑋 ′
𝑠
· 𝜓𝑙 |𝑋 ′

𝑠
𝑑𝑉 = i𝑛

2 (𝜓𝑘 |𝑋 ′
𝑠
∧ 𝜓𝑙 |𝑋 ′

𝑠
)ℎ .

We want to show that these fibre integrals give smooth functions on the base so that we indeed get a
smooth hermitian metric on the direct image we consider. Thus, if 𝑠1, . . . , 𝑠𝑚 are local holomorphic
coordinates on the base, we need to compute the derivatives

𝜕

𝜕𝑠𝑘

∫
𝑋𝑠

𝜂 for 1 ≤ 𝑖 ≤ 𝑟 and
𝜕

𝜕𝑠𝑙

∫
𝑋𝑠

𝜂, for 1 ≤ 𝑙 ≤ 𝑟.

This can be done by using Lie derivatives:

Lemma 3.10. For 1 ≤ 𝑘 ≤ 𝑚, let 𝑣𝑘 be the horizontal lift of 𝜕/𝜕𝑠𝑘 . We write 𝜕/𝜕𝑠𝑙 for 𝜕/𝜕𝑠𝑙 and 𝑣𝑙
for 𝑣𝑙 . Then

𝜕

𝜕𝑠𝑘

∫
𝑋 ′
𝑠

𝜂 =
∫

𝑋 ′
𝑠

𝐿𝑣𝑘 (𝜂) and
𝜕

𝜕𝑠𝑙

∫
𝑋 ′
𝑠

𝜂 =
∫

𝑋 ′
𝑠

𝐿𝑣𝑙
(𝜂),

where 𝐿𝑣𝑘 and 𝐿𝑣𝑙
denotes the Lie derivative in the direction of 𝑣𝑘 and 𝑣𝑙 , respectively.

Proof. The statement is well-known when the fibres are compact [17, Lemma 1]. We only have to show
that 𝐿𝑣𝑘 (𝜂) and 𝐿𝑣𝑙

(𝜂) are square integrable. Then the statement follows from the dominated convergence
theorem. We only present it for the first. We are using local holomorphic coordinates 𝑧1, . . . , 𝑧𝑛 near a
point 𝑝 ∈ 𝐷𝑠 such that 𝐷𝑠 = {𝑧1 · · · 𝑧𝑘 = 0}. Because 𝜓𝑘 , 𝜓𝑙 ∈ 𝐻0(𝒳,Ω𝑛 (logD)𝒳/𝑆 (ℒ)) and due to
the assumption on the metric h, we have that

𝜂1...𝑛1...𝑛 = 𝑂

(
𝑘∏

𝑖=1
log2 (|𝑧𝑖 |2)

)
,

where

𝜂 = 𝜂1...𝑛1...𝑛 𝑑𝑧
1 ∧ . . . ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧1 ∧ · · · ∧ 𝑑𝑧𝑛.

Now 𝑣𝑘 = 𝜕/𝜕𝑘 + 𝑎𝛼
𝑘 𝜕/𝜕𝑧

𝛼 so that

𝐿𝑣𝑘𝜂 =

(
𝜂1...𝑛,1,...𝑛;𝑘 +

𝑛∑
𝛼=1

𝑎𝛼
𝑘 𝜂1...𝑛1...𝑛;𝛼 +

𝑛∑
𝛼=1

𝑎𝛼
𝑘;𝛼𝜂1...𝑛1...𝑛

)
𝑑𝑧1 ∧ . . . ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧1 ∧ . . . ∧ 𝑑𝑧𝑛.

Here, ; denotes the covariant derivative. Now, because of

𝑎𝛼
𝑘 = 𝑂 (|𝑧𝛼 | log |𝑧𝛼 |) for 1 ≤ 𝛼 ≤ 𝑘,

we see that 𝐿𝑣𝑘 (𝜂) is indeed integrable. �
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We see that we can iterate this process so that the fibre integral gives a smooth function on S. But
this means the 𝐿2-metric is indeed a smooth metric on 𝑓∗(Ω𝑛 (logD)𝒳/𝑆 (ℒ)). We note here that the
square integrability of 𝐿𝑣 (𝜂) will also follow from Lemma 6.2.

Before we go to the computation of the curvature, which is the most technical part of the article, let
us consider the two applications.

4. Families of log-canonically polarised manifolds: (semi-)positivity of the relative canonical
bundle

Let 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆 be a holomorphic family of log-canonically polarised pairs: that is, a holomorphic

family of smooth log pairs (𝑋𝑠 , 𝐷𝑠) with ample adjoint bundle 𝐾𝑋𝑠 +𝐷𝑠 . The family is called effectively
parametrised if the Kodaira-Spencer map

𝜌𝑠 : 𝑇𝑠𝑆 → 𝐻1
(2) (𝑋

′
𝑠 , 𝑇𝑋 ′

𝑠
)

is injective at all points 𝑠 ∈ 𝑆.
Now let Ω be a smooth (relative) volume form on 𝒳. The relative volume form 𝜓 :=

Ω/(
∏

𝑖 | |𝜎𝑖 | |2 log2 | |𝜎𝑖 | |2) has the property that �̃�𝑠 := −Ric(𝜓 |𝑋 ′
𝑠) gives a family of complete Kähler

metrics of finite volume on the open fibres 𝑋 ′
𝑠 such that 𝐶−1 < 𝜓/(−Ric(𝜓))𝑛 < 𝐶 for some constant

𝐶 > 1. Let {𝜔𝑠}𝑠∈𝑆 be the family of complete Kähler-Einstein metrics on 𝑋 ′
𝑠 = 𝑋𝑠 \ 𝐷𝑠 with constant

negative curvature −1 given by [14, 21]. When we write 𝜔𝑠 = �̃�𝑠 +
√
−1𝜕𝑠𝜕𝑠𝑢𝑠 on 𝑋 ′

𝑠 , they fulfill the
following Monge-Ampère equation (compare to [18, Eq.(1)]):

𝜔𝑛
𝑠 = exp(𝑢𝑠) · (𝜓 |𝑋 ′

𝑠). (4.1)

Here, {𝑢𝑠}𝑠∈𝑆 is a family of functions in 𝒞𝑘,𝛼 (𝑋 \ 𝐷) with 𝑘 ≥ 6. By the implicit function theorem
applied to the Hölder spaces 𝒞𝑘,𝛼 (𝑋 \ 𝐷) of functions, these functions 𝑢𝑠 depend smoothly on the
parameter 𝑠 ∈ 𝑆 in the sense that the map 𝑠 ↦→ 𝒞𝑘,𝛼 is indeed Fréchet differentiable (compare to [18,
Sect. 2.6]). Hence we can consider the relative volume form 𝜔𝑛

𝒳′/𝑆 on 𝒳′ = 𝒳 \𝒟 associated to the
family {𝜔𝑠}𝑠∈𝑆 as a singular hermitian metric on 𝐾𝒳/𝑆 whose inverse has Poincaré type singularities
along 𝒟. Its smooth curvature form on 𝒳′ is given by

𝜔𝒳′ := −Ric(𝜔𝑛
𝒳′/𝑆).

Analogous to the canonically polarised case proved in [19], we have the following result:

Theorem 4.1. The form 𝜔𝒳′ ≥ 0 is semi-positive and strictly positive if the family 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆 is

effectively parametrised.

Proof. The computation from [18] can be adopted. We summarise the main points that we need.
Given a coordinate vector field 𝜕/𝜕𝑠𝑖 on S and the horizontal lift 𝑣𝑖 , define

𝜑𝑖𝚤 = 〈𝑣𝑖 , 𝑣𝑖〉𝜔𝒳′ .

Then

(1 + �𝑠)𝜑𝑖𝚤 = ‖𝐴𝑖 ‖2(𝑧, 𝑠), (4.2)

where �𝑠 denotes the (semi-positive) Laplacian and ‖𝐴𝑖 ‖(𝑧, 𝑠) the pointwise norm of the harmonic
representative of 𝜌𝑠 (𝜕/𝜕𝑠𝑖).

The results of the previous section imply that the quantities occurring in equation (4.2) are 𝒞𝑘,𝛼-
tensors on the total space and also define such tensors when restricted to the fibres of f and class 𝐶∞ on
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𝒳′. Yau’s maximum principle [23, Theorem 1] applies to restrictions of equation (4.2) to the fibres of f
and immediately yields that 𝜑𝑖𝚤 ≥ 0.

The integral of equation (4.2) along a fibre yields the Weil-Petersson norm of 𝜕/𝜕𝑠𝑖 |𝑠:

‖𝜕/𝜕𝑠𝑖 |𝑠 ‖2
𝑊 𝑃 =

∫
𝑋𝑠

‖𝐴𝑖 ‖2 (𝑧, 𝑠)𝑔𝑑𝑉.

(Again, we are using Gaffney’s result.)
Let 𝜌𝑠 (𝜕/𝜕𝑠𝑖) ≠ 0: that is, 𝐴𝑖 ≠ 0. One can show that 𝜑𝑖𝚤 (𝑧, 𝑠) has no zeroes. This follows from

the lower heat kernel estimate in the complete case, as given in [20, Cor. 4.3]. This shows that the heat
kernel is strictly positive on the fibre 𝑋 ′

𝑠 . Then the argument is the same as in [19, Prop. 1], except that
we do not have a fixed positive lower bound in terms of the diameter of the fibres. �

Corollary 5. For a family of log-canonically polarised manifolds 𝒟
𝑖
↩→ 𝒳

𝑓
→ 𝑆 over a compact base

S, the relative adjoint bundle 𝐾𝒳/𝑆 ⊗𝒟 is nef. If the family is effectively parametrised, 𝐾𝒳/𝑆 ⊗𝒟 is big.

Proof. We now compute the curvature current of the singular hermitian metric (𝜔𝑛
𝒳′/𝑆)

−1 = (𝜔𝑛
𝑠 )−1

𝑠∈𝑆 on
𝐾𝒳/𝑆 on the whole 𝒳. From the Monge-Ampère equation (4.1), we see that the only additional term that
vanishes by restricting to 𝒳′ is −𝒟, which comes from the term −

∑
𝜕𝜕 log | |𝜎𝑖 | |2; it is compensated

by adding 𝒟. This shows that 𝐾𝒳/𝑆 ⊗𝒟 is pseudoeffective. Here we take the canonical singular metric
on 𝒟. The nefness follows from the fact that the curvature current of the metric on 𝐾𝒳/𝑆 ⊗ 𝒟 has
zero Lelong numbers. The bigness in the effectively parametrised situation then follows from the strict
positivity of 𝐾𝒳′/𝑆 and Boucksom’s bigness criterion [2, Cor. 3.3]. �

5. The case of a big line bundle

Let 𝐸
𝑖
↩→ 𝒳

𝑓
→ 𝑆 be a holomorphic family of smooth log pairs (𝑋𝑠 , 𝐸𝑠) and F a big line bundle on 𝒳.

We assume that we have a decomposition

𝐹 = 𝐴 + 𝐸,

where A is ample on 𝒳. We choose a smooth positive metric ℎ𝐴 on A and a smooth hermitian metric ℎ𝑖

on each irreducible component 𝐸𝑖 of E. Using the canonical section 𝜎𝑖 cutting out the divisor 𝐸𝑖 , we
define another metric on A by setting

ℎ𝐴,𝜀 := ℎ𝐴 ·
(∏

𝑖

|𝜎𝑖 |2ℎ𝑖
log2(|𝜎𝑖 |2ℎ𝑖

)
) 𝜀

.

We now make the assumption that there exists an 𝜀 > 0 such that

iΘℎ𝐴,𝜀 (𝐴) = iΘℎ𝐴 (𝐴) − 𝜀
√
−1

∑
𝑖

𝜕𝜕 log
(
|𝜎𝑖 |2ℎ𝑖

log2(|𝜎𝑖 |2ℎ𝑖
)
)
> 0 on 𝒳′.

In general, such an 𝜀 need not exist and it depends on the curvatures of ℎ𝐴 and ℎ𝑖 on 𝒳. Then we can
equip F with the metric ℎ𝐹,𝜀 defined by

ℎ𝐹,𝜀 = ℎ𝐴,𝜀 · ℎ𝐸,sing,

where ℎ𝐸,sing is the canonical singular hermitian metric on E given by the section 𝜎 =
∏

𝑖 𝜎𝑖 . We note
that (𝐸, ℎ𝐸,sing) |𝒳′ is the trivial line bundle equipped with the trivial metric.

Now the hermitian bundle (𝐴, ℎ𝐴,𝜀) fulfils the requirements of our main theorem (note here that it
works with a power 𝜀 > 0 instead of 1 as well), and we get the Nakano positivity of

𝑓∗(𝐾𝒳/𝑆 + 𝐸 + 𝐴) = 𝑓∗(𝐾𝒳/𝑆 + 𝐹).
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If we instead apply the general result from [3] directly to the hermitian bundle (𝐹, ℎ𝐹 ) with ℎ𝐹 =
ℎ𝐴 · ℎ𝐸,sing, we get first that

𝑓∗((𝐾𝒳/𝑆 + 𝐹) ⊗ J (ℎ𝐹 ))

is positive in the singular sense of Griffiths. But here we have J (ℎ𝐹 ) = 𝒪(−𝐸), so we can conclude that

𝑓∗((𝐾𝒳/𝑆 + 𝐹) ⊗ J (ℎ𝐹 )) = 𝑓∗(𝐾𝒳/𝑆 + 𝐴)

is positive in the sense of Nakano using the result from [1]. Of course, we should mention here that we
have

𝑓∗(𝐾𝒳/𝑆 + 𝐴) ⊂ 𝑓∗(𝐾𝒳/𝑆 + 𝐸 + 𝐴)

as sheaves but not as hermitian bundles because we changed the metric on A for the larger one. If the
decomposition 𝐹 = 𝐴 + 𝐸 is a relative Zariski decomposition, both sheaves coincide. If one applies [3]
to (𝐿, ℎ𝐹,𝜀) with a trivial multiplier ideal sheaf J (ℎ𝐹,𝜀), we get Griffiths positivity of 𝑓∗(𝐾𝒳/𝑆 + 𝐹)
only in the weaker singular sense.

6. Computation of the curvature

Computing the curvature of the 𝐿2-metric on 𝑓∗(Ω𝑛 (log𝒟))𝒳/𝑆 (ℒ) requires taking derivatives in the
base direction of fibre integrals, which can be realised by taking Lie derivatives of the integrands. These
Lie derivatives can be split up by introducing Lie derivatives of (𝑛, 0)-forms with values in L. They are
computed in terms of covariant derivatives with respect to the Chern connection on (𝑋 ′

𝑠 , 𝜔𝑠) and the
hermitian holomorphic bundle (𝐿𝑠 , ℎ𝑠). We use the symbol ; for covariant derivatives and , for ordinary
derivatives. Greek letters indicate the fibre direction, whereas Latin indices stand for directions on
the base. Because we are dealing with alternating (𝑝, 𝑞)-forms, the coefficients are meant to be skew-
symmetric. Thus every such (𝑝, 𝑞)-form carries a factor 1/𝑝!𝑞!, which we suppress in the notation.
These factors play a role in the process of skew-symmetrising the coefficients of a (𝑝, 𝑞)-form by taking
alternating sums of the (not yet skew-symmetric) coefficients. We adopt the Einstein convention of
summation.

6.1. Setup

By polarisation, it is sufficient to treat the case where dim 𝑆 = 1 for the computation of the curvature,
which simplifies the notation. Therefore, we set 𝑠 = 𝑠1, 𝑣𝑠 = 𝑣1, and so on. We write 𝑠, 𝑠 for the indices
1, 1 so that

𝑣𝑠 = 𝜕𝑠 + 𝑎𝛼
𝑠 𝜕𝛼

and
𝐴𝑠 = 𝐴𝛼

𝑠𝛽
𝜕𝛼𝑑𝑧

𝛽 .

We assume local freeness of the sheaf 𝑓∗(Ω𝑛 (log𝒟))𝒳/𝑆 (ℒ). According to Corollary 4, we can
represent local sections of this sheaf by holomorphic sections of (Ω𝑛 (logD))𝒳′/𝑆 (ℒ |𝒳′ ), which restrict
to holomorphic and square integrable (𝑛, 0)-forms on the open fibres 𝑋 ′

𝑠 . We denote such a section by
𝜓. In local coordinates, we have

𝜓 |𝑋 ′
𝑠
= 𝜓𝛼1...𝛼𝑛𝑑𝑧

𝛼1 ∧ . . . 𝑑𝑧𝛼𝑛

= 𝜓𝐴𝑛𝑑𝑧
𝐴𝑛 ,

where 𝐴𝑛 = (𝛼1, . . . , 𝛼𝑛). The 𝜕-closedness of 𝜓 means

𝜓𝐴𝑛;𝑠 = 0 and 𝜓𝐴𝑛;𝛽 = 0 for all 𝐴𝑛, 1 ≤ 𝛽 ≤ 𝑛. (6.1)

https://doi.org/10.1017/fms.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.79


Forum of Mathematics, Sigma 17

6.2. Cup product

Definition 4. Let 𝑠 ∈ 𝑆 and 𝐴 = 𝐴𝛼
𝑠𝛽
(𝑧, 𝑠)𝜕𝛼𝑑𝑧

𝛽 be the Kodaira-Spencer form on the fibre 𝑋 ′
𝑠 . The

wedge product, together with the contraction, defines a map

𝐴𝛼
𝑖𝛽
𝜕𝛼𝑑𝑧

𝛽∪ : 𝐻0 (𝑋𝑠 ,Ω
𝑛
𝑋𝑠
(log𝐷𝑠) (𝐿 |𝑋𝑠 )) → 𝐴0,1

(2) (𝑋
′
𝑠 ,Ω

𝑛−1
𝑋 ′
𝑠
(𝐿 |𝑋 ′

𝑠
)),

which can be described locally by(
𝐴

𝛾

𝑖 𝛿
𝜕𝛾𝑑𝑧

𝛿
)
∪

(
𝜓𝛼1...𝛼𝑛 𝑑𝑧

𝛼1 ∧ . . . ∧ 𝑑𝑧𝛼𝑛
)

= 𝐴
𝛾

𝑖𝛽
𝜓𝛾𝛼1...𝛼𝑛−1 𝑑𝑧

𝛽 ∧ 𝑑𝑧𝛼1 ∧ . . . ∧ 𝑑𝑧𝛼𝑛−1 .

The fact that 𝐴𝑖 ∪ 𝜓 is indeed square integrable will be proved in Lemma 6.2.

6.3. Lie derivatives

Now we choose a local frame {𝜓1, . . . , 𝜓𝑟 } according to Corollary 4. The components of the metric
tensor 𝐻𝑙𝑘 for 𝑓∗(Ω𝑛 (log𝒟))𝒳/𝑆 (ℒ) on the base space S are given by

𝐻𝑙𝑘 (𝑠) := 〈𝜓𝑘 , 𝜓𝑙〉 := 〈𝜓𝑘 |𝑋 ′
𝑠
, 𝜓𝑙 |𝑋 ′

𝑠
〉 =

∫
𝑋 ′
𝑠

𝜓𝑘
𝐴𝑛
𝜓𝑙

𝐵𝑛
𝑔𝐵𝑛𝐴𝑛ℎ|𝑋 ′

𝑠
𝑑𝑉.

We also write

𝜓𝑘 · 𝜓𝑙 = 𝜓𝑘
𝐴𝑛
𝜓𝑙

𝐵𝑛
𝑔𝐵𝑛𝐴𝑛ℎ|𝑋 ′

𝑠

for the pointwise inner product of 𝐿 |𝑋 ′
𝑠
-valued (𝑛, 0)-forms. Here and in the following, we write g for

the hermitian metric associated to the complete Kähler from 𝜔𝑠 . When we compute derivatives with
respect to the base of these fibre integrals, we apply Lie derivatives with respect to the horizontal lifts of
the tangent vectors according to Lemma 3.10. This considerably simplifies the computation. To break up
the Lie derivative of the pointwise inner product (which is a relative (𝑛, 𝑛)-form), we need to introduce
Lie derivatives of relative differential forms with values in a line bundle. This can be done by using
the hermitian connection ∇ on Λ𝑛,0𝑇∗

𝒳′/𝑆 ⊗ℒ |𝒳′ induced by the Chern connections on (𝑇𝑋 ′
𝑠
, 𝜔𝑋𝑠 ) and

(𝐿𝑠 , ℎ𝑠). We define the Lie derivative of 𝜓 with respect to the horizontal lift v by using Cartan’s formula

𝐿𝑣𝜓 := 𝐿𝑣 (𝜓𝒳′/𝑆) := (𝛿𝑣 ◦ ∇ + ∇ ◦ 𝛿𝑣 )𝜓 (6.2)

and similar for the Lie derivative with respect to 𝑣.
Taking Lie derivatives is not type-preserving. We have the type decomposition for 𝜓 = 𝜓𝑘 or 𝜓 = 𝜓𝑙

and 𝑣 = 𝑣𝑠

𝐿𝑣𝜓 = 𝐿𝑣𝜓
′ + 𝐿𝑣𝜓

′′,

where 𝐿𝑣𝜓
′ is of type (𝑛, 0) and 𝐿𝑣𝜓

′′ is of type (𝑛 − 1, 1). In local coordinates, we have

𝐿𝑣𝜓
′ =

��𝜓𝐴𝑛;𝑠 + 𝑎𝛼
𝑠 𝜓𝐴𝑛;𝛼 +

𝑛∑
𝑗=1

𝑎𝛼
𝑠;𝛼𝑗

𝜓𝛼1 . . . 𝛼 . . . 𝛼𝑛
|
𝑗

��� 𝑑𝑧𝐴𝑛 (6.3)

𝐿𝑣𝜓
′′ =

𝑛∑
𝑗=1

𝐴𝛼
𝑠𝛽𝑛

𝜓𝛼1 . . . 𝛼 . . . 𝛼𝑛
|
𝑗

𝑑𝑧𝛼1 ∧ . . . ∧ 𝑑𝑧𝛽𝑛 ∧ . . . ∧ 𝑑𝑧𝛼𝑛 .
|
𝑗

(6.4)
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One justification for using Lie derivatives is given by the following lemma, which allows us to express
some components of the Lie derivatives as cup products with the Kodaira-Spencer form:

Lemma 6.1. We have

𝐿𝑣𝜓
′′ = 𝐴𝑠 ∪ 𝜓, (6.5)

and it is primitive on the fibres.

Proof. First, we note

𝐿𝑣𝜓
′′ =

𝑛∑
𝑗=1

𝐴𝛼
𝑠𝛽𝑛

𝜓𝛼1 . . . 𝛼 . . . 𝛼𝑛
|
𝑗

𝑑𝑧𝛼1 ∧ . . . ∧ 𝑑𝑧𝛽𝑛 ∧ . . . ∧ 𝑑𝑧𝛼𝑛

|
𝑗

=
𝑛∑

𝑗=1
𝐴𝛼

𝑠𝛽𝑛
𝜓𝛼 𝛼1...𝛼𝑛−1𝑑𝑧

𝛽𝑛 ∧ 𝑑𝑧𝛼1 ∧ . . . ∧ 𝑑𝑧𝛼𝑛−1 .

To prove that 𝐴𝑠 ∪𝜓 is primitive, we have to show that Λ𝑠 (𝐴𝑠 ∪𝜓) = 0, where Λ𝑠 is the dual Lefschetz
operator with respect to the Kähler form

𝜔𝑠 =
√
−1𝑔𝛼𝛽 𝑑𝑧

𝛼 ∧ 𝑑𝑧𝛽 .

We have

(Λ𝑠 (𝐴𝑠 ∪ 𝜓))𝛼2...𝛼𝑛−1 = 𝑔
𝛽𝑛𝛼1𝐴𝛼

𝑠𝛽𝑛
𝜓𝛼 𝛼1...𝛼𝑛−1 = 𝐴𝛼𝛼1

𝑠 𝜓𝛼 𝛼1...𝛼𝑛−1 .

But now, because 𝐴𝛼𝛼1
𝑠 = 𝐴𝛼1 𝛼

𝑠 by Lemma 3.9 and 𝜓𝛼 𝛼1...𝛼𝑛−1 is skew-symmetric, we get that

(Λ𝑠 (𝐴𝑠 ∪ 𝜓))𝛼2...𝛼𝑛−1𝑑𝑧
𝛼2 ∧ . . . ∧ 𝑑𝑧𝛼𝑛−1 = 0. �

Similarly, we have a type decomposition for the Lie derivative along 𝑣 = 𝑣𝑠

𝐿𝑣𝜓 = 𝐿𝑣𝜓
′ + 𝐿𝑣𝜓

′′,

where 𝐿𝑣𝜓
′ is of type (𝑛, 0) and 𝐿𝑣𝜓

′′ is of type (𝑛 + 1, 𝑛 − 1) and hence vanishes by degree reasons.
In local coordinates, this is

𝐿𝑣𝜓
′ =

��𝜓𝐴𝑝𝐵𝑛−𝑝 ;𝑠 + 𝑎
𝛽
𝑠
𝜓𝐴𝑝𝐵𝑛−𝑝 ;𝛽 +

𝑛∑
𝑗=𝑝+1

𝑎
𝛽

𝑠;𝛽 𝑗

𝜓𝐴𝑝𝛽𝑝+1 . . . 𝛽 . . . 𝛽𝑛

|
𝑗

���� 𝑑𝑧
𝐴𝑝 ∧ 𝑑𝑧𝐵𝑛−𝑝 . (6.6)

From this, we infer that 𝐿𝑣𝜓 = 𝐿𝑣𝜓
′ = 0 because 𝜓 is holomorphic. The type decomposition can be

verified using the definition given by equation (6.2). We refer the reader to [17] for verification.

Lemma 6.2. The smooth forms 𝐿𝑣𝜓
′ and 𝐿𝑣𝜓

′′ are 𝐿2-integrable.

Proof. We use local coordinates 𝑧1, . . . , 𝑧𝑛 in a neighbourhood U of a point 𝑝 ∈ 𝐷𝑠 ⊂ 𝑋𝑠 , where
𝐷𝑠 ∩𝑈 = {𝑧1 · · · 𝑧𝑘 = 0}. We now have

𝜓𝐴𝑛 = 𝑂

(
1

|𝑧1 · · · 𝑧𝑘 |

)
and

𝑎𝛼
𝑠 = 𝑂 (|𝑧𝛼 | log |𝑧𝛼 |) for 1 ≤ 𝛼 ≤ 𝑘 else 𝑎𝛼

𝑠 = 𝑂 (1).
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From the local expression (6.3), we thus see that

(𝐿𝑣𝜓)′𝐴𝑛
= 𝑂

(
1

|𝑧1 · · · 𝑧𝑘 |

)
,

so it is again square integrable.
To prove that 𝐿𝑣𝜓

′′ is square integrable is more complicated. We first look at the order of 𝐴𝛼
𝑠𝛽

:

𝐴𝛼
𝛽
= 𝑂 (1) for 1 ≤ 𝛼 = 𝛽 ≤ 𝑘 or 𝑘 + 1 ≤ 𝛼, 𝛽 ≤ 𝑛.

𝐴𝛼
𝛽
= 𝑂

(
1

|𝑧𝛽 | log |𝑧𝛽 |

)
for 𝛼 > 𝑘 and 𝛽 ≤ 𝑘.

𝐴𝛼
𝛽
= 𝑂 (|𝑧𝛼 | log |𝑧𝛼 |) for 𝛼 ≤ 𝑘 and 𝛽 > 𝑘.

𝐴𝛼
𝛽
= 𝑂

(
|𝑧𝛼 | log |𝑧𝛼 |
|𝑧𝛽 | log |𝑧𝛽 |

)
for 1 ≤ 𝛼 ≠ 𝛽 ≤ 𝑘.

To prove that 𝐿𝑣𝜓
′′ = 𝐴𝑠 ∪ 𝜓 is 𝐿2-integrable means to verify that∫

𝑋 ′
𝑠

(𝐴𝑠 ∪ 𝜓) ∧ (𝐴𝑠 ∪ 𝜓)

is finite because the form is primitive by Lemma 6.1. For this we first note that the sum in the expression
of (𝐴𝑠 ∪ 𝜓)𝛽𝑛𝛼1...𝛼𝑛−1

reduces to

𝐴𝛼𝑛

𝑠 𝛽𝑛

𝜓𝛼𝑛𝛼1...𝛼𝑛−1 .

The only really critical term in (𝐴𝑠 ∪ 𝜓)𝛽𝑛𝛼1...𝛼𝑛−1
occurs if 𝛼𝑛 ∈ {𝑘 + 1, . . . , 𝑛}, 𝛽𝑛 ∈ {1, . . . , 𝑘}

and 𝛽𝑛 is among the 𝛼1, . . . , 𝛼𝑛−1, because in this case the order in 𝑧𝛽𝑛 is

1
|𝑧𝛽𝑛 |2 log |𝑧𝛽𝑛 |

.

But then, in the above integral, this term can only be paired with another term that contains neither 𝑑𝑧𝛽𝑛

nor 𝑑𝑧𝛽𝑛 . So we see that the product (𝐴𝑠 ∪ 𝜓) ∧ (𝐴𝑠 ∪ 𝜓) remains integrable. �

We need the following lemma:

Lemma 6.3. The Lie derivative of the volume element 𝑑𝑉 = 𝜔𝑛
𝑠 /𝑛! along the horizontal lift v vanishes:

that is,

𝐿𝑣 (𝑑𝑉) = 0.

Proof. It suffices to show that the (1, 1) component of 𝐿𝑣 (𝑔𝛼𝛽) vanishes, which implies
𝐿𝑣 (det(𝑔𝛼𝛽)) = 0. We have

𝐿𝑣 (𝑔𝛼𝛽)𝛼𝛽 = 𝑔𝛼𝛽,𝑠 + 𝑎
𝛾
𝑠 𝑔𝛼𝛽;𝛾 + 𝑎𝛾

𝑠;𝛼𝑔𝛾𝛽 = −𝑎𝑠𝛽;𝛼 + 𝑎𝛾
𝑠;𝛼𝑔𝛾𝛽 = 0. �

6.4. Main part of the computation

We start computing the curvature by computing the first-order variation. Using Lie derivatives, the
pointwise inner products can be broken up:
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Proposition 8.

𝜕

𝜕𝑠
〈𝜓𝑘 , 𝜓𝑙〉 = 〈𝐿𝑣𝜓

𝑘 , 𝜓𝑙〉,

where 𝜕/𝜕𝑠 denotes a tangent vector on the base S and v its horizontal lift and analogous for 𝜕/𝜕𝑠.

Proof. We first apply Lemma 3.10 and get that

𝜕

𝜕𝑠
〈𝜓𝑘 , 𝜓𝑙〉(𝑠) =

∫
𝑋 ′
𝑠

𝐿𝑣 (𝜓𝑘 · 𝜓𝑙 𝑑𝑉) =
∫

𝑋 ′
𝑠

𝐿𝑣 (𝜓𝑘 · 𝜓𝑙) 𝑑𝑉

by Lemma 6.3. Now it follows by a direct computation (see [17, Prop.1]) that

𝐿𝑣 (𝜓𝑘 · 𝜓𝑙) = 𝐿𝑣𝜓
𝑘 · 𝜓𝑙 + 𝜓𝑘 · 𝐿𝑣𝜓

𝑙

so that

𝜕

𝜕𝑠
〈𝜓𝑘 , 𝜓𝑙〉 = 〈𝐿𝑣𝜓

𝑘 , 𝜓𝑙〉 + 〈𝜓𝑘 , 𝐿𝑣𝜓
𝑙〉 = 〈𝐿𝑣𝜓

𝑘 , 𝜓𝑙〉

because 𝐿𝑣𝜓
𝑙 = 0. �

The above proposition is the primary reason for the use of Lie derivatives. For later computations,
we need to compare Laplacians:

Lemma 6.4. We have the following relation on the space 𝐴𝑝,𝑞
(2) (𝑋

′
𝑠 , 𝐿𝑠):

�𝜕 − ��̄� = (𝑛 − 𝑝 − 𝑞) · id . (6.7)

In particular, the harmonic forms 𝜓 ∈ 𝐴𝑛,0
(2) (𝑋

′
𝑠 , 𝐿𝑠) are also harmonic with respect to 𝜕, which is the

(1, 0)- part of the hermitian connection on 𝐴𝑛,0
(2) (𝑋

′
𝑠 , 𝐿𝑠).

Proof. The Bochner-Kodaira-Nakano identity says (on the fibre 𝑋 ′
𝑠)

��̄� − �𝜕 =
[√

−1Θ(𝐿𝑠),Λ
]
.

But by definition, we have 𝜔𝑋𝑠 =
√
−1Θ(𝐿𝑠). Furthermore, it holds (see [7, Cor.VI.5.9])

[𝐿𝜔 ,Λ𝜔]𝑢 = (𝑝 + 𝑞 − 𝑛) 𝑢 for 𝑢 ∈ 𝒜𝑝,𝑞 (𝑋 ′
𝑠 , 𝐿𝑠). �

Next, we start to compute the second-order derivative of 𝐻𝑙𝑘 and begin with

𝜕

𝜕𝑠
𝐻𝑙𝑘 = 〈𝐿𝑣𝜓

𝑘 , 𝜓𝑙〉.

We obtain

𝜕𝑠𝜕𝑠 〈𝜓𝑘 , 𝜓𝑙〉 = 〈𝐿𝑣𝐿𝑣𝜓
𝑘 , 𝜓𝑙〉 + 〈𝐿𝑣𝜓

𝑘 , 𝐿𝑣𝜓
𝑙〉

= 〈(𝐿 [𝑣,𝑣 ] + Θ(𝐿 |𝒳′ )𝑣𝑣 )𝜓𝑘 , 𝜓𝑙〉 + 〈𝐿𝑣𝐿𝑣𝜓
𝑘 , 𝜓𝑙〉 + 〈𝐿𝑣𝜓

𝑘 , 𝐿𝑣𝜓
𝑙〉

= 〈(𝐿 [𝑣,𝑣 ] + Θ(𝐿 |𝒳′ )𝑣𝑣 )𝜓𝑘 , 𝜓𝑙〉 + 𝜕𝑠 〈𝐿𝑣𝜓
𝑘 , 𝜓𝑙〉 − 〈𝐿𝑣𝜓

𝑘 , 𝐿𝑣𝜓
𝑙〉 + 〈𝐿𝑣𝜓

𝑘 , 𝐿𝑣𝜓
𝑙〉.

Because of 𝐿𝑣𝜓
𝑘 ≡ 0, as we just saw, we get

𝜕𝑠𝜕𝑠 〈𝜓𝑘 , 𝜓𝑙〉 = 〈(𝐿 [𝑣,𝑣 ] + Θ(𝐿 |𝒳′ )𝑣𝑣 )𝜓𝑘 , 𝜓𝑙〉 + 〈𝐿𝑣𝜓
𝑘 , 𝐿𝑣𝜓

𝑙〉. (6.8)
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We will see below that the smooth (𝑛, 0)-form (𝐿 [𝑣,𝑣 ] + Θ(𝐿 |𝒳′ )𝑣𝑣 )𝜓𝑘 is indeed square integrable,
which justifies that 𝐿𝑣𝐿𝑣𝜓

𝑘 is square integrable, too.
Now we treat each term on the right-hand side of equation (6.8) separately. For the first summand,

we have
Lemma 6.5.

𝐿 [𝑣,𝑣 ] + Θ(𝐿𝒳′ )𝑣𝑣 = [−𝜑;𝛼𝜕𝛼 + 𝜑;𝛽𝜕𝛽 , ] − 𝜑 · id, (6.9)

where the bracket [𝑤, ] stands for a Lie derivative along the vector field w.
Proof. We first compute the vector field [𝑣, 𝑣]:

[𝑣, 𝑣] = [𝜕𝑠 + 𝑎𝛽
𝑠
𝜕𝑠 , 𝜕𝑠 + 𝑎𝛼

𝑠 𝜕𝛼]

=
(
𝜕𝑠 (𝑎𝛼

𝑠 ) + 𝑎
𝛽
𝑠
𝑎𝛼

𝑎 |𝛽

)
𝜕𝛼 −

(
𝜕𝑠 (𝑎𝛽

𝑠
) + 𝑎𝛼

𝑠 𝑎
𝛽
𝑠 |𝛼

)
𝜕𝛽 .

Now we have

𝜕𝑠 (𝑎𝛼
𝑠 ) = −𝜕𝑠 (𝑔𝛽𝛼𝑔𝑠𝛽) = 𝑔

𝛽𝜎𝑔𝜎𝑠 |𝜏𝑔
𝜏𝛼𝑔𝑠𝛽 − 𝑔𝛽𝛼𝑔𝑠𝛽 |𝑠

= 𝑔𝛽𝜎𝑎𝑠𝜎;𝜏𝑔
𝜏𝛼𝑎𝑠𝛽 − 𝑔𝛽𝛼𝑔𝑠𝑠;𝛽 .

Because of 𝜑 = 𝑔𝑠𝑠 − 𝑔𝛼𝑠𝑔𝑠𝛽𝑔
𝛽𝛼, the coefficient of 𝜕𝛼 is 𝑔𝛽𝛼𝜑;𝛽 = 𝜑;𝛼. In the same way, we get the

coefficient of 𝜕𝛽 . Next, we need to compute the contribution of the connection on 𝐿 |𝒳′ . Because of
√
−1[𝜕, 𝜕] =

√
−1Θ(𝐿) |𝒳′ = 𝜔𝒳′ , we have

Θ(𝐿 |𝒳′ )𝑣𝑣 = −Θ(𝐿 |𝒳′ )𝑣𝑣

= −
(
𝑔𝑠𝑠 + 𝑎𝛽

𝑠
𝑔𝑠𝛽 + 𝑎𝛼

𝑠 𝑔𝛼𝑠 + 𝑎𝛽
𝑠
𝑎𝛼

𝑠 𝑔𝛼𝛽

)
= −𝜑. �

Lemma 6.6.

〈(𝐿 [𝑣,𝑣 ] + Θ(𝐿 |𝒳′ )𝑣𝑣 )𝜓𝑘 , 𝜓𝑙〉 = −〈𝜑 · 𝜓𝑘 , 𝜓𝑙〉 = −
∫

𝑋 ′
𝑠

𝜑 · (𝜓𝑘 · 𝜓𝑙) 𝑑𝑉. (6.10)

Proof. The 𝜕-closedness of 𝜓𝑘 means

𝜓𝑘
;𝛼 =

𝑛∑
𝑗=1

𝜓𝑘
𝛼1 . . . 𝛼 . . . 𝛼𝑛 ; 𝛼𝑗

|
𝑗

.

Thus

[𝜑;𝛼𝜕𝛼, 𝜓
𝑘
𝐴𝑛
] ′ = 𝜑;𝛼𝜓𝑘

;𝛼 +
𝑛∑

𝑗=1
𝜑;𝛼

;𝛼𝑗
𝜓𝑘

𝛼1 . . . 𝛼 . . . 𝛼𝑛
|
𝑗

=
𝑛∑

𝑗=1
(𝜑;𝛼𝜓𝑘

𝛼1 . . . 𝛼 . . . 𝛼𝑛
|
𝑗

);𝛼𝑗

= 𝜕
(
𝜑;𝛼𝜕𝛼 ∪ 𝜓𝑘

)
.

It is clear that (𝜑;𝛼𝜕𝛼∪𝜓𝑘 ) is square integrable, because 𝜑|𝑋 ′
𝑠

lies in 𝒞𝑘,𝛼 (𝑋 ′
𝑠). Moreover, it guarantees

that this form lies in the domain of 𝜕. This leads to
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〈[𝜑;𝛼𝜕𝛼, 𝜓
𝑘
𝐴𝑛
], 𝜓𝑙〉 = 〈[𝜑;𝛼𝜕𝛼, 𝜓

𝑘
𝐴𝑛
] ′, 𝜓𝑙〉

= 〈𝜕
(
𝜑;𝛼𝜕𝛼 ∪ 𝜓𝑘

)
, 𝜓𝑙〉 = 〈𝜑;𝛼𝜕𝛼 ∪ 𝜓𝑘 , 𝜕∗𝜓𝑙〉 = 0.

Note that by Gaffney’s theorem, Proposition 5, the formal adjoint of 𝜕 is equal to the adjoint operator.
In the same way, we get

〈[𝜑;𝛽𝜕𝛽 , 𝜓
𝑘
𝐴𝑛
], 𝜓𝑙〉 = 0.

�

The following proposition contains important identities that allow us to obtain an intrinsic expression
for the curvature:

Proposition 9.

𝜕 (𝐿𝑣𝜓
𝑘 )′ = 𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ), (6.11)

𝜕∗(𝐿𝑣𝜓
𝑘 )′ = 0, (6.12)

𝜕∗(𝐴𝑠 ∪ 𝜓𝑘 ) = 0. (6.13)

We note that here the operators 𝜕, 𝜕, 𝜕∗ and 𝜕∗ mean the fibrewise operators, because we are always
dealing with relative forms. For a proof, we refer to [17, Appendix A]. We see from the proof of Lemma
6.2 that 𝜕 (𝐿𝑣𝜓

𝑘 )′ is again square integrable.
Now we look at the second term in equation (6.8) and decompose it into its two types

〈𝐿𝑣𝜓
𝑘 , 𝐿𝑣𝜓

𝑙〉 = 〈(𝐿𝑣𝜓
𝑘 )′, (𝐿𝑣𝜓

𝑙)′〉 − 〈(𝐿𝑣𝜓
𝑘 )′′, (𝐿𝑣𝜓

𝑙)′′〉
= 〈(𝐿𝑣𝜓

𝑘 )′, (𝐿𝑣𝜓
𝑙)′〉 − 〈𝐴𝑠 ∪ 𝜓𝑘 , 𝐴𝑠 ∪ 𝜓𝑙〉

because of equation (6.5).
Now let 𝐺𝜕 and 𝐺 �̄� be the Green operators on the spaces 𝐴𝑝,𝑞

(2) (𝑋
′
𝑠 , 𝐿 |𝑋 ′

𝑠
) with respect to �𝜕 and ��̄�,

respectively. According to Lemma 6.4, they coincide for 𝑝 + 𝑞 = 𝑛. We use normal coordinates (of the
second kind) at a given point 𝑠0 ∈ 𝑆. The condition (𝜕/𝜕𝑠)𝐻𝑙𝑘 |𝑠0 = 0 for all 𝑘, 𝑙 means for 𝑠 = 𝑠0 the
harmonic projection

𝐻 ((𝐿𝑣𝜓
𝑘 )′) = 0

vanishes for all k. Thus, using the identity id = 𝐻 + 𝐺 �̄���̄�, we can write

(𝐿𝑣𝜓
𝑘 )′ = 𝐺 �̄���̄� (𝐿𝑣𝜓

𝑘 )′ = 𝐺 �̄�𝜕
∗𝜕 (𝐿𝑣𝜓

𝑘 )′ = 𝜕∗𝐺 �̄�𝜕 (𝐴𝑠 ∪ 𝜓𝑘 )

by equations (6.12) and (6.11). Because the form 𝜕 (𝐿𝑣𝜓
𝑘 )′ = 𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ) is of type (𝑛, 1), we have

𝐺 �̄� = (�𝜕 + 1)−1 on such forms by Lemma 6.4. We proceed by

〈(𝐿𝑣𝜓
𝑘 )′, (𝐿𝑣𝜓

𝑙)′〉 = 〈𝜕∗𝐺 �̄�𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ), (𝐿𝑣𝜓
𝑙)′〉

= 〈𝐺 �̄�𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ), 𝜕 (𝐴𝑠 ∪ 𝜓𝑙)〉
= 〈(�𝜕 + 1)−1𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ), 𝜕 (𝐴𝑠 ∪ 𝜓𝑙)〉
= 〈𝜕∗(�𝜕 + 1)−1𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ), 𝐴𝑠 ∪ 𝜓𝑙〉.
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Again, we used Gaffney’s theorem. Now using equation (6.13) gives

〈(𝐿𝑣𝜓
𝑘 )′, (𝐿𝑣𝜓

𝑙)′〉 = 〈(�𝜕 + 1)−1�𝜕 (𝐴𝑠 ∪ 𝜓𝑘 ), 𝐴𝑠 ∪ 𝜓𝑙〉
= 〈(�𝜕 + 1)−1(�𝜕 + 1 − 1) (𝐴𝑠 ∪ 𝜓𝑘 ), 𝐴𝑠 ∪ 𝜓𝑙〉
= 〈𝐴𝑠 ∪ 𝜓𝑘 , 𝐴𝑠 ∪ 𝜓𝑙〉 − 〈(�𝜕 + 1)−1(𝐴𝑠 ∪ 𝜓𝑘 ), 𝐴𝑠 ∪ 𝜓𝑙〉.

Altogether, we have

Lemma 6.7.

〈𝐿𝑣𝜓
𝑘 , 𝐿𝑣𝜓

𝑙〉 = −
∫

𝑋 ′
𝑠

(� + 1)−1(𝐴𝑠 ∪ 𝜓𝑘 ) · (𝐴𝑠 ∪ 𝜓𝑙) 𝑔 𝑑𝑉. (6.14)

(We write � = �𝜕 = ��̄� when applied to (𝑛 − 1, 1)-forms.)

Now our main result Theorem 2.1 follows from equations (6.8), (6.10), (6.14) and the fact that
𝑅𝑙𝑘

𝑖 𝚥
(𝑠0) = −𝜕𝚥𝜕𝑖𝐻

𝑙𝑘 (𝑠0) in normal coordinates at a point 𝑠0 ∈ 𝑆.
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