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Abstract
We establish an upper bound for the ground state energy per unit volume of a dilute Bose gas in the thermodynamic
limit, capturing the correct second-order term, as predicted by the Lee–Huang–Yang formula. This result was
first established in [20] by H.-T. Yau and J. Yin. Our proof, which applies to repulsive and compactly supported
𝑉 ∈ 𝐿3 (R3), gives better rates and, in our opinion, is substantially simpler.

1. Introduction and main result

We consider N bosons in a finite box Λ𝐿 = [− 𝐿2 , 𝐿2 ]
3 ⊂ R3, interacting via a two-body nonnegative,

radial, compactly supported potential V with scattering length 𝔞. The Hamilton operator has the form

𝐻𝐿 = −
𝑁∑
𝑖=1

Δ 𝑖 +
∑

1≤𝑖< 𝑗≤𝑁
𝑉 (𝑥𝑖 − 𝑥 𝑗 ) (1.1)

and acts on the Hilbert space 𝐿2
𝑠 (Λ𝑁𝐿 ), the subspace of 𝐿2 (Λ𝑁𝐿 ) consisting of functions that are symmetric

with respect to permutations of the N particles (we use here units with particle mass 𝑚 = 1/2 and
ℏ = 1). We assume Dirichlet boundary conditions and denote by 𝐸 (𝑁, 𝐿) the corresponding ground
state energy. We are interested in the energy per unit volume in the thermodynamic limit, defined by

𝑒(𝜌) = lim
𝑁 ,𝐿→+∞
𝜌=𝑁 /𝐿3

𝐸 (𝑁, 𝐿)
𝐿3 . (1.2)

Bogoliubov [4] and, later, in more explicit terms, Lee–Huang–Yang [14] predicted that, in the dilute
limit 𝜌𝔞3 � 1, the specific ground state energy (1.2) is so that

𝑒(𝜌) = 4𝜋𝔞𝜌2
[
1 + 128

15
√

𝜋
(𝜌𝔞3)1/2 + 𝑜((𝜌𝔞3)1/2)

]
. (1.3)
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In particular, up to lower order corrections, it only depends on the interaction potential through the
scattering length 𝔞. An alternative heuristic derivation of (1.3) was proposed in [15] (this approach was
based on a partial differential equation with a convolution nonlinearity, whose mathematical properties
were recently studied in [7]).

On the rigorous level, the validity of the leading term on the right-hand side of (1.3) was established
by Dyson, who obtained an upper bound in [8], and by Lieb–Yngvason, who proved the matching lower
bound in [16]. An upper bound with the correct second-order contribution was first derived in [20] by
Yau–Yin for regular potentials, improving a previous estimate from [9], which only recovered the correct
formula (as an upper bound) in the limit of weak coupling. The approach of [20] has been reviewed
and adapted to a grand canonical setting in [1]. As for the lower bound, preliminary results have been
obtained in [13] and [6], where (1.3) was shown in particular regimes, where the potential scales with
the density 𝜌. Finally, a rigorous lower bound matching (1.3) has been obtained by Fournais–Solovej,
in [10] for 𝐿1 potentials and, very recently, in [11] for a hard sphere interaction (a nonoptimal bound
for hard spheres had been previously obtained in [5]).

Our goal in this article is to show a new upper bound for (1.3). With respect to the upper bound
established in [20], our result holds for a larger class of potentials (in [20], the upper bound is proven
for smooth potentials), it gives a better rate (although still far from optimal) and, most important in our
opinion, it relies on a simpler proof.

Theorem 1.1. Let 𝑉 ∈ 𝐿3 (R3) be nonnegative, radially symmetric, with supp(𝑉) ⊂ 𝐵𝑅 (0) and scatter-
ing length 𝔞. Then, the specific ground state energy 𝑒(𝜌) of the Hamilton operator 𝐻𝐿 defined in (1.1)
satisfies

𝑒(𝜌) ≤ 4𝜋𝜌2𝔞
[
1 + 128

15
√

𝜋
(𝜌𝔞3)1/2

]
+ 𝐶𝜌5/2+1/10 (1.4)

for some 𝐶 > 0 (depending on ‖𝑉 ‖3 and on R) and for 𝜌 small enough.

Remark. Since Dirichlet boundary conditions lead to the largest energy, the upper bound (1.4) holds in
fact for arbitrary boundary conditions.

Remark. At the cost of a longer proof, we could improve the bound on the error, up to the order 𝜌5/2+2/9

(this is the rate determined by Lemma 5.1).

The proof of 1.4 is based on the construction of an appropriate trial state. However, we do not directly
construct a trial state in 𝐿2

𝑠 (Λ𝑁𝐿 ) for the Hamiltonian (1.1). Instead, to simplify the analysis, it is very
convenient to (1) consider smaller boxes (rather than letting 𝑁, 𝐿 → ∞ first and considering small 𝜌 at
the end, we will consider a diagonal limit, with 𝐿 = 𝜌−𝛾 , for some 𝛾 > 1), (2) work with periodic rather
than Dirichlet boundary conditions and (3) work in the grand-canonical setting, considering states with
variable number of particles, rather than the canonical setting. In other words, our trial state will be
defined on the bosonic Fock space

F(Λ𝐿) =
⊕
𝑛≥0

𝐿2
𝑠 (Λ𝑛𝐿) =

⊕
𝑛≥0

𝐿2 (Λ𝐿)⊗𝑠𝑛

where 𝐿2
𝑠 (Λ𝑛𝐿) is the subspace of 𝐿2 (Λ𝑛𝐿) consisting of wave functions that are symmetric with respect

to permutations. On F(Λ𝐿), we consider the number of particles operator N defined through (N𝜓) (𝑛) =
𝑛𝜓 (𝑛) . Moreover, we introduce the Hamiltonian operator H, setting

(H𝜓) (𝑛) = H(𝑛)𝜓 (𝑛) (1.5)
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with

H(𝑛) =
𝑛∑
𝑗=1

−Δ 𝑥 𝑗 +
∑

1≤𝑖< 𝑗≤𝑛
𝑉 (𝑥𝑖 − 𝑥 𝑗 ),

imposing now (in contrast to what we did in (1.1)) periodic boundary conditions (with a slight abuse of
notation, V denotes here the periodic extension of the potential introduced in (1.1)). The upper bound
for the energy of (1.5) will then imply Theorem 1.1 thanks to the following localisation result.

Proposition 1.2. Let 𝑒(𝜌) be defined as in (1.2), with Dirichlet boundary conditions. Let 𝑅 < 𝑏 < 𝐿,
with R the radius of the support of the potential V, as defined in Theorem 1.1. Then, for any normalised
Ψ𝐿 ∈ F(Λ𝐿) satisfying periodic boundary conditions and such that

〈Ψ𝐿 ,NΨ𝐿〉 ≥ 𝜌(1 + 𝑐′𝜌) (𝐿 + 2𝑏 + 𝑅)3, 〈Ψ𝐿 ,N2Ψ𝐿〉 ≤ 𝐶 ′𝜌2(𝐿 + 2𝑏 + 𝑅)6 (1.6)

for some 𝑐′, 𝐶 ′ > 0, we have

𝑒(𝜌) ≤ 〈Ψ𝐿 ,HΨ𝐿〉
𝐿3 + 𝐶

𝐿4𝑏
〈Ψ𝐿 ,NΨ𝐿〉 (1.7)

for a universal constant 𝐶 > 0.

The proof of Proposition 1.2 is standard; see [18, 20, 1]. Roughly speaking, the idea consists in
using Ψ𝐿 (satisfying periodic boundary conditions on the box Λ𝐿) to construct a trial state satisfying
Dirichlet boundary conditions on a slightly larger box of side length 𝐿 + 2𝑏 and then in approaching the
thermodynamic limit by replicating the Dirichlet state on several boxes of side length 𝐿 + 2𝑏, separated
by corridors of size R (to avoid interactions among different boxes). For completeness, we provide a
detailed proof of Proposition 1.2 in Appendix A.

The bulk of the article contains the proof of the following proposition, establishing the existence of
a trial state with the correct energy per unit volume and the correct expected number of particles on
boxes of size 𝐿 = �̃�−𝛾 . We use here the notation �̃� for the density to stress the fact that the upper bound
(1.9) will be inserted in (1.7) to prove an upper bound for the specific ground state energy 𝑒(𝜌), for a
slightly different density 𝜌 < �̃� (to make up for the corrections on the right-hand side of (1.6)).

Proposition 1.3. As in Theorem 1.1, assume that 𝑉 ∈ 𝐿3 (R3) is nonnegative, radially symmetric with
supp 𝑉 ⊂ 𝐵𝑅 (0) and scattering length 𝔞. For 𝛾 > 1 and �̃� > 0 let 𝐿 = �̃�−𝛾 . Then, for every 0 < 𝜀 < 1/4,
there exists Φ�̃� ∈ F(Λ𝐿) satisfying periodic boundary conditions such that

〈Φ�̃�,NΦ�̃�〉 ≥ �̃�𝐿3, 〈Φ�̃�,N2Φ�̃�〉 ≤ 𝐶�̃�2𝐿6 (1.8)

and 〈
Φ�̃�,HΦ�̃�

〉
𝐿3 ≤ 4𝜋𝔞 �̃� 2

(
1 + 128

15
√

𝜋
(𝔞3 �̃�)1/2

)
+ E, (1.9)

with

E ≤ 𝐶 �̃� 5/2 · max{ �̃�𝜀 , �̃�4−3𝛾−6𝜀 , �̃�9/4−3𝛾/2−3𝜀}.

Remark. the condition 𝛾 > 1 is needed to make sure that the localisation error in (1.7) is negligible.
While we will choose 𝛾 = 11/10 to optimise the rate, our analysis allows us to take any 1 < 𝛾 < 4/3.
With a longer proof, our techniques could be extended to all 1 < 𝛾 < 5/3. This suggests that our trial
state captures the correct correlations of the ground state, up to length scales of the order 𝜌−5/3.

With Proposition 1.2 and Proposition 1.3 we can prove Theorem 1.1.
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Proof of Theorem 1.1. For given 𝜌 > 0, we would like to choose �̃� or, equivalently, 𝐿 = �̃�−𝛾 , so that
(1.8) implies (1.6). Fixing 𝑐′ > 0 and 𝑏 = 𝐿𝛼, for some 𝛼 ∈ (0; 1), this leads to the implicit equation

𝐿 = �̃�−𝛾 =
[
𝜌(1 + 𝑐′𝜌) (1 + 2𝐿𝛼−1 + 𝑅𝐿−1)3]−𝛾 . (1.10)

Setting 𝐿 =
(
𝜌(1 + 𝑐′𝜌)

)−𝛾
𝑥, we rewrite (1.10) as

𝑥 =
(
1 + 2

(
𝜌(1 + 𝑐′𝜌)

)𝛾 (1−𝛼) /𝑥1−𝛼 + 𝑅
(
𝜌(1 + 𝑐′𝜌)

)𝛾/𝑥)−3𝛾

and we conclude that the existence of a solution 𝐿 = 𝐿(𝜌) of (1.10) follows from the implicit function
theorem, if 𝜌 > 0 is small enough (the solution stems from 𝑥 = 1 for 𝜌 = 0). By construction, 𝐿 = �̃�−𝛾 ,
with

�̃� = 𝜌(1 + 𝑐′𝜌) (1 + 2�̃�𝛾 (1−𝛼) + 𝑅�̃�𝛾)3

and thus

𝜌 ≤ �̃� ≤ 𝜌(1 + 𝐶𝜌 + 𝐶𝜌𝛾 (1−𝛼) ). (1.11)

From Proposition 1.3, we find Φ�̃� ∈ F(Λ𝐿) such that (1.8) and (1.9) hold true. In particular, (1.8)
implies (1.6) (with 𝑏 = 𝐿𝛼, 𝐶 ′ = 𝐶). Thus, from Proposition 1.2 we conclude

𝑒(𝜌) ≤
〈Φ�̃�,HΦ�̃�〉

𝐿3 + 𝐶

𝐿4𝑏
〈Φ�̃�,NΦ�̃�〉.

Inserting (1.9) and (1.8), we obtain (since (1.8) also implies that 〈Φ�̃�,NΦ�̃�〉 ≤ 𝐶�̃�𝐿3)

𝑒(𝜌) ≤ 4𝜋𝔞 �̃�2
[
1 + 128

15
√

𝜋
(𝔞3 �̃�)1/2

]
+ 𝐶�̃�1+𝛾 (1+𝛼) + 𝐶�̃� 5/2 · max{ �̃�𝜀 , �̃�4−3𝛾−6𝜀 , �̃�9/4−3𝛾/2−3𝜀}.

With (1.11), we conclude that

𝑒(𝜌) ≤ 4𝜋𝔞𝜌2
[
1 + 128

15
√

𝜋
(𝔞3𝜌)1/2

]
+ 𝐶𝜌5/2 · max{𝜌𝛾 (1−𝛼)−1/2, 𝜌𝛾 (1+𝛼)−3/2, 𝜌𝜀 , 𝜌4−3𝛾−6𝜀 , 𝜌9/4−3𝛾/2−3𝜀},

where we neglected errors of order 𝐶𝜌3, which are subleading compared with 𝐶𝜌5/2+𝜀 , since
𝜀 ∈ (0; 1/4).

Comparing the first two errors, we choose 𝛼 = 1/(2𝛾). Comparing instead third and fourth errors,
we set 𝜀 = (4 − 3𝛾)/7 (both choices are consistent with the conditions 𝛼 ∈ (0; 1) and 𝜀 ∈ (0; 1/4),
because 𝛾 > 1). Since, with these choices, the last error is of smaller order, we obtain

𝑒(𝜌) ≤ 4𝜋𝔞𝜌2
[
1 + 128

15
√

𝜋
(𝔞3𝜌)1/2

]
+ 𝐶𝜌5/2 · max{𝜌𝛾−1, 𝜌 (4−3𝛾)/7}.

Choosing 𝛾 = 11/10, we find (1.4). �

The proof of Proposition 1.3 occupies the rest of the article (excluding Appendix A, where we show
Proposition 1.2). In Section 2 we define our trial state. To this end, we will start with a coherent state
describing the Bose–Einstein condensate. Similar to [12, 9], we will then act on the coherent state
with a Bogoliubov transformation to add the expected correlation structure. Finally, we will apply the
exponential of a cubic expression in creation operators. While the Bogoliubov transformation creates
pairs of excitations with opposite momenta 𝑝,−𝑝, the cubic operator creates three excitations at a time,
two with large momenta 𝑟 + 𝑣,−𝑟 and one with low momentum v. This last step is essential, since, as
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follows from [9, 17], quasi-free states cannot approximate the ground state energy to the precision of
(1.3). We remark that the idea of creating triples of excitations originally appeared in the work of Yau–
Yin [20] (a brief comparison with the trial state of [20] can be found after the precise definition of our
trial state in (2.25)). Recently, it has been also applied to establish the validity of Bogoliubov theory in
the Gross–Pitaevskii regime in [3, 2]; while our approach is inspired by these papers, we need new tools
to deal with the large boxes considered in Proposition 1.3 (a simple computation shows that the Gross–
Pitaevskii regime corresponds to the exponent 𝛾 = 1/2; to control localisation errors, we need instead
to choose 𝛾 > 1). In Section 3, we combine the contributions to the energy of the trial state arising from
the conjugation with the Bogoliubov transformation and from the action of the cubic phase, proving the
desired upper bound. In Section 4 and Section 5, we prove technical bounds which allow us to identify
the leading contributions collected in Section 3.

2. Setting and trial state

To show Proposition 1.3, we find it convenient to work with rescaled variables. We consider the
transformation 𝑥 𝑗 → 𝑥 𝑗/𝐿 and, motivated by the choice 𝐿 = �̃�−𝛾 in Proposition 1.3, we set 𝑁 = �̃�1−3𝛾

(we will look for trial states with expected number of particles close to N to make sure that (1.8) holds
true). It follows that the Hamiltonian (1.5) is unitarily equivalent to the operator 𝐿−2H𝑁 = �̃�2𝛾H𝑁 , with
H𝑁 acting on the Fock space F(Λ) defined over the unit box Λ = Λ1 = [−1/2; 1/2]3 (with periodic
boundary conditions) so that (H𝑁Ψ) (𝑛) = H(𝑛)

𝑁 Ψ (𝑛) , with

H(𝑛)
𝑁 =

𝑛∑
𝑗=1

−Δ 𝑥 𝑗 +
∑

1≤𝑖, 𝑗≤𝑛
𝑁2−2𝜅𝑉 (𝑁1−𝜅 (𝑥𝑖 − 𝑥 𝑗 ))

and 𝜅 = (2𝛾 − 1)/(3𝛾 − 1). The assumption 𝛾 > 1 in Proposition 1.3 allows us to restrict our attention
to 𝜅 ∈ (1/2; 2/3).

For any momentum 𝑝 ∈ Λ∗ = 2𝜋Z3, we introduce on the Fock space F(Λ) =
⊕

𝑛≥0 𝐿2
𝑠 (Λ𝑛) the

operators 𝑎∗
𝑝 , 𝑎𝑝 , creating and, respectively, annihilating a particle with momentum p. Creation and

annihilation operators satisfy the canonical commutation relations[
𝑎𝑝 , 𝑎∗

𝑞

]
= 𝛿𝑝𝑞 ,

[
𝑎𝑝 , 𝑎𝑞

]
=

[
𝑎∗
𝑝 , 𝑎∗

𝑞

]
= 0. (2.1)

On F(Λ), we define the number of particles operator N =
∑
𝑝∈Λ∗ 𝑎∗

𝑝𝑎𝑝 . Expressed in terms of creation
and annihilation operators, the Hamiltonian H𝑁 takes the form

H𝑁 =
∑
𝑝∈Λ∗

𝑝2𝑎∗
𝑝𝑎𝑝 +

1
2𝑁1−𝜅

∑
𝑝,𝑞,𝑟 ∈Λ∗

𝑉 (𝑟/𝑁1−𝜅 ) 𝑎∗
𝑝+𝑟𝑎

∗
𝑞𝑎𝑞+𝑟𝑎𝑝 . (2.2)

We now construct our trial state. To generate a condensate, we use a Weyl operator

𝑊𝑁0 = exp
[√

𝑁0𝑎∗
0 −

√
𝑁0𝑎0

]
(2.3)

with a parameter 𝑁0 to be specified later on. While 𝑊𝑁0 leaves 𝑎𝑝 , 𝑎∗
𝑝 invariant, for all 𝑝 ∈ Λ∗\{0}, it

produces shifts of 𝑎0, 𝑎∗
0; in other words,

𝑊∗
𝑁0

𝑎0 𝑊𝑁0 = 𝑎0 +
√

𝑁0, 𝑊∗
𝑁0

𝑎∗
0 𝑊𝑁0 = 𝑎∗

0 +
√

𝑁0. (2.4)

When acting on the vacuum vector Ω = {1, 0, . . . }, (2.3) generates a coherent state in the zero-
momentum mode 𝜑0(𝑥) ≡ 1, with expected number of particles 𝑁0.

It turns out, however, that the coherent state does not approximate the ground state energy, not even to
leading order. To get closer to the ground state energy, it is crucial to add correlations among particles.
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To this end, we fix 0 < ℓ < 1/2 and we consider the lowest energy solution 𝑓ℓ of the Neumann problem[
−Δ + 1

2
𝑉

]
𝑓ℓ = 𝜆ℓ 𝑓ℓ (2.5)

on the ball |𝑥 | ≤ 𝑁1−𝜅ℓ, with the normalisation 𝑓ℓ (𝑥) = 1 if |𝑥 | = 𝑁1−𝜅ℓ. Furthermore, by rescaling, we
define 𝑓𝑁 ,ℓ (𝑥) := 𝑓ℓ

(
𝑁1−𝜅𝑥

)
for |𝑥 | ≤ ℓ. We extend 𝑓𝑁 ,ℓ to a function on Λ, by fixing 𝑓𝑁 ,ℓ (𝑥) = 1, for

all 𝑥 ∈ Λ, with |𝑥 | > ℓ. Then[
−Δ + 1

2
𝑁2−2𝜅𝑉 (𝑁1−𝜅𝑥)

]
𝑓𝑁 ,ℓ (𝑥) = 𝑁2−2𝜅𝜆ℓ 𝑓𝑁 ,ℓ (𝑥)𝜒ℓ (𝑥) (2.6)

for all 𝑥 ∈ Λ, where 𝜒ℓ denotes the characteristic function of the ball of radius ℓ. We denote by �̂�𝑁 ,ℓ (𝑝) the
Fourier coefficients of the function 𝑓𝑁 ,ℓ , for 𝑝 ∈ Λ∗. We also define 𝑤ℓ (𝑥) = 1− 𝑓ℓ (𝑥) (with 𝑤ℓ (𝑥) = 0
for |𝑥 | > 𝑁1−𝜅ℓ) and its rescaled version 𝑤𝑁 ,ℓ : Λ → R through 𝑤𝑁 ,ℓ (𝑥) = 𝑤ℓ (𝑁1−𝜅𝑥) = 1 − 𝑓𝑁 ,ℓ (𝑥).
The Fourier coefficients of 𝑤𝑁 ,ℓ are given by

𝑤𝑁 ,ℓ (𝑝) =
∫
Λ

𝑤ℓ (𝑁1−𝜅𝑥)𝑒−𝑖 𝑝 ·𝑥𝑑𝑥 =
1

𝑁3−3𝜅 𝑤ℓ
(
𝑝/𝑁1−𝜅 )

where 𝑤ℓ (𝑘) denotes the Fourier transform of the (compactly supported) function 𝑤ℓ . Some important
properties of the solution of the eigenvalue problem (2.5) are summarised in the following lemma,
whose proof can be found in [3, Appendix A] (replacing 𝑁 ∈ N by 𝑁1−𝜅 ).

Lemma 2.1. Let 𝑉 ∈ 𝐿3 (R3) be nonnegative, compactly supported and spherically symmetric. Fix ℓ > 0
and let 𝑓ℓ denote the solution of (2.5). For 𝑁 ∈ N large enough, the following properties hold true:

i) We have ����𝜆ℓ − 3𝔞
𝑁3−3𝜅ℓ3

���� ≤ 1
𝑁3−3𝜅ℓ3

𝐶𝔞2

ℓ𝑁1−𝜅 .

ii) We have 0 ≤ 𝑓ℓ , 𝑤ℓ ≤ 1. Moreover, there exists a constant 𝐶 > 0 such that����∫ 𝑉 (𝑥) 𝑓ℓ (𝑥)𝑑𝑥 − 8𝜋𝔞

���� ≤ 𝐶𝔞2

ℓ𝑁1−𝜅 .

iii) There exists a constant 𝐶 > 0 such that, for all 𝑥 ∈ R3,

𝑤ℓ (𝑥) ≤
𝐶

|𝑥 | + 1
and |∇𝑤ℓ (𝑥) | ≤

𝐶

𝑥2 + 1
.

iv) There exists a constant 𝐶 > 0 such that, for all 𝑝 ∈ R3,

|𝑤𝑁 ,ℓ (𝑝) | ≤
𝐶

𝑁1−𝜅 𝑝2 .

We consider the coefficients 𝜂 : Λ∗ → R defined through

𝜂𝑝 = −𝑁𝑤𝑁 ,ℓ (𝑝) = − 𝑁 𝜅

𝑁2−2𝜅 𝑤ℓ (𝑝/𝑁1−𝜅 ). (2.7)

Lemma 2.1 implies that

|𝜂𝑝 | ≤
𝐶𝑁 𝜅

𝑝2 (2.8)
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for all 𝑝 ∈ Λ∗
+ = 2𝜋Z3\{0} and for some constant 𝐶 > 0 independent of 𝑁 ∈ N (for 𝑁 ∈ N large

enough). From (2.6), we find the relation

𝑝2𝜂𝑝 +
𝑁 𝜅

2
𝑉 (𝑝/𝑁1−𝜅 ) + 1

2𝑁

∑
𝑞∈Λ∗

𝑁 𝜅𝑉 ((𝑝 − 𝑞)/𝑁1−𝜅 )𝜂𝑞 = 𝑁3−2𝜅𝜆ℓ ( �̂�ℓ ∗ �̂�𝑁 ,ℓ) (𝑝). (2.9)

From Lemma 2.1, part iii), we also obtain

|𝜂0 | ≤ 𝑁3−2𝜅
∫
R3

𝑤ℓ (𝑥)𝑑𝑥 ≤ 𝐶𝑁 𝜅 . (2.10)

The coefficients 𝜂𝑝 will be used to model, through a Bogoliubov transformation, short-distance
correlations among particles. To reach this goal, it is enough to act on momenta |𝑝 | � 𝑁 𝜅/2. On low
momenta, the Bogoliubov transformation is needed to diagonalise the (renormalised) quadratic part of
the Hamiltonian. For 𝜀 > 0 small enough, we therefore define the set

𝑃𝐿 =
{
𝑝 ∈ Λ∗

+ : |𝑝 | ≤ 𝑁 𝜅/2+𝜀
}

(2.11)

of low momenta. We will denote its complement by 𝑃𝑐𝐿 = Λ∗
+\𝑃𝐿 . For 𝑝 ∈ Λ∗

+ we set

𝜈𝑝 = 𝜏𝑝𝜒(𝑝 ∈ 𝑃𝐿) + 𝜂𝑝𝜒(𝑝 ∈ 𝑃𝑐𝐿)

with 𝜂𝑝 defined in (2.7), 𝜏𝑝 ∈ R defined by

tanh(2𝜏𝑝) = − 8𝜋𝔞𝑁 𝜅

𝑝2 + 8𝜋𝔞𝑁 𝜅
(2.12)

and 𝜒(𝑝 ∈ 𝑆) denoting the indicator function of the set S. With these coefficients, we define the
Bogoliubov transformation

𝑇𝜈 = exp
(

1
2

∑
𝑝∈Λ∗

+

𝜈𝑝
(
𝑎∗
𝑝𝑎∗

−𝑝 − h.c.
) )

. (2.13)

For any 𝑝 ≠ 0 we have

𝑇∗
𝜈𝑎𝑝𝑇𝜈 = 𝛾𝑝𝑎𝑝 + 𝜎𝑝𝑎∗

−𝑝 (2.14)

with the notation 𝛾𝑝 = cosh(𝜈𝑝) and 𝜎𝑝 = sinh(𝜈𝑝).
With the Weyl operator (2.3) and the Bogoliubov transformation (2.13), we obtain the ‘squeezed’

coherent state Ψ̃𝑁 = 𝑊𝑁0𝑇𝜈Ω. Choosing 𝑁0 so that 𝑁 = 𝑁0+ ‖𝜎‖2, one can show that this trial state has
approximately N particles and, to leading order, the correct ground state energy. However, as observed
in [9] (for a similar trial state) and later in [17], the energy of the quasi-free state Ψ̃𝑁 does not match
the second-order correction in (1.3). To prove Proposition 1.3, we therefore need to modify the trial
state. We do so by replacing the vacuum Ω in the definition of Ψ̃𝑁 by the normalised Fock space vector
𝜉𝜈/‖𝜉𝜈 ‖, with 𝜉𝜈 = 𝑒𝐴𝜈Ω and the cubic phase

𝐴𝜈 =
1
√

𝑁

∑
𝑟 ∈𝑃𝐻 ,𝑣 ∈𝑃𝑆 :
𝑟+𝑣 ∈𝑃𝐻

𝜈𝑟 sinh(𝜈𝑣 ) 𝑎∗
𝑟+𝑣𝑎

∗
−𝑟𝑎

∗
−𝑣Θ𝑟 ,𝑣 =

1
√

𝑁

∑
𝑟 ∈𝑃𝐻 ,𝑣 ∈𝑃𝑆 :
𝑟+𝑣 ∈𝑃𝐻

𝜂𝑟𝜎𝑣 𝑎∗
𝑟+𝑣𝑎

∗
−𝑟𝑎

∗
−𝑣Θ𝑟 ,𝑣 . (2.15)
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Here, we introduced the momentum sets

𝑃𝐻 = {𝑝 ∈ Λ∗
+ : |𝑝 | > 𝑁1−𝜅−𝜀},

𝑃𝑆 =
{
𝑝 ∈ Λ∗

+ : 𝑁 𝜅/2−𝜀 ≤ |𝑝 | ≤ 𝑁 𝜅/2+𝜀
}
. (2.16)

Notice that 𝑃𝑆 ⊂ 𝑃𝐿 . On the other hand, to make sure that 𝑃𝐻 ∩ 𝑃𝐿 = ∅, from now on we will require
that 𝜀 > 0 is so small that 3𝜅 − 2+ 4𝜀 < 0. Moreover, in (2.15) we included, for every 𝑟 ∈ 𝑃𝐻 and every
𝑣 ∈ 𝑃𝑆 , the cutoff

Θ𝑟 ,𝑣 =
∏
𝑠∈𝑃𝐻

[
1 − 𝜒(N𝑠 > 0)𝜒(N−𝑠+𝑣 > 0)

]
×

∏
𝑤 ∈𝑃𝑆

[
1 − 𝜒(N𝑤 > 0)𝜒(N𝑟−𝑤 +N−𝑟−𝑣−𝑤 > 0)

]
where N𝑝 = 𝑎∗

𝑝𝑎𝑝 and 𝜒(𝑡 > 0) is the indicator function of the set {𝑡 > 0}.

Remark. It is easy to check that the computation of the energy and the number of particles of the trial
state we are constructing would not change substantially (and would still lead to a proof of Proposition
1.3), if in the definition (2.15) of 𝐴𝜈 we restricted the sum over r to the finite set 𝑃𝐻 ∩ {𝑝 ∈ Λ∗

+ : |𝑝 | <
𝑁1−𝜅+𝜀} = {𝑝 ∈ Λ∗

+ : 𝑁1−𝜅−𝜀 < |𝑝 | < 𝑁1−𝜅+𝜀}. With this choice, the infinite product over 𝑠 ∈ 𝑃𝐻
appearing in the definition of the cutoff Θ𝑟 ,𝑣 would be replaced by a finite multiplication.

Let us briefly discuss the action of the cutoff Θ𝑟 ,𝑣 . To understand its role in the computation of 𝑒𝐴𝜈Ω,
we observe that, for every integer 𝑚 ≥ 2, 𝑟1, . . . , 𝑟𝑚 ∈ 𝑃𝐻 , 𝑣1, . . . , 𝑣𝑚 ∈ 𝑃𝑆 , with 𝑟1+𝑣1, . . . , 𝑟𝑚+𝑣𝑚 ∈
𝑃𝐻 , we find

Θ𝑟𝑚 ,𝑣𝑚𝑎∗
𝑟𝑚−1+𝑣𝑚−1 𝑎∗

−𝑟𝑚−1 𝑎∗
−𝑣𝑚−1 . . . 𝑎∗

𝑟1+𝑣1 𝑎∗
−𝑟1 𝑎∗

−𝑣1Ω =

=
𝑚−1∏
𝑖, 𝑗=1

∏
𝑝ℓ ∈{−𝑟ℓ ,𝑟ℓ+𝑣ℓ },

ℓ=𝑖, 𝑗 ,𝑚

𝛿𝑝𝑖≠−𝑝 𝑗+𝑣𝑚𝛿−𝑝𝑚+𝑣𝑖≠𝑝 𝑗

× 𝑎∗
𝑟𝑚−1+𝑣𝑚−1 𝑎∗

−𝑟𝑚−1 𝑎∗
−𝑣𝑚−1 . . . 𝑎∗

𝑟1+𝑣1 𝑎∗
−𝑟1 𝑎∗

−𝑣1Ω.

The choice 𝑖 = 𝑗 in the product on the second line introduces restrictions of the form 𝑣𝑚 ≠ 𝑣𝑖 and
𝑝𝑚 ≠ 𝑝𝑖 where 𝑝ℓ ∈ {−𝑟ℓ , 𝑟ℓ + 𝑣ℓ } for ℓ = 𝑚, 𝑖, for all 𝑖 ∈ {1, . . . , 𝑚 − 1} (the condition 𝑝𝑖 ≠ −𝑝𝑖 + 𝑣𝑚,
on the other hand, is trivially satisfied due to the assumption 𝑝𝑖 ∈ 𝑃𝐻 , 𝑣𝑚 ∈ 𝑃𝑆). For 𝑚 ≥ 3, the
cutoff Θ𝑟𝑚 ,𝑣𝑚 implements additional restrictions involving three indices of the form −𝑝𝑖 + 𝑣 𝑗 ≠ 𝑝𝑘 with
𝑝ℓ ∈ {−𝑟ℓ , 𝑟ℓ + 𝑣ℓ }, ℓ = 𝑖, 𝑗 , 𝑘 where 𝑖, 𝑗 , 𝑘 = 1, . . . , 𝑚, 𝑖 ≠ 𝑗 ≠ 𝑘 , so that exactly one of the three
indices is m. We conclude that, for any 𝑚 ≥ 2,

𝐴𝑚𝜈 Ω =
1

𝑁𝑚/2

∑
𝑟1∈𝑃𝐻 ,𝑣1∈𝑃𝑆 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑟𝑚∈𝑃𝐻 ,𝑣𝑚∈𝑃𝑆 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝑚∏
𝑖=1

𝜂𝑟𝑖𝜎𝑣𝑖

× 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1)𝑎
∗
𝑟𝑚+𝑣𝑚𝑎∗

−𝑟𝑚𝑎∗
−𝑣𝑚 . . . 𝑎∗

𝑟1+𝑣1 𝑎∗
−𝑟1 𝑎∗

𝑣1Ω (2.17)

where

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
=

𝑚∏
𝑖, 𝑗 ,𝑘=1
𝑗≠𝑘

∏
𝑝𝑖 ∈{−𝑟𝑖 ,𝑟𝑖+𝑣𝑖 }
𝑝𝑘 ∈{−𝑟𝑘 ,𝑟𝑘+𝑣𝑘 }

𝛿−𝑝𝑖+𝑣𝑗≠𝑝𝑘 . (2.18)
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To illustrate the reason for the introduction of the cutoff, let us compute the norm ‖𝜉𝜈 ‖ of the vector
𝜉𝜈 = 𝑒𝐴𝜈Ω. With (2.17), we find

‖𝜉𝜈 ‖2 =
∑
𝑚≥0

1
(𝑚!)2 ‖(𝐴𝜈)

𝑚Ω‖2

=
∑
𝑚≥0

1
(𝑚!)2

1
𝑁𝑚

∑
𝑣1 , �̃�1∈𝑃𝑆
𝑟1 ,𝑟1∈𝑃𝐻 :

𝑟1+𝑣1 , 𝑟1+�̃�1∈𝑃𝐻

· · ·
∑

𝑣𝑚 , �̃�𝑚∈𝑃𝑆
𝑟𝑚 ,𝑟𝑚∈𝑃𝐻 :

𝑟𝑚+𝑣𝑚 , 𝑟𝑚+�̃�𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , �̃� 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

×
𝑚∏
𝑖=1

𝜂𝑟𝑖𝜂𝑟𝑖𝜎𝑣𝑖𝜎�̃�𝑖
〈
𝑎∗
𝑟𝑚+𝑣𝑚𝑎∗

−𝑟𝑚𝑎∗
−𝑣𝑚 . . . 𝑎∗

−𝑣1Ω, 𝑎∗
𝑟𝑚+�̃�𝑚𝑎∗

−𝑟𝑚𝑎∗
−�̃�𝑚 . . . 𝑎∗

−�̃�1
Ω

〉
. (2.19)

Clearly, for the expectation on the last line not to vanish, all creation and annihilation operators with
momenta in 𝑃𝑆 must be contracted among themselves. Since, on the support of 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1), 𝑣𝑖 ≠ 𝑣 𝑗
for all 𝑖 ≠ 𝑗 (and, similarly, �̃�𝑖 ≠ �̃� 𝑗 for all 𝑖 ≠ 𝑗 on the support of 𝜃 ({�̃� 𝑗 , �̃� 𝑗 }𝑚𝑗=1)), we have (𝑚!) identical
contributions arising from this pairing. We end up with

‖𝜉𝜈 ‖2 =
∑
𝑚≥0

1
𝑚!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1 , 𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚 , 𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

×
𝑚∏
𝑖=1

𝜂𝑟𝑖𝜂𝑟𝑖𝜎
2
𝑣𝑖

〈
Ω, 𝐴𝑟1 ,𝑣1 . . . 𝐴𝑟𝑚 ,𝑣𝑚 𝐴∗

𝑟𝑚 ,𝑣𝑚
. . . 𝐴∗

𝑟1 ,𝑣1
Ω

〉
(2.20)

where we have introduced the notation 𝐴𝑟𝑖 ,𝑣𝑖 = 𝑎𝑟𝑖+𝑣𝑖𝑎−𝑟𝑖 .
It is now important to observe that, because of the presence of the cutoffs, the annihilation operators

in 𝐴𝑟 𝑗 ,𝑣𝑗 must be contracted with the creation operators in 𝐴�̃� 𝑗 ,𝑣𝑗 . In fact, if this was not the case, we
would have −𝑟 𝑗 = −�̃�ℓ or −𝑟 𝑗 = �̃�ℓ +𝑣ℓ and 𝑟 𝑗 +𝑣 𝑗 = −�̃�𝑘 or 𝑟 𝑗 +𝑣 𝑗 = �̃�𝑘 +𝑣𝑘 , with at least one of the two
indices ℓ, 𝑘 different from j. This would imply one of the four relations �̃�ℓ + 𝑣 𝑗 = −�̃�𝑘 , �̃�ℓ + 𝑣 𝑗 = �̃�𝑘 + 𝑣𝑘 ,
�̃�ℓ + 𝑣ℓ = �̃�𝑘 + 𝑣 𝑗 , −�̃�ℓ − 𝑣ℓ + 𝑣 𝑗 = �̃�𝑘 + 𝑣𝑘 , all of which are forbidden by the cutoff 𝜃

(
{�̃� 𝑗 , �̃� 𝑗 }𝑚𝑗=1

)
. We

conclude that〈
Ω, 𝐴𝑟1 ,𝑣1 . . . 𝐴𝑟𝑚 ,𝑣𝑚 𝐴∗

𝑟𝑚 ,𝑣𝑚
. . . 𝐴∗

𝑟1 ,𝑣1
Ω

〉
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , �̃� 𝑗 }𝑚𝑗=1

)
=

𝑚∏
𝑖=1

(
𝛿𝑟𝑖 ,𝑟𝑖 + 𝛿−𝑟𝑖 ,𝑟𝑖+𝑣𝑖

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
(2.21)

(after identification of the momenta, the second cutoff becomes superfluous). From (2.20), we obtain

‖𝜉𝜈 ‖2 =
∑
𝑚≥0

1
𝑚!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

) 𝑚∏
𝑖=1

𝜂𝑟𝑖
(
𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖

)
𝜎2
𝑣𝑖

=
∑
𝑚≥0

1
2𝑚𝑚!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

) 𝑚∏
𝑖=1

(
𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖

)2
𝜎2
𝑣𝑖 (2.22)

where we used the invariance of 𝜃, with respect to −𝑟𝑖 → 𝑟𝑖 + 𝑣𝑖 . The cutoffs have been used first to
exclude coinciding momenta in 𝑣1, . . . , 𝑣𝑚 and in �̃�1, . . . , �̃�𝑚 (which implies that, up to permutations,
the pairing of the momenta in 𝑃𝑆 is unique) and then in (2.21) to make sure that annihilation operators
in 𝐴𝑟 𝑗 ,𝑣𝑗 can only be contracted with the creation operators in 𝐴∗

�̃� 𝑗 ,𝑣𝑗
. This substantially simplifies

computations. Similar simplifications will arise in the computation of the energy of our trial state.
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Apart from the formula (2.22) for the norm ‖𝜉𝜈 ‖2, we will also need bounds on the expectation, in
the state 𝜉𝜈/‖𝜉𝜈 ‖, of the number of particles operator N, of N2, of the kinetic energy operator K and of
the product KN. These bounds are collected in the next proposition, whose proof will be discussed in
Section 5.

Proposition 2.2. Let 𝜉𝜈 = 𝑒𝐴𝜈Ω with 𝑒𝐴𝜈 defined in (2.15) with 𝜅 ∈ (1/2; 2/3) and 𝜀 > 0 such that
3𝜅 − 2 + 4𝜀 < 0. Then, under the assumptions of Theorem 1.1, we have

〈𝜉𝜈 ,N 𝑗𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 𝐶𝑁 (9𝜅/2−2+𝜀) 𝑗 (2.23)

and 〈
𝜉𝜈 ,KN 𝑗−1𝜉𝜈

〉
‖𝜉𝜈 ‖2 ≤ 𝐶𝑁5𝜅/2𝑁 (9𝜅/2−2+𝜀) ( 𝑗−1) (2.24)

for 𝑗 = 1, 2.

Using the Weyl operator 𝑊𝑁0 from (2.3), the Bogoliubov transformation 𝑇𝜈 defined in (2.13) and the
cubic phase 𝐴𝜈 introduced in (2.15) (or, equivalently, the vector 𝜉𝜈 = 𝑒𝐴𝜈Ω), we can now define our
trial state

Ψ𝑁 =
𝑊𝑁0𝑇𝜈𝑒

𝐴𝜈Ω

‖𝑊𝑁0𝑇𝜈𝑒
𝐴𝜈Ω‖

= 𝑊𝑁0𝑇𝜈
𝜉𝜈
‖𝜉𝜈 ‖

. (2.25)

Here, we choose 𝑁0 > 0 such that

𝑁 = 𝑁0 + ‖𝜎𝐿 ‖2 (2.26)

where 𝜎𝐿 denotes the restriction to the set 𝑃𝐿 of the coefficients 𝜎𝑝 = sinh(𝜈𝑝), with 𝜈𝑝 defining the
Bogoliubov transformation 𝑇𝜈; see (2.13).

Let us briefly compare our trial state with the one of [20]. In both approaches, the condensate is
perturbed with operators creating double and triple excitations, the latter having two particles with
high momenta and one particle with low momentum. Moreover, similarly as in [20], we impose cutoffs
making sure that each low momentum appears only once. In contrast to [20], we also impose cutoffs
on high momenta. Moreover, we have a clearer separation between creation of pairs (obtained through
the Bogoliubov transformation 𝑇𝜈) and creation of triples. Finally, in our approach, we create triple
excitations through the action of 𝑒𝐴𝜈 on the vacuum; the algebraic structure of the exponential makes
the analysis and the combinatorics much simpler.

As shown in the next proposition, the choice (2.26) of 𝑁0 guarantees that Ψ𝑁 has the expected
number of particles.

Proposition 2.3. Let Ψ𝑁 be defined in (2.25) with the parameter 𝑁0 appearing in (2.3) defined by
(2.26). Let 𝜅 ∈ (1/2; 2/3) and 𝜀 > 0 so that 3𝜅 − 2 + 4𝜀 < 0. Then

〈Ψ𝑁 ,NΨ𝑁 〉 ≥ 𝑁, 〈Ψ𝑁 ,N2Ψ𝑁 〉 ≤ 𝐶𝑁2 (2.27)

for all N large enough.

To prove Proposition 2.3 (and later to show other properties of the trial state Ψ𝑁 ) in the next lemma
we collect some bounds for norms of the coefficients appearing in the definition of 𝐴𝜈 in (2.15). We
denote here by 𝜂𝐿 , 𝜂𝐿𝑐 , 𝜂𝑆 , 𝜂𝐻 the restriction of 𝜂 : Λ∗ → R to the set 𝑃𝐿 , 𝑃𝑐𝐿 , 𝑃𝑆 and, respectively,
𝑃𝐻 . Similarly, we define 𝛾𝐿 , 𝛾𝐿𝑐 , 𝛾𝐻 , 𝛾𝑆 and 𝜎𝐿 , 𝜎𝐿𝑐 , 𝜎𝐻 , 𝜎𝑆 .
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Lemma 2.4. We have

‖𝜂𝐿𝑐 ‖2 ≤ 𝐶𝑁3𝜅/2−𝜀 , ‖𝜂𝐿𝑐 ‖2
𝐻 1 ≤ 𝐶𝑁1+𝜅 , ‖𝜂𝐿𝑐 ‖∞ ≤ 𝐶𝑁−2𝜀

‖𝜂𝐻 ‖2 ≤ 𝐶𝑁3𝜅−1+𝜀 , ‖𝜂𝐻 ‖2
𝐻 1 ≤ 𝐶𝑁1+𝜅 , ‖𝜂𝐻 ‖∞ ≤ 𝐶𝑁3𝜅−2+2𝜀 .

In particular, this implies that ‖𝛾𝐻 ‖∞, ‖𝜎𝐻 ‖∞ ≤ 𝐶. Moreover, we have

‖𝛾𝐿 ‖2
∞, ‖𝜎𝐿 ‖2

∞ ≤ 𝐶𝑁 𝜅/2, ‖𝛾𝐿𝜎𝐿 ‖1 ≤ 𝐶𝑁3𝜅/2+𝜀

and

‖𝛾𝐿 ‖2 ≤ 𝐶𝑁3𝜅/2+3𝜀 , ‖𝜎𝐿 ‖2 ≤ 𝐶𝑁3𝜅/2 , ‖𝜎𝐿 ‖2
𝐻 1 ≤ 𝐶𝑁5𝜅/2+𝜀 .

Finally, we observe that

‖𝜎𝑆 ‖2 ≤ 𝐶𝑁3𝜅/2, ‖𝜎𝑆 ‖2
𝐻 1 ≤ 𝐶𝑁5𝜅/2+𝜀 , ‖𝛾𝑆 ‖2

∞, ‖𝜎𝑆 ‖2
∞ ≤ 𝐶𝑁 𝜀 .

Proof. The bounds for ‖𝜂𝐿𝑐 ‖, ‖𝜂𝐻 ‖, ‖𝜂𝐿𝑐 ‖∞ and ‖𝜂𝐻 ‖∞ follow from (2.8). On the other hand, with
the notation 𝜂(𝑥) = −𝑁𝑤ℓ (𝑁1−𝜅𝑥) for the function on Λ with Fourier coefficients 𝜂𝑝 , we find from
Lemma 2.1, part iii),

‖𝜂𝐿𝑐 ‖2
𝐻 1 ≤ 𝐶

∑
𝑝∈Λ∗

𝑝2 |𝜂𝑝 |2 ≤ 𝐶

∫
|∇𝜂(𝑥) |2𝑑𝑥 ≤ 𝐶𝑁1+𝜅

∫
R3

1
(|𝑥 |2 + 1)2 𝑑𝑥 ≤ 𝐶𝑁1+𝜅 .

To show bounds for 𝜎𝐿 , 𝛾𝐿 we observe that, with (2.12) and 𝛾2
𝑝 = 1 + 𝜎2

𝑝 , we obtain

𝜎2
𝑝 =

𝑝2 + 8𝜋𝔞𝑁 𝜅 −
√
|𝑝 |4 + 16𝜋𝔞𝑁 𝜅 𝑝2

2
√
|𝑝 |4 + 16𝜋𝔞𝑁 𝜅 𝑝2

, 𝜎𝑝𝛾𝑝 =
−8𝜋𝔞𝑁 𝜅

2
√
|𝑝 |4 + 16𝜋𝔞𝑁 𝜅 𝑝2

. (2.28)

Recalling that 𝑃𝐿 = {𝑝 ∈ Λ∗
+ : |𝑝 | ≤ 𝑁 𝜅/2+𝜀}, we find

‖𝜎𝐿 ‖2
∞ ≤ sup

𝑝∈𝑃𝐿 : |𝑝 | ≤𝑁 𝜅/2
𝐶

𝑁 𝜅/2

|𝑝 | + sup
𝑝∈𝑃𝐿 : |𝑝 | ≥𝑁 𝜅/2

𝐶
𝑁2𝜅

|𝑝 |4
≤ 𝐶𝑁 𝜅/2. (2.29)

Moreover, by definition of 𝑃𝑆 we get

‖𝜎𝑆 ‖2
∞ ≤ sup

𝑁 𝜅/2−𝜀 ≤ |𝑝 | ≤𝑁 𝜅/2
𝐶

𝑁 𝜅/2

|𝑝 | + sup
𝑝∈𝑃𝐿 : |𝑝 | ≥𝑁 𝜅/2

𝐶
𝑁2𝜅

|𝑝 |4
≤ 𝐶𝑁 𝜀 .

Using again 𝛾2
𝑝 = 1 + 𝜎2

𝑝 , we find ‖𝛾𝐿 ‖∞ ≤ 𝐶𝑁 𝜅/2 and ‖𝛾𝑆 ‖∞ ≤ 𝐶𝑁 𝜀 . Similarly, we obtain

‖𝜎𝐿 ‖2 ≤ 𝐶
∑

𝑝∈𝑃𝐿 : |𝑝 | ≤𝑁 𝜅/2

𝑁 𝜅/2

|𝑝 | + 𝐶
∑

𝑝∈𝑃𝐿 : |𝑝 |>𝑁 𝜅/2

𝑁2𝜅

|𝑝 |4
≤ 𝐶𝑁3𝜅/2 (2.30)

and thus ‖𝛾𝐿 ‖2 ≤ 𝐶𝑁3𝜅/2+3𝜀 . Moreover, we have

‖𝜎𝐿 ‖2
𝐻1

≤ 𝐶
∑

𝑝∈𝑃𝐿 : |𝑝 | ≤𝑁 𝜅/2

|𝑝 |𝑁 𝜅/2 + 𝐶
∑

𝑝∈𝑃𝐿 : |𝑝 | ≥𝑁 𝜅/2

𝑁2𝜅

𝑝2 ≤ 𝐶𝑁5𝜅/2+𝜀 . (2.31)
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The bound for ‖𝜎𝐿𝛾𝐿 ‖1 is proved similarly, using the expression for 𝛾𝑝𝜎𝑝 in (2.28). Finally, we note
that the estimates (2.30) and (2.31) do not improve when we consider the restriction of 𝜎𝑝 to 𝑃𝑆 ⊂ 𝑃𝐿 ;
hence, ‖𝜎𝑆 ‖2 ≤ 𝐶𝑁3𝜅/2 and ‖𝜎𝑆 ‖2

𝐻 1 ≤ 𝐶𝑁5𝜅/2+𝜀 . �

We can now return to the proof of Proposition 2.3.

Proof of Proposition 2.3. From (2.4) and (2.14) we get

𝑇∗
𝜈𝑊

∗
𝑁0
N𝑊𝑁0𝑇𝜈 = 𝑁0 +

∑
𝑝∈Λ∗

+

𝜎2
𝑝 +

√
𝑁0 (𝑎0 + 𝑎∗

0) + 𝑎∗
0𝑎0

+
∑
𝑝∈Λ∗

+

[
(𝜎2
𝑝 + 𝛾2

𝑝)𝑎∗
𝑝𝑎𝑝 + 𝛾𝑝𝜎𝑝 (𝑎𝑝𝑎−𝑝 + h.c.)

]
. (2.32)

By definition of 𝜉𝜈 , 𝑎0𝜉𝜈 = 0 and 〈𝜉𝜈 , 𝑎𝑝𝑎−𝑝𝜉𝜈〉 = 0 for every 𝑝 ∈ Λ∗, as well as the definition
𝑁 = 𝑁0 + ‖𝜎𝐿 ‖2, we obtain that

〈Ψ𝑁 ,NΨ𝑁 〉 =
〈𝜉𝜈 , 𝑇∗

𝜈𝑊
∗
𝑁0
N𝑊𝑁0𝑇𝜈𝜉𝜈〉

‖𝜉𝜈 ‖2 = 𝑁 +
∑
𝑝∈𝑃𝑐

𝐿

𝜎2
𝑝 +

∑
𝑝∈𝑃𝑆∪𝑃𝐻

(𝜎2
𝑝 + 𝛾2

𝑝)
〈𝜉𝜈 , 𝑎∗

𝑝𝑎𝑝𝜉𝜈〉
‖𝜉𝜈 ‖2 . (2.33)

This immediately implies that 〈Ψ𝑁 ,NΨ𝑁 〉 ≥ 𝑁 .
With 𝑎0𝜉𝜈 = 0 and the assumption 3𝜅 − 2 + 4𝜀 < 0, (2.32) also implies that

〈𝜉𝜈 , 𝑇∗
𝜈𝑊

∗
𝑁0
N2𝑊𝑁0𝑇𝜈𝜉𝜈〉 ≤ 𝐶𝑁2 + 𝐶

∑
𝑝,𝑞∈Λ∗

+

(𝜎2
𝑝 + 𝛾2

𝑝) (𝜎2
𝑞 + 𝛾2

𝑞)〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝𝑎∗

𝑞𝑎𝑞𝜉𝜈〉

+ 𝐶
∑
𝑝,𝑞∈Λ∗

+

𝛾𝑝𝜎𝑝𝛾𝑞𝜎𝑞 〈𝜉𝜈 , (𝑎𝑝𝑎−𝑝 + 𝑎∗
𝑝𝑎∗

−𝑝) (𝑎𝑞𝑎−𝑞 + 𝑎∗
𝑞𝑎∗

−𝑞)𝜉𝜈〉.

Since 𝜉𝜈 is a superposition of states with 3𝑚 particles with momenta in 𝑃𝐻 ∪ 𝑃𝑆 , we obtain, writing
𝑎𝑝𝑎−𝑝𝑎∗

𝑞𝑎∗
−𝑞 = 𝑎∗

𝑞𝑎𝑝𝑎∗
−𝑞𝑎−𝑝 + (𝛿𝑝,𝑞 + 𝛿−𝑝,𝑞) (𝑎∗

𝑝𝑎𝑝 +1) + 𝛿𝑝,𝑞𝑎∗
−𝑝𝑎−𝑝 and similarly for 𝑎∗

𝑝𝑎∗
−𝑝𝑎𝑞𝑎−𝑞 ,

〈𝜉𝜈 , 𝑇∗
𝜈𝑊

∗
𝑁0
N2𝑊𝑁0𝑇𝜈𝜉𝜈〉 ≤ 𝐶𝑁2 + 𝐶𝑁2𝜀 〈𝜉𝜈 , (N + 1)2𝜉𝜈〉 + 𝐶

∑
𝑝∈𝑃𝐻∪𝑃𝑆

𝛾2
𝑝𝜎2

𝑝 〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝𝜉𝜈〉

+ 𝐶
∑
𝑝∈Λ∗

+

𝛾2
𝑝𝜎2

𝑝 ‖𝜉𝜈 ‖2 + 𝐶
∑

𝑝,𝑞∈𝑃𝐻∪𝑃𝑆

𝛾𝑝𝜎𝑝𝛾𝑞𝜎𝑞 〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑞𝑎∗

−𝑝𝑎−𝑞𝜉𝜈〉.

Estimating the last term through��� ∑
𝑝,𝑞∈𝑃𝐻∪𝑃𝑆

𝛾𝑝𝜎𝑝𝛾𝑞𝜎𝑞 〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑞𝑎∗

−𝑝𝑎−𝑞𝜉𝜈〉
���

≤
∑

𝑝,𝑞∈𝑃𝐻∪𝑃𝑆

|𝛾𝑝 | |𝜎𝑝 | |𝛾𝑞 | |𝜎𝑞 | ‖𝑎∗
𝑞𝑎𝑝𝜉𝜈 ‖‖𝑎∗

−𝑝𝑎−𝑞𝜉𝜈 ‖

≤
∑

𝑝,𝑞∈𝑃𝐻∪𝑃𝑆

|𝛾𝑝 | |𝜎𝑝 | |𝛾𝑞 | |𝜎𝑞 |
[
‖𝑎𝑞𝑎𝑝𝜉𝜈 ‖ + ‖𝑎𝑝𝜉𝜈 ‖

] [
‖𝑎−𝑝𝑎−𝑞𝜉𝜈 ‖ + ‖𝑎−𝑞𝜉𝜈 ‖

]
≤ 𝐶‖𝛾𝑆∪𝐻 ‖2

∞‖𝜎𝑆∪𝐻 ‖2
∞‖(N + 1)𝜉𝜈 ‖2 + 𝐶‖𝛾𝑆∪𝐻 ‖2

∞‖𝜎𝑆∪𝐻 ‖2‖N1/2𝜉𝜈 ‖2

+ 𝐶‖𝛾𝑆∪𝐻 ‖2
∞‖𝜎𝑆∪𝐻 ‖∞‖𝜎𝑆∪𝐻 ‖‖(N + 1)𝜉𝜈 ‖‖N1/2𝜉𝜈 ‖,

we conclude with the bounds in Lemma 2.4 and in Proposition 2.2 that, for 3𝜅 − 2 + 4𝜀 < 0,

〈𝜉𝜈 , 𝑇∗
𝜈𝑊

∗
𝑁0
N2𝑊𝑁0𝑇𝜈𝜉𝜈〉 ≤ 𝐶𝑁2 + 𝐶𝑁2𝜀 〈𝜉𝜈 ,N2𝜉𝜈〉 + 𝐶𝑁 𝜀 ‖𝜎‖2〈𝜉𝜈 ,N𝜉𝜈〉 + 𝐶‖𝛾‖2

∞‖𝜎‖2

≤ 𝐶𝑁2 + 𝐶𝑁9𝜅−4+4𝜀 + 𝐶𝑁6𝜅−2+2𝜀 + 𝐶𝑁2𝜅 ≤ 𝐶𝑁2. �
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The next theorem, whose proof occupies the rest of the article, determines the energy of Ψ𝑁 and,
combined with Proposition 2.3, allows us to conclude the proof of Proposition 1.3.

Theorem 2.5. Let H𝑁 and Ψ𝑁 ∈ F be defined as in (2.2) and (2.25), respectively, and let 𝐸Ψ
𝑁 =

〈Ψ𝑁 ,H𝑁Ψ𝑁 〉. Let 𝜅 ∈ (1/2; 2/3), 𝜀 > 0 so small that 3𝜅 − 2 + 4𝜀 < 0. Then, under the assumption of
Theorem 1.1, we have

𝐸Ψ
𝑁 ≤ 4𝜋𝔞𝑁1+𝜅

(
1 + 128

15
√

𝜋
(𝔞3𝑁3𝜅−2)1/2

)
+ 𝐶𝑁5𝜅/2 max{𝑁−𝜀, 𝑁9𝜅−5+6𝜀, 𝑁21𝜅/4−3+3𝜀} (2.34)

for all N large enough.

Remark. Equation (2.34) gives the correct second-order term for all 𝜅 < 5/9 (choosing 𝜀 > 0 small
enough); this corresponds to exponents 𝛾 < 4/3 in Proposition 1.3. With a more complicated proof, we
could have considered all 𝜅 < 7/12 (corresponding to 𝛾 < 5/3).

Proof of Proposition 1.3. Proposition 1.3 follows from Proposition 2.3 and Theorem 2.5, recalling that
(1.5) is unitarily equivalent to 𝐿−2H𝑁 , with H𝑁 as defined in (2.2), 𝐿 = �̃�−𝛾 , 𝑁 = �̃�𝐿3 = �̃�1−3𝛾 and
𝜅 = (2𝛾 − 1)/(3𝛾 − 1). At the end, to obtain (1.8) and (1.9), we have to rename 𝜀(3𝛾 − 1) → 𝜀. �

3. Energy of the trial state

In this section we prove Theorem 2.5. With (2.25) and introducing the notations

G𝑁 = 𝑇∗
𝜈L𝑁𝑇𝜈 , with L𝑁 = 𝑊∗

𝑁0
H𝑁𝑊𝑁0 (3.1)

we write

𝐸Ψ
𝑁 = 〈Ψ𝑁 ,H𝑁Ψ𝑁 〉 =

〈𝜉𝜈 ,G𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2

with 𝜉𝜈 = 𝑒𝐴𝜈Ω, as defined before (2.15). With (2.2) and recalling from (2.4) that

𝑊∗
𝑁0

𝑎𝑝𝑊𝑁0 = 𝑎𝑝 +
√

𝑁0 𝛿𝑝,0 (3.2)

we obtain L𝑁 = L(0)
𝑁 + L(1)

𝑁 + L(2)
𝑁 + L(3)

𝑁 + L(4)
𝑁 , with

L(0)
𝑁 =

𝑁2
0

2
𝑁 𝜅−1𝑉 (0)

L(1)
𝑁 = 𝑁3/2

0 𝑁 𝜅−1𝑉 (0) (𝑎0 + h.c.)

L(2)
𝑁 =

∑
𝑝∈Λ∗

𝑝2𝑎∗
𝑝𝑎𝑝 +

𝑁0
𝑁

∑
𝑝∈Λ∗

𝑁 𝜅
(
𝑉 (𝑝/𝑁1−𝜅 ) +𝑉 (0)

)
𝑎∗
𝑝𝑎𝑝

+ 𝑁0
2𝑁

∑
𝑝∈Λ∗

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 ) (𝑎∗
𝑝𝑎∗

−𝑝 + 𝑎𝑝𝑎−𝑝)

L(3)
𝑁 =

√
𝑁0
𝑁

∑
𝑝,𝑟 ∈Λ∗

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝑎∗
𝑝𝑎∗
𝑟𝑎𝑝+𝑟 + 𝑎∗

𝑝+𝑟𝑎𝑟𝑎𝑝)

L(4)
𝑁 =

1
2𝑁

∑
𝑝,𝑞,𝑟 ∈Λ∗

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝑎∗
𝑝+𝑟𝑎

∗
𝑞𝑎𝑝𝑎𝑞+𝑟 . (3.3)

To compute G𝑁 , we have to conjugate the operators in (3.3) with the Bogoliubov transformation 𝑇𝜈 .
The result is described in the following proposition, whose proof will be discussed in Section 4.
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Proposition 3.1. Let

K =
∑
𝑝∈Λ∗

+

𝑝2𝑎∗
𝑝𝑎𝑝 , V(𝐻 )

𝑁 =
1

2𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈𝑃𝐻 :
𝑝+𝑟 ,𝑞+𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝑎∗
𝑝+𝑟𝑎

∗
𝑞𝑎𝑝𝑎𝑞+𝑟 (3.4)

and (recalling from (2.26) that 𝑁0 = 𝑁 − ‖𝜎𝐿 ‖2)

C𝑁 =

√
𝑁0
𝑁

∑
𝑝,𝑟 ∈𝑃𝐻
𝑝+𝑟 ∈𝑃𝑆

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) 𝜎𝑝+𝑟𝛾𝑝𝛾𝑟 (𝑎∗
𝑝+𝑟𝑎

∗
−𝑝𝑎∗

−𝑟 + h.c.). (3.5)

Moreover, let

𝐶G𝑁 =
𝑁1+𝜅

2
𝑉 (0) +

∑
𝑝∈Λ∗

+

𝑝2𝜎2
𝑝 +

∑
𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜎𝑝𝛾𝑝

+
∑
𝑝∈𝑃𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜎2
𝑝 +

1
2𝑁

∑
𝑝,𝑟 ∈Λ∗

+
𝑟≠𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜎𝑝𝜎𝑝−𝑟𝛾𝑝𝛾𝑝−𝑟

− 1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑝∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜂𝑝 . (3.6)

Then, under the assumptions of Theorem 1.1, for all 𝜅 ∈ (1/2; 2/3) and 𝜀 > 0 with 3𝜅 − 2 + 4𝜀 < 0 and
N sufficiently large, we have

〈𝜉𝜈 ,G𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 𝐶G𝑁 +

〈𝜉𝜈 , (K + V(𝐻 )
𝑁 + C𝑁 )𝜉𝜈〉

‖𝜉𝜈 ‖2

+ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}. (3.7)

Remark. In fact, (3.7) does not only hold true for 𝜉𝜈 but for any state satisfying the bounds in
Proposition 2.2.

The expectation of the operators K,V(𝐻 )
𝑁 , C𝑁 in the state 𝜉𝜈/‖𝜉𝜈 ‖, appearing on the right-hand side

of (3.7) is determined by the next proposition, which will be shown in Section 5.

Proposition 3.2. Under the assumptions of Theorem 1.1, we have

〈𝜉𝜈 , (K + V(𝐻 )
𝑁 + C𝑁 )𝜉𝜈〉

‖𝜉𝜈 ‖2 ≤ 1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝜂𝑟 + 𝜂𝑟+𝑣 )

+ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁12𝜅−7+5𝜀}

for all 𝜅 ∈ (1/2; 2/3) and all 𝜀 > 0 so small that 3𝜅 − 2 + 4𝜀 < 0.
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Let us now use the statements of Proposition 3.1 and Proposition 3.2 to obtain an upper bound for the
energy of the trial state Ψ𝑁 and prove Theorem 2.5. From Proposition 3.1 and Proposition 3.2 we find

𝐸Ψ
𝑁 ≤ 𝑁1+𝜅

2
𝑉 (0) +

∑
𝑝∈Λ∗

+

𝑝2𝜎2
𝑝 +

∑
𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝛾𝑝𝜎𝑝

+
∑
𝑣 ∈𝑃𝐿

𝑁 𝜅𝑉 (𝑣/𝑁1−𝜅 )𝜎2
𝑣 +

1
2𝑁

∑
𝑝,𝑞∈Λ∗

+
𝑝≠𝑞

𝑁 𝜅𝑉 ((𝑝 − 𝑞)/𝑁1−𝜅 )𝛾𝑝𝛾𝑞𝜎𝑝𝜎𝑞

− 1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑝∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜂𝑝

+ 1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝜂𝑟 + 𝜂𝑟+𝑣 ) + E (3.8)

with

E ≤ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}

for all 𝜅 ∈ (1/2; 2/3) and all 𝜀 > 0 with 3𝜅 − 2 + 4𝜀 < 0 (in this range, 12𝜅 − 7 + 5𝜀 < 9𝜅 − 5 + 3𝜀).
Since |𝜎𝑝 − 𝜂𝑝 | ≤ 𝐶 |𝜂𝑝 |3 for all 𝑝 ∈ 𝑃𝑐𝐿 , with (2.8) we find∑

𝑝∈Λ∗
+

𝑝2𝜎2
𝑝 ≤

∑
𝑣 ∈𝑃𝐿

𝑣2𝜎2
𝑣 +

∑
𝑝∈𝑃𝑐

𝐿

𝑝2𝜂2
𝑝 + 𝐶𝑁5𝜅/2−3𝜀 . (3.9)

Similarly, with |𝛾𝑝𝜎𝑝−𝜂𝑝 | ≤ 𝐶𝜂3
𝑝 for all 𝑝 ∈ 𝑃𝑐𝐿 , the last term on the first line of (3.8) can be written as∑

𝑝∈Λ∗
+

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝛾𝑝𝜎𝑝

≤
∑
𝑣 ∈𝑃𝐿

𝑁 𝜅𝑉 (𝑣/𝑁1−𝜅 )𝛾𝑣𝜎𝑣 +
∑
𝑝∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜂𝑝 + 𝐶𝑁5𝜅/2−3𝜀 . (3.10)

Next, we focus on the last term on the second line of (3.8). We define E1 through the identity

1
2𝑁

∑
𝑝,𝑞∈Λ∗

+
𝑝≠𝑞

𝑁 𝜅𝑉 ((𝑝 − 𝑞)/𝑁1−𝜅 )𝛾𝑝𝛾𝑞𝜎𝑝𝜎𝑞

=
1
𝑁

∑
𝑝∈𝑃𝑐

𝐿 ,
𝑞∈𝑃𝐿

𝑁 𝜅𝑉 ((𝑝 − 𝑞)/𝑁1−𝜅 )𝜂𝑝𝛾𝑞𝜎𝑞 +
1

2𝑁

∑
𝑝,𝑞∈𝑃𝑐

𝐿
𝑝≠𝑞

𝑁 𝜅𝑉 ((𝑝 − 𝑞)/𝑁1−𝜅 )𝜂𝑝𝜂𝑞+ E1. (3.11)

Using again |𝛾𝑝𝜎𝑝 − 𝜂𝑝 | ≤ 𝐶 |𝜂𝑝 |3 for all 𝑝 ∈ 𝑃𝑐𝐿 , the estimate

sup
𝑟 ∈Λ∗

∑
𝑠∈Λ∗

+

𝑁 𝜅 |𝑉 ((𝑟 − 𝑠)/𝑁1−𝜅 ) | |𝜂𝑠 | ≤ 𝐶𝑁1+𝜅 (3.12)

and the bounds from Lemma 2.4, we conclude (using the condition 3𝜅 − 2 + 5𝜀 < 0) that

E1 ≤ 𝐶
[
𝑁 𝜅 ‖𝜂𝐿𝑐 ‖∞‖𝜂𝐿𝑐 ‖2 + 𝑁 𝜅−1‖𝜂𝐿𝑐 ‖∞‖𝜂𝐿𝑐 ‖2‖𝜎𝐿𝛾𝐿 ‖1 + 𝑁 𝜅−1‖𝜎𝐿𝛾𝐿 ‖2

1
]
≤ 𝐶𝑁5𝜅/2−𝜀 .
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To prove (3.12) we use (2.8) and we remark that∑
𝑠∈Λ∗: |𝑠 | ≤𝑁 1−𝜅

𝑁 𝜅 |𝑉 ((𝑟 − 𝑠)/𝑁1−𝜅 ) | |𝜂𝑠 | ≤ 𝐶𝑁2𝜅
∑

𝑠∈Λ∗
+: |𝑠 | ≤𝑁 1−𝜅

|𝑠 |−2 ≤ 𝐶𝑁1+𝜅

and that, rescaling variables (setting 𝑟 = 𝑟/𝑁1−𝜅 ) and using an integral approximation,∑
𝑠∈Λ∗

+: |𝑠 |>𝑁 1−𝜅

𝑁 𝜅 |𝑉 ((𝑟 − 𝑠)/𝑁1−𝜅 ) | |𝜂𝑠 | ≤ 𝐶𝑁1+𝜅
∑

𝑠∈Λ∗/𝑁 1−𝜅 : |𝑠 |>1

𝑁−3(1−𝜅) |𝑉 (𝑟 − 𝑠) | |𝑠 |−2

≤ 𝐶𝑁1+𝜅
∫
|𝑠 |>1

|𝑉 (𝑟 − 𝑠) | |𝑠 |−2𝑑𝑠 ≤ 𝐶𝑞𝑁1+𝜅 ‖𝑉 ‖𝑞

for any 𝑞 < 3. With the assumption 𝑉 ∈ 𝐿𝑞
′ (R3), for some 𝑞′ > 3/2, (3.12) follows by the Hausdorff–

Young inequality.
Finally, we remark that the terms in the last two lines of (3.8) can be combined, using (2.8) and the

bound ‖𝜎𝐿 ‖2 ≤ 𝐶𝑁3𝜅/2 from Lemma 2.4, into

− 1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑝∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜂𝑝 +
1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝜂𝑟 + 𝜂𝑟+𝑣 )

≤ 1
𝑁

∑
𝑣 ∈𝑃𝐿

𝜎2
𝑣

∑
𝑟 ∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜂𝑟+𝑣 + 𝐶𝑁5𝜅/2−𝜀 . (3.13)

Inserting (3.9), (3.10), (3.11) and (3.13) into (3.8), we obtain

𝐸Ψ
𝑁 ≤ 𝑁1+𝜅

2
𝑉 (0) +

∑
𝑝∈𝑃𝑐

𝐿

[
𝑝2𝜂𝑝 + 𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 ) + 1

2𝑁

∑
𝑟 ∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 ((𝑟 − 𝑝)/𝑁 𝜅 )𝜂𝑟
]
𝜂𝑝

+
∑
𝑣 ∈𝑃𝐿

[
𝑣2𝜎2

𝑣 +
(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

) (
𝑁 𝜅𝑉 (𝑣/𝑁1−𝜅 ) + 1

𝑁

∑
𝑟 ∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 ((𝑟 − 𝑣)/𝑁1−𝜅 )𝜂𝑟
)]

+ 𝐶𝑁5𝜅/2 max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}. (3.14)

Let us now consider the first square bracket on the right-hand side of (3.14). Using the scattering
equation (2.9) we obtain∑

𝑝∈𝑃𝑐
𝐿

[
𝑝2𝜂𝑝 + 𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 ) + 1

2𝑁

∑
𝑟 ∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 ((𝑟 − 𝑝)/𝑁1−𝜅 )𝜂𝑟
]
𝜂𝑝

=
1
2

∑
𝑝∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜂𝑝 −
1

2𝑁

∑
𝑝∈𝑃𝑐

𝐿
𝑣 ∈𝑃𝐿

𝑁 𝜅𝑉 ((𝑝 − 𝑣)/𝑁1−𝜅 )𝜂𝑣𝜂𝑝 + E2 (3.15)

with

E2 = 𝑁3−2𝜅𝜆ℓ
∑
𝑝∈𝑃𝑐

𝐿

(
�̂�ℓ ∗ �̂�𝑁 ,ℓ

)
𝑝𝜂𝑝 −

1
2𝑁

∑
𝑝∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜂𝑝𝜂0.

Using 𝑁3−3𝜅𝜆ℓ ≤ 𝐶 (Lemma 2.1), ‖ �̂�ℓ ∗ �̂�𝑁 ,ℓ ‖ = ‖𝜒ℓ 𝑓𝑁 ,ℓ ‖ ≤ 𝐶 and ‖𝜂𝐿𝑐 ‖2 ≤ 𝐶𝑁3𝜅/2−𝜀 (Lemma 2.4)
in the first term, (2.10) and (3.12) in the second term, we find E2 ≤ 𝐶𝑁5𝜅/2−𝜀 (using that 3𝜅−2+4𝜀 < 0
and 𝜅 > 1/2).
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As for the second square bracket on the right-hand side of (3.14), we write∑
𝑣 ∈𝑃𝐿

(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

) (
𝑁 𝜅𝑉 (𝑣/𝑁1−𝜅 ) + 1

𝑁

∑
𝑟 ∈𝑃𝑐

𝐿

𝑁 𝜅𝑉 ((𝑟 − 𝑣)/𝑁1−𝜅 )𝜂𝑟
)

=
∑
𝑣 ∈𝑃𝐿

(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

)
𝑁 𝜅

(
𝑉 (·/𝑁1−𝜅 ) ∗ �̂�𝑁 ,ℓ

)
𝑣 + E3 (3.16)

with

E3 = − 1
𝑁

∑
𝑣, 𝑟 ∈𝑃𝐿

𝑁 𝜅𝑉 ((𝑟 − 𝑣)/𝑁1−𝜅 )
(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

)
𝜂𝑟 −

𝜂0
𝑁

∑
𝑣 ∈𝑃𝐿

𝑁 𝜅𝑉𝑁 (𝑣/𝑁1−𝜅 )
(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

)
.

With (2.8), Lemma 2.4, |𝜂0 | ≤ 𝐶𝑁 𝜅 and the assumption 3𝜅 − 2 + 5𝜀 < 0, we obtain E3 ≤ 𝑁5𝜅/2−𝜀 .
Inserting (3.15) and (3.16) in (3.14) and completing sums over p on the right-hand side of (3.15), we

arrive at

𝐸Ψ
𝑁 ≤ 𝑁

2
(
𝑁 𝜅𝑉𝑁 (·/𝑁1−𝜅 ) ∗ �̂�𝑁 ,ℓ

)
0

+
∑
𝑣 ∈𝑃𝐿

[
𝑣2𝜎2

𝑣 +
(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

) (
𝑁 𝜅𝑉 (·/𝑁1−𝜅 ) ∗ �̂�𝑁 ,ℓ

)
𝑣 −

1
2

𝑁 𝜅
(
𝑉 (·/𝑁1−𝜅 ) ∗ �̂�𝑁 ,ℓ

)
𝑣𝜂𝑣

]
+ 𝐶𝑁5𝜅/2 max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}. (3.17)

Let us now introduce the notation �̂�𝑝 = (𝑁 𝜅𝑉 (·/𝑁1−𝜅 ) ∗ �̂�𝑁 ,ℓ)𝑝 . Notice that�� �̂�0 − 8𝜋𝔞𝑁 𝜅
�� ≤ 𝐶𝑁2𝜅−1,

�� �̂�𝑝 − �̂�0
�� ≤ 𝐶 |𝑝 |𝑁2𝜅−1. (3.18)

With the expression (2.28), we obtain

∑
𝑣 ∈𝑃𝐿

[
𝑣2𝜎2

𝑣 +
(
𝜎2
𝑣 + 𝛾𝑣𝜎𝑣

)
�̂�𝑣

]
=

1
2

∑
𝑣 ∈𝑃𝐿

[
−𝑣2 − �̂�𝑣 +

𝑣4 + 𝑣2 (8𝜋𝔞𝑁 𝜅 + �̂�𝑣 )√
𝑣4 + 16𝜋𝔞𝑁 𝜅𝑣2

]
=

1
2

∑
𝑣 ∈𝑃𝐿

[√
𝑣4 + 16𝜋𝔞𝑁 𝜅𝑣2 − 𝑣2 − 8𝜋𝔞𝑁 𝜅

]
+ E4

where, with (3.18) and 3𝜅 − 2 + 4𝜀 < 0, we find

E4 =
1
2

∑
𝑣 ∈𝑃𝐿

[
8𝜋𝔞𝑁 𝜅 − �̂�𝑣 +

�̂�𝑣 − 8𝜋𝔞𝑁 𝜅√
1 + 16𝜋𝔞𝑁 𝜅/𝑣2

]

≤ 𝐶
∑
𝑣 ∈𝑃𝐿

|8𝜋𝔞𝑁 𝜅 − �̂�𝑣 |
|
√

1 + 16𝜋𝔞𝑁 𝜅/𝑣2 − 1|√
1 + 16𝜋𝔞𝑁 𝜅/𝑣2

≤ 𝐶𝑁2𝜅−1
[ ∑
|𝑣 |<𝑁 𝜅/2

(1 + |𝑣 |) +
∑

𝑣 ∈𝑃𝐿 : |𝑣 |>𝑁 𝜅/2

𝑁 𝜅/2

|𝑣 |2
]
≤ 𝐶𝑁5𝜅/2−𝜀 .

Moreover, from (3.17) and with the scattering equation (2.9), we obtain

−𝑁 𝜅

2

∑
𝑣 ∈𝑃𝐿

�̂�𝑣𝜂𝑣 ≤
∑
𝑣 ∈𝑃𝐿

(8𝜋𝔞𝑁 𝜅 )2

4𝑣2 + 𝐶𝑁5𝜅/2−𝜀 .
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Thus,

𝐸Ψ
𝑁 ≤ 4𝜋𝔞𝑁1+𝜅 + 1

2

∑
𝑣 ∈𝑃𝐿

[√
𝑣4 + 16𝜋𝔞𝑁 𝜅𝑣2 − 𝑣2 − 8𝜋𝔞𝑁 𝜅 + (8𝜋𝔞𝑁 𝜅 )2

2𝑣2

]
+ 𝐶𝑁5𝜅/2 max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}.

With ����√𝑣4 + 16𝜋𝔞𝑁 𝜅𝑣2 − 𝑣2 − 8𝜋𝔞𝑁 𝜅 + (8𝜋𝔞𝑁 𝜅 )2

2𝑣2

���� ≤ 𝐶
𝑁2𝜅

|𝑣 |4

we can replace, up to an error of order 𝑁5𝜅/2−𝜀 , the sum over 𝑃𝐿 with a sum over all Λ∗
+. With the

rescaling 𝑣 → 𝑁 𝜅/2𝑣, we arrive at

𝐸Ψ
𝑁 ≤ 4𝜋𝔞𝑁1+𝜅 + 𝑁 𝜅

2

∑
𝑣 ∈2𝜋𝑁 −𝜅/2Z3

[√
𝑣4 + 16𝜋𝔞𝑣2 − 𝑣2 − 8𝜋𝔞 + (8𝜋𝔞)2

2𝑣2

]
+ 𝐶𝑁5𝜅/2 max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}. (3.19)

Recognising that (3.19) defines a Riemann sum and explicitly computing

1
2(2𝜋)3

∫
𝑑𝑣

[√
𝑣4 + 16𝜋𝔞𝑣2 − 𝑣2 − 8𝜋𝔞 + (8𝜋𝔞)2

2𝑣2

]
= 4𝜋𝔞 · 128

15
√

𝜋
𝔞3/2

we conclude that

𝐸Ψ
𝑁 ≤ 4𝜋𝔞𝑁1+𝜅 ·

[
1 + 128

15
√

𝜋
(𝔞3𝑁3𝜅−2)1/2

]
+ 𝐶𝑁5𝜅/2 max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}.

To compare the Riemann sum in (3.19) with the integral, we first removed contributions arising from
|𝑣 | ≤ 𝑁−𝜀 using that |𝐹 (𝑣) | ≤ 𝐶/𝑣2, for small v, with the definition 𝐹 (𝑣) =

√
𝑣4 + 16𝜋𝔞𝑣2 − 𝑣2 − 8𝜋𝔞 +

(8𝜋𝔞)2/2𝑣2. For |𝑣 | > 𝑁−𝜀 , we use that |∇𝐹 (𝑣) | ≤ 𝐶 |𝑣 |−3 (1+ 𝑣2)−1 to compare the value of 𝐹 (𝑞) with
𝐹 (𝑣), for all q in the cube of size 2𝜋𝑁−𝜅/2 centred at v.

4. Bogoliubov transformation

In this section, we show Proposition 3.1. From the definition (3.1) and from (3.3), we obtain (since 𝑇𝜈
does not act on the zero momentum mode and since 𝑎0𝜉𝜈 = 0)

〈𝜉𝜈 ,G𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2 =

𝑁2
0

2
𝑁 𝜅−1𝑉 (0) +

4∑
𝑗=2

〈𝜉𝜈 ,G( 𝑗)
𝑁 𝜉𝜈〉

‖𝜉𝜈 ‖2

with G( 𝑗)
𝑁 = 𝑇∗

𝜈L
( 𝑗)
𝑁 𝑇𝜈 , for 𝑗 = 2, 3, 4.

We start from the contribution of G(2)
𝑁 . We write L(2)

𝑁 = K + L(2,𝑉 )
𝑁 with

L(2,𝑉 )
𝑁 =

𝑁0
𝑁

∑
𝑝∈Λ∗

𝑁 𝜅
(
�̂� (𝑝/𝑁1−𝜅 ) + �̂� (0)

)
𝑎∗
𝑝𝑎𝑝 +

𝑁0
2𝑁

∑
𝑝∈Λ∗

𝑁 𝜅�̂� (𝑝/𝑁1−𝜅 ) (𝑎∗
𝑝𝑎∗

−𝑝 + h.c.).
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Using (2.14) we get

𝑇∗
𝜈K𝑇𝜈 −

⎡⎢⎢⎢⎢⎣K +
∑
𝑝∈Λ∗

+

𝑝2𝜎2
𝑝

⎤⎥⎥⎥⎥⎦ = 2
∑
𝑝∈Λ∗

+

𝑝2𝜎2
𝑝𝑎∗
𝑝𝑎𝑝 +

∑
𝑝∈Λ∗

+

𝑝2 [
𝛾𝑝𝜎𝑝 (𝑎∗

𝑝𝑎∗
−𝑝 + h.c.)

]
:= 𝐸1 + 𝐸2.

From (2.15), 〈𝜉𝜈 , E2𝜉𝜈〉 = 0 ( 𝜉𝜈 is a superposition of states with 3𝑚 particles, for 𝑚 ∈ N). To bound the
expectation of 𝐸1 on 𝜉𝜈 we notice that 〈𝜉𝜈 , 𝑎∗

𝑝𝑎𝑝𝜉𝜈〉 = 0 if 𝑝 ∈ Λ∗
+\(𝑃𝑆 ∪ 𝑃𝐻 ). Moreover, proceeding

as in (2.31), we have

sup
𝑝∈𝑃𝑆

(𝑝2𝜎2
𝑝) ≤ sup

𝑝∈𝑃𝑆 : |𝑝 | ≤𝑁 𝜅/2
𝑁 𝜅/2 |𝑝 | + sup

𝑝∈𝑃𝑆 : |𝑝 |>𝑁 𝜅/2

𝑁2𝜅

𝑝2 ≤ 𝐶𝑁 𝜅

while

sup
𝑝∈𝑃𝐻

(𝑝2𝜎2
𝑝) ≤ sup

|𝑝 | ≥𝑁 1−𝜅−𝜀

𝑁2𝜅

𝑝2 ≤ 𝐶𝑁−2+4𝜅+2𝜀 ≤ 𝐶𝑁 𝜅

because, by assumption, 3𝜅 − 2 + 2𝜀 < 0. Hence,

|
〈
𝜉𝜈 , 𝐸1𝜉𝜈

〉
| ≤ 𝐶𝑁 𝜅 ‖N1/2𝜉𝜈 ‖2. (4.1)

We now consider the contribution from L(2,𝑉 )
𝑁 . Using again 〈𝜉𝜈 , 𝑎∗

𝑝𝑎∗
−𝑝𝜉𝜈〉 = 0 for all 𝑝 ∈ Λ∗

+ and
〈𝜉𝜈 , 𝑎∗

𝑝𝑎𝑝𝜉𝜈〉 = 0 for all 𝑝 ∈ Λ∗
+\(𝑃𝑆 ∪ 𝑃𝐻 ), a straightforward computation shows that

〈𝜉𝜈 , 𝑇∗
𝜈L

(2,𝑉 )
𝑁 𝑇𝜈𝜉𝜈〉

‖𝜉𝜈 ‖2

=
𝑁0
𝑁

∑
𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝛾𝑝𝜎𝑝 +
𝑁0
𝑁

∑
𝑝∈Λ∗

+

𝑁 𝜅
(
𝑉 (0) +𝑉 (𝑝/𝑁1−𝜅 )

)
𝜎2
𝑝

+ 𝑁0
𝑁

∑
𝑝∈𝑃𝑆∪𝑃𝐻

𝑁 𝜅
[
𝑉 (𝑝/𝑁 𝜅−1) (𝛾𝑝 + 𝜎𝑝)2 +𝑉 (0) (𝛾2

𝑝 + 𝜎2
𝑝)

] 〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝𝜉𝜈〉

‖𝜉𝜈 ‖2 .

With the bounds ‖𝛾𝑆 ‖2
∞, ‖𝜎𝑆 ‖2

∞, ‖𝜎𝐻 ‖2
∞, ‖𝛾𝐻 ‖2

∞ ≤ 𝐶𝑁 𝜀 from Lemma 2.4, with (4.1) and with the
estimate 〈𝜉𝜈 ,N𝜉𝜈〉 ≤ 𝐶𝑁9𝜅/2−2+𝜀 ‖𝜉𝜈 ‖2 from Proposition 2.2, we conclude that

〈𝜉𝜈 ,G(2)
𝑁 𝜉𝜈〉

‖𝜉𝜈 ‖2 ≤ 〈𝜉𝜈 ,K𝜉𝜈〉
‖𝜉𝜈 ‖2 +

∑
𝑝∈Λ∗

+

𝑝2𝜎2
𝑝 +

𝑁0
𝑁

∑
𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝛾𝑝𝜎𝑝

+ 𝑁0
𝑁

∑
𝑝∈Λ∗

+

𝑁 𝜅
(
𝑉 (0) +𝑉 (𝑝/𝑁1−𝜅 )

)
𝜎2
𝑝 + 𝐶𝑁5𝜅/2−𝜀 (4.2)

using again the condition 3𝜅 − 2 + 4𝜀 < 0.
Next, we study the contribution of G(3)

𝑁 = 𝑇∗
𝜈L

(3)
𝑁 𝑇𝜈 , with L(3)

𝑁 as in (3.3). Recall the operator C𝑁 ,
defined in (3.5). Taking into account the fact that 𝜉𝜈 is a superposition of vectors with 2𝑚 particles with
momenta in 𝑃𝐻 and m particles with momenta in 𝑃𝑆 , for 𝑚 ∈ N, we obtain that

〈𝜉𝜈 ,G(3)
𝑁 𝜉𝜈〉 = 〈𝜉𝜈 , C𝑁 𝜉𝜈〉 +

3∑
𝑗=1

[
〈𝜉𝜈 , F 𝑗𝜉𝜈〉 + h.c.

]
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with

F1 =

√
𝑁0
𝑁

∑
𝑝,𝑟 ∈𝑃𝐻 :𝑝+𝑟 ∈𝑃𝑆

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝+𝑟𝜎𝑝𝜎𝑟 𝑎∗
𝑝+𝑟𝑎

∗
−𝑝𝑎∗

−𝑟

F2 =

√
𝑁0
𝑁

∑
𝑝∈𝑃𝐻 ,𝑟 ∈𝑃𝑆 :𝑝+𝑟 ∈𝑃𝐻

𝑁 𝜅
[
𝑉 (𝑟/𝑁1−𝜅 ) +𝑉 (𝑝/𝑁1−𝜅 )

]
𝛾𝑝+𝑟𝜎𝑝𝜎𝑟 𝑎∗

𝑝+𝑟𝑎
∗
−𝑝𝑎∗

−𝑟

F3 =

√
𝑁0
𝑁

∑
𝑝∈𝑃𝐻 ,𝑟 ∈𝑃𝑆 :𝑝+𝑟 ∈𝑃𝐻

𝑁 𝜅
[
𝑉 (𝑟/𝑁1−𝜅 ) +𝑉 (𝑝/𝑁1−𝜅 )

]
𝜎𝑝+𝑟𝛾𝑝𝛾𝑟 𝑎−𝑝−𝑟𝑎𝑝𝑎𝑟 .

Using ‖𝑎∗
−𝑟 (N + 1)1/2𝜉𝜈 ‖ ≤ ‖𝑎−𝑟 (N + 1)1/2𝜉𝜈 ‖ + ‖(N + 1)1/2𝜉𝜈 ‖, we can bound

〈𝜉𝜈 , F1𝜉𝜈〉 ≤ 𝐶𝑁 𝜅−1/2‖𝛾𝑆 ‖∞
∑

𝑝,𝑟 ∈𝑃𝐻

|𝜎𝑟 | |𝜎𝑝 | ‖𝑎𝑝+𝑟𝑎−𝑝 (N + 1)−1/2𝜉𝜈 ‖

×
[
‖𝑎−𝑟 (N + 1)1/2𝜉𝜈 ‖ + ‖(N + 1)1/2𝜉𝜈 ‖

]
≤ 𝐶𝑁 𝜅−1/2‖𝛾𝑆 ‖∞‖𝜎𝐻 ‖∞‖𝜎𝐻 ‖ ‖(N + 1)1/2𝜉𝜈 ‖‖(N + 1)𝜉𝜈 ‖

+ 𝐶𝑁 𝜅−1/2‖𝛾𝑆 ‖∞‖𝜎𝐻 ‖2 ‖(N + 1)1/2𝜉𝜈 ‖2.

With Lemma 2.4 and Proposition 2.2, we obtain

〈𝜉𝜈 , F1𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 𝐶𝑁37𝜅/4−4+5𝜀/2 + 𝐶𝑁17𝜅/2−7/2+5𝜀/2 ≤ 𝐶𝑁5𝜅/2 · 𝑁21𝜅/4−7/2+3𝜀/2

from the assumption that 3𝜅 − 2 + 4𝜀 < 0. Similarly, we find

〈𝜉𝜈 , F2𝜉𝜈〉 ≤ 𝐶𝑁 𝜅−1/2‖𝛾𝐻 ‖∞‖𝜎𝑆 ‖∞‖𝜎𝐻 ‖ ‖(N + 1)1/2𝜉𝜈 ‖‖(N + 1)𝜉𝜈 ‖
+ 𝐶𝑁 𝜅−1/2‖𝛾𝐻 ‖∞‖𝜎𝑆 ‖‖𝜎𝐻 ‖ ‖(N + 1)1/2𝜉𝜈 ‖2

≤ 𝐶
[
𝑁37𝜅/4−4+3𝜀 + 𝑁31𝜅/4−3+3𝜀/2] ‖𝜉𝜈 ‖2 ≤ 𝐶𝑁5𝜅/2 · 𝑁21𝜅/4−3+3𝜀/2‖𝜉𝜈 ‖2

and also

〈𝜉𝜈 , F3𝜉𝜈〉 ≤ 𝐶𝑁 𝜅−1/2‖𝛾𝐻 ‖∞‖𝛾𝑆 ‖∞‖𝜎𝐻 ‖ ‖(N + 1)1/2𝜉𝜈 ‖‖(N + 1)𝜉𝜈 ‖
+ 𝐶𝑁 𝜅−1/2‖𝛾𝐻 ‖∞‖𝛾𝑆 ‖‖𝜎𝐻 ‖ ‖(N + 1)1/2𝜉𝜈 ‖2

≤ 𝐶𝑁5𝜅/2 · 𝑁21𝜅/4−3+3𝜀 ‖𝜉𝜈 ‖2.

Summarising, we have

〈𝜉𝜈 ,G(3)
𝑁 𝜉𝜈〉

‖𝜉𝜈 ‖2 ≤ 〈𝜉𝜈 , C𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2 + 𝐶𝑁5𝜅/2 · 𝑁21𝜅/4−3+3𝜀 . (4.3)
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Finally, let us consider G(4)
𝑁 = 𝑇∗

𝜈L
(4)
𝑁 𝑇𝜈 . We decompose 〈𝜉𝜈 ,G(4)

𝑁 𝜉𝜈〉 =
∑3
𝑗=1〈𝜉𝜈 , G 𝑗𝜉𝜈〉 with

G1 =
1

2𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈Λ∗

+
−𝑟≠𝑞,𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝛾𝑞𝛾𝑝+𝑟𝛾𝑞+𝑟𝑎
∗
𝑝+𝑟𝑎

∗
𝑞𝑎𝑝𝑎𝑞+𝑟

G2 =
1

2𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈Λ∗

+
𝑟≠𝑞,−𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )
(
𝛾𝑝+𝑟𝜎𝑞𝑎∗

𝑝+𝑟𝑎−𝑞 + 𝜎𝑝+𝑟𝛾𝑞𝑎−𝑝−𝑟𝑎
∗
𝑞

)
×

(
𝛾𝑝𝜎𝑞+𝑟𝑎𝑝𝑎∗

−𝑞−𝑟 + 𝜎𝑝𝛾𝑞+𝑟𝑎
∗
−𝑝𝑎𝑞+𝑟

)
G3 =

1
2𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈Λ∗

+
𝑟≠𝑞,−𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜎𝑝𝜎𝑞𝜎𝑝+𝑟𝜎𝑞+𝑟𝑎𝑝+𝑟𝑎𝑞𝑎∗
𝑝𝑎∗
𝑞+𝑟 .

To estimate contributions from G3, we arrange terms in normal order. We find

G3 =
1

2𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈Λ∗

+
−𝑟≠𝑞,𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜎𝑝𝜎𝑞𝜎𝑝+𝑟𝜎𝑞+𝑟𝑎
∗
𝑝𝑎∗
𝑞+𝑟𝑎𝑝+𝑟𝑎𝑞

+ 1
2𝑁

∑
𝑟 ∈Λ∗ , 𝑝∈Λ∗

+
𝑝≠−𝑟

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜎2
𝑝𝜎2

𝑝+𝑟
(
𝑎∗
𝑝𝑎𝑝 + 𝑎∗

𝑝+𝑟𝑎𝑝+𝑟
)

+ 1
𝑁

∑
𝑝,𝑞∈Λ∗

+

𝑁 𝜅𝑉 (0)𝜎2
𝑝𝜎2
𝑞𝑎∗
𝑝𝑎𝑝

+ 1
2𝑁

∑
𝑟 ∈Λ∗ , 𝑝∈Λ∗

+:
𝑝≠−𝑟

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜎2
𝑝𝜎2

𝑝+𝑟 +
1

2𝑁

∑
𝑝,𝑞∈Λ∗

+

𝑁 𝜅𝑉 (0)𝜎2
𝑝𝜎2
𝑞 .

Since 𝑎𝑝 𝜉𝜈 = 0 if 𝑝 ∈ Λ∗
+\(𝑃𝑆 ∪ 𝑃𝐻 ) and ‖𝜎𝐻 ‖∞ ≤ ‖𝜎𝑆 ‖∞, we find, by Cauchy–Schwarz,

〈𝜉𝜈 , G3𝜉𝜈〉 ≤ 𝐶𝑁 𝜅−1 [
‖𝜎𝑆 ‖2

∞‖𝜎‖2‖(N + 1)𝜉𝜈 ‖2 + ‖𝜎‖4‖𝜉𝜈 ‖2]
≤ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁9𝜅−5+3𝜀}‖𝜉𝜈 ‖2 (4.4)

using Proposition 2.2 and 3𝜅−2+4𝜀 < 0. We proceed similarly for G2. Through normal ordering, we get

G2 =
1
𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈Λ∗

+
−𝑟≠𝑞,𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝛾𝑝+𝑟𝜎𝑞𝜎𝑞+𝑟𝑎
∗
𝑝+𝑟𝑎

∗
−𝑞−𝑟𝑎𝑝𝑎−𝑞

+ 1
𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈Λ∗

+
−𝑟≠𝑞,𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝+𝑟𝛾𝑞+𝑟𝜎𝑝𝜎𝑞𝑎∗
𝑝+𝑟𝑎

∗
−𝑝𝑎−𝑞𝑎𝑞+𝑟

+ 1
𝑁

∑
𝑝,𝑞∈Λ∗

+

𝑁 𝜅𝑉 (0)𝛾2
𝑝𝜎2
𝑞𝑎∗
𝑝𝑎𝑝 +

1
𝑁

∑
𝑟 ∈Λ∗ , 𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾2
𝑝𝜎2

𝑝+𝑟𝑎
∗
𝑝𝑎𝑝

+ 2
𝑁

∑
𝑟 ∈Λ∗ , 𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝜎𝑝𝛾𝑝+𝑟𝜎𝑝+𝑟𝑎
∗
𝑝𝑎𝑝

+ 1
2𝑁

∑
𝑝,𝑟 ∈Λ∗

+

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝛾𝑝+𝑟𝜎𝑝𝜎𝑝+𝑟 .
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Keeping the last contribution intact and estimating the term on the fourth line distinguishing the two
cases (𝑝 + 𝑟) ∈ 𝑃𝑆 and (𝑝 + 𝑟) ∈ 𝑃𝐻 , we arrive at

〈𝜉𝜈 , G2𝜉𝜈〉 ≤
1

2𝑁

∑
𝑝,𝑟 ∈Λ∗

+

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝛾𝑝+𝑟𝜎𝑝𝜎𝑝+𝑟 ‖𝜉𝜈 ‖2

+ 𝐶𝑁 𝜅−1‖𝛾𝑆 ‖2
∞‖𝜎‖2‖(N + 1)𝜉𝜈 ‖2

+ 𝐶𝑁 𝜅−1‖𝛾𝑆∪𝐻 ‖∞‖𝜎𝑆∪𝐻 ‖∞

×
[
‖𝛾𝑆𝜎𝑆 ‖1 + ‖𝛾𝐻 ‖∞ sup

𝑝

∑
𝑟 ∈Λ∗

𝑉 (𝑟/𝑁1−𝜅 ) |𝜂𝑝+𝑟 |
]
‖N1/2𝜉𝜈 ‖2.

With the bounds in Lemma 2.4 and in Proposition 2.2 and with (3.12), we conclude that

〈𝜉𝜈 , G2𝜉𝜈〉 ≤
1

2𝑁

∑
𝑝,𝑟 ∈Λ∗

+

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝛾𝑝+𝑟𝜎𝑝𝜎𝑝+𝑟 ‖𝜉𝜈 ‖2 + 𝐶𝑁5𝜅/2 · 𝑁9𝜅−5+3𝜀 ‖𝜉𝜈 ‖2. (4.5)

Finally, we consider G1. Recalling that 𝑎𝑝𝜉𝜈 = 0 if 𝑝 ∈ Λ∗
+\(𝑃𝑆 ∪ 𝑃𝐻 ) and observing that

〈𝜉𝜈 , 𝑎∗
𝑝+𝑟𝑎

∗
𝑞𝑎𝑝𝑎𝑞+𝑟 𝜉𝜈〉 ≠ 0 only if the operator 𝑎∗

𝑝+𝑟𝑎
∗
𝑞𝑎𝑝𝑎𝑞+𝑟 preserves the number of particles in

𝑃𝑆 and in 𝑃𝐻 , we arrive at

〈𝜉𝜈 , G1𝜉𝜈〉 ≤
1

2𝑁

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈𝑃𝐻 :
𝑝+𝑟 ,𝑞+𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝛾𝑝𝛾𝑞𝛾𝑝+𝑟𝛾𝑞−𝑟 〈𝜉𝜈 , 𝑎∗
𝑝+𝑟𝑎

∗
𝑞𝑎𝑝𝑎𝑞+𝑟 𝜉𝜈〉

+ 𝐶𝑁 𝜅−1‖𝛾𝑆∪𝐻 ‖2
∞‖𝛾𝑆 ‖2‖(N + 1)𝜉‖2.

With |𝛾𝑝𝛾𝑞𝛾𝑝+𝑟𝛾𝑞+𝑟 − 1| ≤ 𝐶‖𝜂𝐻 ‖2
∞ for all 𝑝, 𝑞 ∈ 𝑃𝐻 , with (𝑝 + 𝑟), (𝑞 + 𝑟) ∈ 𝑃𝐻 and using the

estimate (see the proof of (3.12))

sup
𝑝∈Λ∗

∑
𝑟 ∈Λ∗

+:𝑟≠𝑝

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |
|𝑝 − 𝑟 |2

≤ 𝐶𝑁

we conclude that

〈𝜉𝜈 , G1𝜉𝜈〉 ≤ 〈𝜉𝜈 ,V(𝐻 )
𝑁 𝜉𝜈〉 + 𝐶‖𝜂𝐻 ‖2

∞‖N1/2K1/2𝜉𝜈 ‖2 + 𝐶𝑁 𝜅−1‖𝛾𝑆∪𝐻 ‖2
∞‖𝛾𝑆 ‖2‖N𝜉‖2

with V(𝐻 )
𝑁 defined as in (3.4). With Lemma 2.4 and Proposition 2.2, we find (using the assumption

3𝜅 − 2 + 4𝜀 < 0)

〈𝜉𝜈 , G1𝜉𝜈〉 ≤ 〈𝜉𝜈 ,V(𝐻 )
𝑁 𝜉𝜈〉 + 𝐶𝑁5𝜅/2 · 𝑁9𝜅−5+6𝜀 ‖𝜉𝜈 ‖2.

With (4.4) and (4.5), we have shown that

〈𝜉𝜈 ,G(4)
𝑁 𝜉𝜈〉

‖𝜉𝜈 ‖2 ≤
〈𝜉𝜈 ,V(𝐻 )

𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2 + 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀}.

Combining the last bound with (4.2) and (4.3), we obtain

〈𝜉𝜈 ,G𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 𝐶𝑁 +

〈𝜉𝜈 , (K + V(𝐻 )
𝑁 + C𝑁 )𝜉𝜈〉

‖𝜉𝜈 ‖2

+ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁9𝜅−5+6𝜀 , 𝑁21𝜅/4−3+3𝜀}
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where we defined

𝐶𝑁 =
𝑁2

0
2𝑁

𝑁 𝜅𝑉 (0) +
∑
𝑝∈Λ∗

+

𝑝2𝜎2
𝑝 +

𝑁0
𝑁

∑
𝑝∈Λ∗

+

𝑁 𝜅
(
𝑉 (𝑝/𝑁1−𝜅 ) +𝑉 (0)

)
𝜎2
𝑝

+ 𝑁0
𝑁

∑
𝑝∈Λ∗

+

𝑁 𝜅𝑉 (𝑝/𝑁1−𝜅 )𝜎𝑝𝛾𝑝 +
1

2𝑁

∑
𝑝,𝑟 ∈Λ∗

+
𝑟≠𝑝

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜎𝑝𝜎𝑝+𝑟𝛾𝑝𝛾𝑝+𝑟 . (4.6)

Inserting 𝑁0 = 𝑁 − ‖𝜎𝐿 ‖2 and recalling from Lemma 2.4 that ‖𝜎𝐿 ‖2 ≤ 𝐶𝑁3𝜅/2 and ‖𝜎𝐿𝑐 ‖2 ≤
𝐶𝑁3𝜅/2−𝜀 , we obtain 𝐶𝑁 = 𝐶G𝑁 + O(𝑁5𝜅/2−𝜀), with 𝐶G𝑁 as defined in (3.6) (with the assumption
3𝜅−2+4𝜀 < 0). To handle the first term on the second line of (4.6), we used that |𝜎𝑝𝛾𝑝 −𝜂𝑝 | ≤ 𝐶𝜂3

𝑝 ≤
𝐶𝑁3𝜅/|𝑝 |6, for 𝑝 ∈ 𝑃𝑐𝐿 . This completes the proof of Proposition 3.1.

5. Cubic conjugation

In this section we prove Proposition 2.2 and Proposition 3.2, as a consequence of the following lemma.

Lemma 5.1. Let 𝐴𝜈 be defined in (2.15) and K, V(𝐻 )
𝑁 and C𝑁 be defined in (3.4) and (3.5), respectively.

Then, for 𝜉𝜈 = 𝑒𝐴𝜈Ω,

〈𝜉𝜈 ,K𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 2

𝑁

∑
𝑣 ∈𝑃𝑆 ,𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

𝑟2𝜂𝑟 (𝜂𝑟 + 𝜂𝑟+𝑣 )𝜎2
𝑣 + E, (5.1)

〈𝜉𝜈 , C𝑁 𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 2

𝑁

∑
𝑣 ∈𝑃𝑆 ,𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝜂𝑟 + 𝜂𝑟+𝑣 )𝜎2
𝑣 + E, (5.2)

〈𝜉𝜈 ,V(𝐻 )
𝑁 𝜉𝜈〉

‖𝜉𝜈 ‖2 ≤ 1
𝑁2

∑
𝑣 ∈𝑃𝑆 ,𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

(
𝑁 𝜅𝑉 (·/𝑁1−𝜅 ) ∗ 𝜂

)
𝑟 (𝜂𝑟 + 𝜂𝑟+𝑣 )𝜎2

𝑣 + E, (5.3)

with

E ≤ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁12𝜅−7+5𝜀}

for all 𝜅 ∈ (1/2; 2/3), 𝜀 > 0 so small that 3𝜅 − 2 + 4𝜀 < 0 and N large enough.

With Lemma 5.1, we can immediately show Proposition 3.2.

Proof of Proposition 3.2. From Lemma 5.1 we have

〈𝜉𝜈 , (K + V(𝐻 )
𝑁 + C𝑁 )𝜉𝜈〉

‖𝜉𝜈 ‖2

≤ 2
𝑁

∑
𝑣 ∈𝑃𝑆

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

[
𝑟2𝜂𝑟 + 𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) + 𝑁 𝜅

2𝑁

(
𝑉 (·/𝑁1−𝜅 ) ∗ 𝜂

)
𝑟

]
(𝜂𝑟 + 𝜂𝑟+𝑣 ) + E

with E ≤ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁12𝜅−7+5𝜀}. With the scattering equation (2.9), we obtain

〈𝜉𝜈 , (K + V(𝐻 )
𝑁 + C𝑁 )𝜉𝜈〉

‖𝜉𝜈 ‖2 ≤ 1
𝑁

∑
𝑣 ∈𝑃𝑆

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝜂𝑟 + 𝜂𝑟+𝑣 ) + E′
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with

E′ ≤ 1
𝑁

∑
𝑣 ∈𝑃𝑆

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻 : 𝑟+𝑣 ∈𝑃𝐻

𝑁3−2𝜅𝜆ℓ ( �̂�ℓ ∗ �̂�𝑁 ,ℓ)𝑟𝜂𝑟 + E.

Using |𝑁3−3𝜅𝜆ℓ | ≤ 𝐶 and ‖ �̂�ℓ ∗ �̂�𝑁 ,ℓ ‖ ≤ 𝐶, we conclude

〈𝜉𝜈 , (K + V(𝐻 )
𝑁 + C𝑁 )𝜉𝜈〉

‖𝜉𝜈 ‖2

≤ 1
𝑁

∑
𝑣 ∈𝑃𝑆

𝜎2
𝑣

∑
𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) (𝜂𝑟 + 𝜂𝑟+𝑣 ) + 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁12𝜅−7+5𝜀}.

Finally, with (3.12) and the expression (2.28) for 𝜎2
𝑣 , we can extend the sum over 𝑣 ∈ 𝑃𝑆 to a sum over

all 𝑣 ∈ 𝑃𝐿 , without changing the size of the error. This completes the proof of Proposition 3.2. �

We still have to show Proposition 2.2 and Lemma 5.1.

5.1. Expectation of the particle number and kinetic energy

In this section we prove (5.1) and Proposition 2.2. We start by computing the expectation 〈𝜉𝜈 ,K𝜉𝜈〉.
We proceed as we did in (2.19)–(2.22) to compute ‖𝜉𝜈 ‖2. With K𝑎∗

𝑟+𝑣𝑎
∗
−𝑟𝑎

∗
−𝑣 = 𝑎∗

𝑟+𝑣𝑎
∗
−𝑟𝑎

∗
−𝑣 (K + (𝑟 +

𝑣)2 + 𝑟2 + 𝑣2) we obtain〈
𝜉𝜈 ,K𝜉𝜈

〉
=

∑
𝑚≥1

1
2𝑚(𝑚 − 1)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

× [𝑟2
𝑚 + 𝑣2

𝑚 + (𝑟𝑚 + 𝑣𝑚)2]
𝑚∏
𝑖=1

(𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖 )2𝜎2
𝑣𝑖

with the cutoff 𝜃 introduced in (2.18). Since all terms are positive, we can find an upper bound for
〈𝜉𝜈 ,K𝜉𝜈〉 by replacing 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1) with 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1 ), removing conditions involving momenta
with index m. Recalling (2.22), we find〈

𝜉𝜈 ,K𝜉𝜈
〉
≤ 1

2𝑁

∑
𝑣 ∈𝑃𝑆 ,𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

[𝑟2 + 𝑣2 + (𝑟 + 𝑣)2] (𝜂𝑟 + 𝜂𝑟+𝑣 )2𝜎2
𝑣 ‖𝜉𝜈 ‖2

≤ 2
𝑁

∑
𝑣 ∈𝑃𝑆 ,𝑟 ∈𝑃𝐻

𝑟2𝜂𝑟 (𝜂𝑟 + 𝜂𝑟+𝑣 )𝜎2
𝑣 ‖𝜉𝜈 ‖2 + E

with (using Lemma 2.4 and the assumption 3𝜅 − 2 + 4𝜀 < 0)

E
‖𝜉𝜈 ‖2 =

2
𝑁

∑
𝑣 ∈𝑃𝑆 ,𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

(𝑣2 + 𝑟 · 𝑣)𝜂𝑟 (𝜂𝑟 + 𝜂𝑟+𝑣 )𝜎2
𝑣

≤ 𝐶

𝑁
(‖𝜎𝑆 ‖2

𝐻 1 ‖𝜂𝐻 ‖2 + ‖𝜎𝑆 ‖‖𝜂𝐻 ‖‖𝜎𝑆 ‖𝐻 1 ‖𝜂𝐻 ‖𝐻 1) ≤ 𝐶𝑁4𝜅−1+𝜀 ≤ 𝐶𝑁5𝜅/2−𝜀 .

This proves (5.1). In particular, (5.1) implies, together with Lemma 2.4, that

〈𝜉𝜈 ,K𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 𝐶𝑁−1‖𝜂𝐻 ‖2

𝐻 1 ‖𝜎𝑆 ‖2 ≤ 𝐶𝑁5𝜅/2, (5.4)
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which shows (2.24) with 𝑗 = 1 in Proposition 2.2.
Analogously, we find

〈𝜉𝜈 ,KN𝜉𝜈〉 ≤
∑
𝑚≥1

3𝑚

2𝑚 (𝑚 − 1)!
1

𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

× [𝑟2
𝑚 + 𝑣2

𝑚 + (𝑟𝑚 + 𝑣𝑚)2]
𝑚∏
𝑖=1

(𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖 )2𝜎2
𝑣𝑖 .

Writing 𝑚 = 1 + (𝑚 − 1) and bounding 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1) by 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚−2
𝑗=1 ), we obtain

〈𝜉𝜈 ,KN𝜉𝜈〉 ≤ 3〈𝜉𝜈 ,K𝜉𝜈〉 +
3

4𝑁2

∑
𝑟 ,𝑟 ′ ∈𝑃𝐻 ,𝑣 ,𝑣′ ∈𝑃𝑆

[𝑟2 + 𝑣2 + (𝑟 + 𝑣)2]

× (𝜂𝑟 + 𝜂𝑟+𝑣 )2(𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ )2𝜎2
𝑣𝜎

2
𝑣′ ‖𝜉𝜈 ‖2.

With (5.4) and with the bounds for ‖𝜂𝐻 ‖2
𝐻 1 , ‖𝜂𝐻 ‖2, ‖𝜎𝑆 ‖2 from Lemma 2.4, we find

〈𝜉𝜈 ,KN𝜉𝜈〉
‖𝜉𝜈 ‖2 ≤ 𝐶𝑁5𝜅/2 · 𝑁9𝜅/2−2+𝜀 , (5.5)

which shows (2.24) with 𝑗 = 2.
To show (2.23) we observe that, by (2.15), the operator 𝐴𝜈 only creates particles with momenta in

𝑃𝑆 ∪ 𝑃𝐻 and for each particle with momentum in 𝑃𝑆 , it creates two particles with momenta in 𝑃𝐻 .
Since |𝑝 | > 𝑁1−𝜅−𝜀 for all 𝑝 ∈ 𝑃𝐻 , we find, by (5.4),

〈𝜉𝜈 ,N𝜉𝜈〉 =
∑

𝑝∈𝑃𝑆∪𝑃𝐻

〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝𝜉𝜈〉 =

3
2

∑
𝑝∈𝑃𝐻

〈𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝𝜉𝜈〉

≤ 𝐶𝑁−2+2𝜅+2𝜀 〈𝜉𝜈 ,K𝜉𝜈〉 ≤ 𝑁9𝜅/2−2+2𝜀 ‖𝜉𝜈 ‖2,

proving (2.23) for 𝑗 = 1. Analogously, we find

〈𝜉𝜈 ,N2𝜉𝜈〉 =
∑

𝑝∈𝑃𝑆∪𝑃𝐻

〈N1/2𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝N1/2𝜉𝜈〉

≤ 3
2

∑
𝑝∈𝑃𝐻

〈N1/2𝜉𝜈 , 𝑎∗
𝑝𝑎𝑝N1/2𝜉𝜈〉 ≤ 𝐶𝑁−2+2𝜅+2𝜀 〈𝜉𝜈 ,KN𝜉𝜈〉.

By (5.5), we obtain (2.23) with 𝑗 = 2. This completes the proof of Proposition 2.2.

5.2. Expectation of the cubic term

The goal of this section is to show (5.2). From (3.5), we have (using the reality of 𝜂𝑝 , 𝛾𝑝 , 𝜎𝑝)

〈𝜉𝜈 , C𝑁 𝜉𝜈〉

= 2
√

𝑁0
𝑁

∑
𝑚≥1

1
𝑚!(𝑚 − 1)!

∑
𝑝,𝑟 ∈𝑃𝐻
𝑝+𝑟 ∈𝑃𝑆

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 ) 𝜎𝑝+𝑟𝛾𝑝𝛾𝑟 〈𝐴𝑚𝜈 𝜉𝜈 , 𝑎∗
𝑝+𝑟𝑎

∗
−𝑝𝑎∗

−𝑟 𝐴𝑚−1
𝜈 𝜉𝜈〉.
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Proceeding as in the previous section, we get〈
𝜉𝜈 , C𝑁 𝜉𝜈

〉
= 2

√
𝑁0
𝑁

∑
𝑚≥1

1
2𝑚−1(𝑚 − 1)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

× 𝑁 𝜅𝑉 (𝑟𝑚/𝑁1−𝜅 )
(
𝜂𝑟𝑚 + 𝜂𝑟𝑚+𝑣𝑚

)
𝛾𝑟𝑚𝛾𝑟𝑚+𝑣𝑚𝜎2

𝑣𝑚

𝑚−1∏
𝑖=1

(𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖 )2𝜎2
𝑣𝑖 .

To reconstruct the norm ‖𝜉𝜈 ‖2 on the right-hand side, we need to free the momenta with index m. To
this end, we recall the defintion (2.18) to write

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
= 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
(5.6)

with

𝜃𝑚
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
=
𝑚−1∏
𝑖, 𝑗=1

∏
𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑚:

𝑝ℓ ∈{−𝑟ℓ ,𝑟ℓ+𝑣ℓ }

𝛿𝑝𝑖≠−𝑝 𝑗+𝑣𝑚𝛿−𝑝𝑚+𝑣𝑖≠𝑝 𝑗

collecting all conditions involving {𝑟𝑚, 𝑣𝑚}. Writing 𝜃𝑚 = 1 + [𝜃𝑚 − 1], we split 〈𝜉𝜈 , C𝑁 𝜉𝜈〉 = 𝐼C + 𝐽C
with (recall the expression (2.22) for ‖𝜉𝜈 ‖2)

𝐼C = 2
√

𝑁0
𝑁

∑
𝑣 ∈𝑃𝑆 , 𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

𝑁 𝜅−1𝑉 (𝑟/𝑁1−𝜅 )
(
𝜂𝑟 + 𝜂𝑟+𝑣

)
𝛾𝑟𝛾𝑟+𝑣𝜎

2
𝑣 ‖𝜉𝜈 ‖2

and

𝐽C = 2
√

𝑁0
𝑁

∑
𝑚≥1

1
2𝑚−1 (𝑚 − 1)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)

×
[
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
− 1

]
𝑁 𝜅𝑉 (𝑟𝑚/𝑁1−𝜅 )

(
𝜂𝑟𝑚 + 𝜂𝑟𝑚+𝑣𝑚

)
𝛾𝑟𝑚𝛾𝑟𝑚+𝑣𝑚𝜎2

𝑣𝑚

×
𝑚−1∏
𝑖=1

(𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖 )2𝜎2
𝑣𝑖 .

With |
√

𝑁0/𝑁 − 1| ≤ 𝐶‖𝜎𝐿 ‖2/𝑁 and |𝛾𝑟𝛾𝑟+𝑣 − 1| ≤ 𝐶𝑁2𝜅/|𝑟 |4 for all 𝑟 ∈ 𝑃𝐻 , 𝑣 ∈ 𝑃𝑆 , we obtain
(using (3.12) and the assumption 3𝜅 − 2 + 4𝜀 < 0) that

𝐼C
‖𝜉𝜈 ‖2 ≤ 2

𝑁

∑
𝑣 ∈𝑃𝑆 , 𝑟 ∈𝑃𝐻 :
𝑟+𝑣 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )
(
𝜂𝑟 + 𝜂𝑟+𝑣

)
𝜎2
𝑣 + 𝐶𝑁5𝜅/2−𝜀 . (5.7)

To complete the proof of (5.2), we focus now on the error term 𝐽C. We observe that

|𝜃𝑚
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
− 1| ≤

𝑚−1∑
𝑗=1

[
𝛿𝑣𝑗 ,𝑣𝑚 +

∑
𝑝𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }
𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }

𝛿𝑝𝑚 , 𝑝 𝑗

]

+
𝑚−1∑
𝑗 ,𝑘=1
𝑗≠𝑘

[ ∑
𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }
𝑝𝑘 ∈{−𝑟𝑘 ,𝑟𝑘+𝑣𝑘 }

𝛿𝑣𝑚 , 𝑝 𝑗+𝑝𝑘 +
∑

𝑝𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }
𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }

𝛿𝑝𝑚 ,−𝑝 𝑗+𝑣𝑘

]
. (5.8)
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We bound |𝐽C | ≤ X1 + X2, with X1 denoting the contribution arising from the first term on the right-
hand side of (5.8) (this term involves two indices, m and j) and X2 indicating the contribution from the
second term on the right-hand side of (5.8) (this term involves three indices, 𝑚, 𝑗, 𝑘). We can estimate

X1 ≤ 𝐶
∑
𝑚≥2

1
2𝑚−2 (𝑚 − 2)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)

× 𝑁 𝜅 |𝑉 (𝑟𝑚/𝑁1−𝜅 ) |
��𝜂𝑟𝑚 + 𝜂𝑟𝑚+𝑣𝑚

��|𝛾𝑟𝑚 | |𝛾𝑟𝑚+𝑣𝑚 |𝜎2
𝑣𝑚

𝑚−1∏
𝑖=1

(𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖 )2𝜎2
𝑣𝑖

×
[
𝛿𝑣𝑚 ,𝑣𝑚−1 +

∑
𝑝𝑚−1 , 𝑝𝑚:

𝑝ℓ ∈{−𝑟ℓ ,𝑟ℓ+𝑣ℓ }

𝛿𝑝𝑚 , 𝑝𝑚−1

]
.

With 𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)
≤ 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−2

𝑗=1
)
, we reconstruct ‖𝜉𝜈 ‖2. Since ‖𝛾𝐻 ‖∞ ≤ 𝐶, we end up with

X1

‖𝜉𝜈 ‖2 ≤ 𝐶

𝑁2

∑
𝑟 ,𝑟 ′ ∈𝑃𝐻 ,𝑣 ,𝑣′ ∈𝑃𝑆

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |𝜂𝑟 + 𝜂𝑟+𝑣 | |𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ |2𝜎2
𝑣𝜎

2
𝑣′

×
[
𝛿𝑣,𝑣′ +

∑
𝑝∈{−𝑟 ,𝑟+𝑣 }
𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }

𝛿𝑝,𝑝′
]

≤ 𝐶𝑁2𝜅−2‖𝜎𝑆 ‖2
∞‖𝜎𝑆 ‖2‖𝜂𝐻 ‖2

∑
𝑟 ∈𝑃𝐻

|𝑉 (𝑟/𝑁1−𝜅 ) |
𝑟2 + 𝐶𝑁4𝜅−2‖𝜎𝑆 ‖4

∑
𝑟 ∈𝑃𝐻

|𝑟 |−6

≤ 𝐶𝑁11𝜅/2−2+2𝜀 + 𝐶𝑁10𝜅−5+3𝜀 ≤ 𝐶𝑁5𝜅/2−𝜀 ,

where we used Lemma 2.4, (3.12), the assumption 3𝜅 − 2 + 4𝜀 < 0 and the remark that |𝜂𝑟+𝑣 | ≤
𝐶𝑁 𝜅 |𝑟 |−2, for all 𝑟 ∈ 𝑃𝐻 and 𝑣 ∈ 𝑃𝑆 . We can proceed similarly to estimate 𝑋2. In the second term
on the right-hand side of (5.8), we have to sum over (𝑚 − 1) (𝑚 − 2)/2 pairs of indices 𝑗 , 𝑘 . With
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)
≤ 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−3

𝑗=1
)

and again with Lemma 2.4 and(3.12), we arrive at

X2

‖𝜉𝜈 ‖2 ≤ 𝐶

𝑁3

∑
𝑟 ,𝑟 ′,𝑟 ′′ ∈𝑃𝐻 ,
𝑣 ,𝑣′,𝑣′′ ∈𝑃𝑆

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |𝜂𝑟 + 𝜂𝑟+𝑣 | |𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ |2 |𝜂𝑟 ′′ + 𝜂𝑟 ′′+𝑣′′ |2𝜎2
𝑣𝜎

2
𝑣′𝜎

2
𝑣′′

×
[ ∑
𝑝∈{−𝑟 ,𝑟+𝑣 },
𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }

𝛿𝑝,−𝑝′+𝑣′′ +
∑

𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ },
𝑝′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

𝛿𝑣,𝑝′+𝑝′′
]

≤ 𝐶𝑁4𝜅−3‖𝜎𝑆 ‖6‖𝜂𝐻 ‖2
∑
𝑟 ∈𝑃𝐻

|𝑟 |−6 + 𝐶𝑁6𝜅−3‖𝜎𝑆 ‖6
∑
𝑟 ∈𝑃𝐻

|𝑉 (𝑟/𝑁1−𝜅 ) |
𝑟2

∑
𝑟 ′ ∈𝑃𝐻

|𝑟 ′ |−8

≤ 𝐶𝑁29𝜅/2−7+5𝜀 ≤ 𝐶𝑁5𝜅/2 · 𝑁12𝜅−7+5𝜀 .

Thus, |𝐽C |/‖𝜉𝜈 ‖2 ≤ 𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁12𝜅−7+5𝜀}. With (5.7), this implies (5.2).
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5.3. Expectation of the quartic term

In this section we show the bound (5.3) for the expectation of V(𝐻 )
𝑁 . Pairing momenta in 𝑃𝑆 , as we did

in (2.20) and in the previous subsections, we obtain

〈
𝜉𝜈 ,V(𝐻 )

𝑁 𝜉𝜈
〉
=

1
2𝑁

∑
𝑚≥1

1
𝑚!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 , 𝑟1 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1 , 𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 , 𝑟𝑚 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚 , 𝑟𝑚+𝑣𝑚∈𝑃𝐻

× 𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

) 𝑚∏
𝑖=1

𝜂𝑟𝑖𝜂𝑟𝑖𝜎
2
𝑣𝑖

∑
𝑟 ∈Λ∗ , 𝑝,𝑞∈𝑃𝐻 :
𝑝+𝑟 , 𝑞+𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )

×
〈
Ω, 𝐴𝑟1 ,𝑣1 . . . 𝐴𝑟𝑚 ,𝑣𝑚 𝑎∗

𝑝+𝑟𝑎
∗
𝑞𝑎𝑝𝑎𝑞+𝑟 𝐴∗

𝑟1 ,𝑣1
. . . 𝐴∗

𝑟𝑚 ,𝑣𝑚
Ω

〉
(5.9)

where we use the notation 𝐴𝑟𝑖 ,𝑣𝑖 = 𝑎𝑟𝑖+𝑣𝑖𝑎−𝑟𝑖 that was already introduced in (2.20). Next we observe
that because of the cutoffs 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1) and 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1), at most two indices 𝑖, 𝑗 ∈ {1, . . . , 𝑚} can
be involved in contractions with the observable 𝑎∗

𝑝+𝑟𝑎
∗
𝑞𝑎𝑝𝑎𝑞+𝑟 . We distinguish two possible cases:

1) There exists an index 𝑖 ∈ {1, . . . , 𝑚} such that 𝑎𝑝 , 𝑎𝑞+𝑟 are contracted with 𝐴∗
𝑟𝑖 ,𝑣𝑖

and 𝑎∗
𝑞 , 𝑎∗

𝑝+𝑟 are
contracted with 𝐴𝑟𝑖 ,𝑣𝑖 .

2) There are two indices 𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑚} such that the operators 𝑎𝑝 and 𝑎𝑞+𝑟 are contracted with
𝑎∗
�̃�𝑖

and 𝑎∗
�̃� 𝑗

for some 𝑝ℓ ∈ {−𝑟ℓ , 𝑟ℓ + 𝑣ℓ }, ℓ = 𝑖, 𝑗 and the operators 𝑎∗
𝑞 , 𝑎∗

𝑝+𝑟 are contracted with
𝑎𝑝𝑖 , 𝑎𝑝 𝑗 , with 𝑝ℓ ∈ {−𝑟ℓ , 𝑟ℓ + 𝑣ℓ }, ℓ = 𝑖, 𝑗 . Note that in this case the operators 𝑎∗

− �̃�𝑖+𝑣𝑖 , 𝑎∗
− �̃� 𝑗+𝑣𝑗 have

to be contracted with 𝑎−𝑝𝑖+𝑣𝑖 , 𝑎−𝑝 𝑗+𝑣𝑗 .

We denote by V1 and V2 the contributions to
〈
𝜉𝜈 ,V(𝐻 )

𝑁 𝜉𝜈
〉

arising from the two cases described above.
Let us first consider V1. There are m choices (all leading to the same contribution) for the index
𝑖 ∈ {1, . . . , 𝑚} labelling momenta to be contracted with the observable. Let us fix 𝑖 = 𝑚. Then we
have 𝑝 = 𝑝𝑚, 𝑞 + 𝑟 = −𝑝𝑚 + 𝑣𝑚 with 𝑝𝑚 ∈ {−𝑟𝑚, 𝑟𝑚 + 𝑣𝑚} and 𝑝 + 𝑟 = 𝑝𝑚, 𝑞 = −𝑝𝑚 + 𝑣𝑚 with
𝑝𝑚 ∈ {−𝑟𝑚, 𝑟𝑚 + 𝑣𝑚}. Note that the choice of p and 𝑝 + 𝑟 also determines q and 𝑞 + 𝑟 , since we always
have 𝑞 = 𝑣𝑚 − (𝑝 + 𝑟). The presence of the cutoffs immediately implies that 𝐴𝑟 𝑗 ,𝑣𝑗 is fully contracted
with 𝐴∗

𝑟 𝑗 ,𝑣𝑗
, for all 𝑗 ≠ 𝑚. We find

〈𝜉𝜈 , V1𝜉𝜈〉

=
1

2𝑁

∑
𝑚≥1

1
(𝑚 − 1)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1 , 𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚 , 𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

×
𝑚−1∏
𝑗=1

𝜂𝑟 𝑗𝜂𝑟 𝑗 (𝛿𝑟 𝑗 ,𝑟 𝑗 + 𝛿−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 )𝜎2
𝑣𝑗 𝜂𝑟𝑚𝜂𝑟𝑚𝜎2

𝑣𝑚

∑
𝑟 ∈Λ∗ , 𝑝∈𝑃𝐻 :
𝑝−𝑣𝑚 , 𝑝+𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )
∑

𝑝𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }
�̃�𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }

𝛿𝑝,𝑝𝑚𝛿𝑝+𝑟 , �̃�𝑚 . (5.10)

Since here (in contrast to the previous subsections) the contraction does not fix 𝑟𝑚 to be either 𝑟𝑚 or
−(𝑟𝑚 + 𝑣𝑚), we cannot erase the cutoff 𝜃 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1). With the decomposition (5.6), we can replace,
on the right-hand side of (5.10),

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
= 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
.

Writing

𝜃𝑚
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
= 1 +

[
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
− 1

]
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we split (as we did in the last subsection) 〈𝜉𝜈 , V1𝜉𝜈〉 = 𝐼V + 𝐽V, with

𝐼V =
1

𝑁2

∑
𝑟 ∈Λ∗

∑
𝑣 ∈𝑃𝑆 , 𝑝∈𝑃𝐻 :

𝑝+𝑟 , 𝑝−𝑣, 𝑝+𝑟−𝑣 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )𝜂𝑝
(
𝜂𝑝+𝑟 + 𝜂𝑝+𝑟−𝑣

)
𝜎2
𝑣 ‖𝜉𝜈 ‖2 (5.11)

and

𝐽V =
1

2𝑁

∑
𝑚≥1

1
2𝑚−1 (𝑚 − 1)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚−1∈𝑃𝑆 ,𝑟𝑚−1∈𝑃𝐻 :
𝑟𝑚−1+𝑣𝑚−1∈𝑃𝐻

∑
𝑣𝑚∈𝑃𝑆 ,𝑟𝑚 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚 , 𝑟𝑚+𝑣𝑚∈𝑃𝐻

× 𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
) [

𝜃𝑚 ({𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1)𝜃𝑚({𝑟
♯
𝑗 , 𝑣 𝑗 }𝑚𝑗=1) − 1

] 𝑚−1∏
𝑖=1

(𝜂𝑟𝑖 + 𝜂𝑟𝑖+𝑣𝑖 )2𝜎2
𝑣𝑖

× 𝜂𝑟𝑚𝜂𝑟𝑚𝜎2
𝑣𝑚

∑
𝑟 ∈Λ∗

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )
∑

𝑝∈𝑃𝐻 : 𝑝+𝑟 ,
𝑝−𝑣𝑚 , 𝑝+𝑟−𝑣𝑚∈𝑃𝐻

∑
𝑝𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }
�̃�𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }

𝛿𝑝,𝑝𝑚𝛿𝑝+𝑟 , �̃�𝑚 (5.12)

where 𝑟♯𝑗 = 𝑟 𝑗 for 𝑗 = 1, . . . , 𝑚−1 and 𝑟♯𝑚 = 𝑟𝑚 in the argument of 𝜃𝑚. Observing that, with Lemma 2.4
and (3.12),

1
𝑁2

∑
𝑟 ∈Λ∗

∑
𝑣 ∈𝑃𝑆 , 𝑝∈Λ∗:

𝑝∈𝑃𝑐
𝐻 or 𝑝−𝑣 ∈𝑃𝑐

𝐻

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) | |𝜂𝑝 |
(
|𝜂𝑝+𝑟 | + |𝜂𝑝+𝑟−𝑣 |

)
𝜎2
𝑣

≤ 𝐶𝑁−2+2𝜅 ‖𝜎𝑆 ‖2
[ ∑
|𝑝 | ≤𝑁 1−𝜅−𝜀

|𝑝 |−2
]

sup
𝑝∈Λ∗

∑
𝑟 ∈Λ∗

|𝑉 (𝑟/𝑁1−𝜅 ) | |𝜂𝑝+𝑟 | ≤ 𝐶𝑁5𝜅/2−𝜀 ,

we conclude from (5.11) (switching 𝑝 + 𝑟 → 𝑝 and 𝑣 → −𝑣) that

𝐼V
‖𝜉𝜈 ‖2 ≤ 1

𝑁2

∑
𝑣 ∈𝑃𝑆 , 𝑝∈𝑃𝐻 :
𝑝+𝑣 ∈𝑃𝐻

(
𝑁 𝜅𝑉 (·/𝑁1−𝜅 ) ∗ 𝜂

)
𝑝 (𝜂𝑝 + 𝜂𝑝+𝑣 )𝜎2

𝑣 + 𝐶𝑁5𝜅/2−𝜀 . (5.13)

Let us now focus on the term 𝐽V. With���𝜃𝑚 (
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃𝑚

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
− 1

���
≤
𝑚−1∑
𝑗=1

𝛿𝑣𝑚 ,𝑣𝑗 +
𝑚−1∑
𝑗=1

[ ∑
𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }
𝑝𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }

𝛿𝑝𝑚 , 𝑝 𝑗 +
∑

𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }
�̃�𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }

𝛿 �̃�𝑚 , 𝑝 𝑗

]

+
𝑚−1∑
𝑗 ,𝑘=1
𝑗≠𝑘

[ ∑
𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }
𝑝𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }

𝛿𝑝𝑚 ,−𝑝 𝑗+𝑣𝑘 +
∑

𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }
�̃�𝑚∈{−𝑟𝑚 ,𝑟𝑚+𝑣𝑚 }

𝛿 �̃�𝑚 ,−𝑝 𝑗+𝑣𝑘

]

+
𝑚−1∑
𝑗 ,𝑘=1
𝑗≠𝑘

∑
𝑝 𝑗 ∈{−𝑟 𝑗 ,𝑟 𝑗+𝑣𝑗 }
𝑝𝑘 ∈{−𝑟𝑘 ,𝑟𝑘+𝑣𝑘 }

𝛿𝑣𝑚 , 𝑝 𝑗+𝑝𝑘 (5.14)

we can bound |𝐽V | ≤ W1 + W2 + W3 + W4, with 𝑊ℓ indicating the contribution to (5.12) arising from
the ℓth term on the right-hand side of (5.14).

The term W1 contains the sum of (𝑚−1) identical contributions, corresponding to 𝑗 ∈ {1, . . . , 𝑚−1}
in the first term on the right-hand side of (5.14). Let us fix 𝑗 = 𝑚 − 1. Estimating 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)
≤
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𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−2

𝑗=1
)

and reconstructing the expression (2.22) for ‖𝜉𝜈 ‖2, we can bound (the momenta 𝑟 ′, 𝑟 ′′, 𝑟 ′′

correspond to 𝑟𝑚−1, 𝑟𝑚, 𝑟𝑚)

W1

‖𝜉𝜈 ‖2 ≤ 𝐶𝑁−3
∑
𝑟 ∈Λ∗

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |
∑

𝑟 ′,𝑟 ′′,𝑟 ′′ ∈𝑃𝐻
𝑣′ ∈𝑃𝑆

(𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ )2 |𝜂𝑟 ′′ | |𝜂𝑟 ′′ |𝜎4
𝑣′

∑
𝑝′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′ }
�̃�′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′ }

𝛿𝑝′′+𝑟 , �̃�′′ .

With Lemma 2.4 and with the estimate

sup
𝑣 ∈𝑃𝑆∪{0}

1
𝑁2

∑
𝑟 ∈Λ∗ ,𝑞∈𝑃𝐻 :
𝑞−𝑟 ∈𝑃𝐻

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) | |𝜂𝑞−𝑣 | |𝜂𝑞−𝑟 | ≤ 𝐶𝑁 𝜅 , (5.15)

which can be shown similarly to (3.12) (using 𝑉 ∈ 𝐿𝑞 (R3), for some 𝑞 > 3/2), we find

W1

‖𝜉𝜈 ‖2 ≤ 𝐶𝑁 𝜅−1‖𝜂𝐻 ‖2‖𝜎𝑆 ‖2
∞‖𝜎𝑆 ‖2 ≤ 𝐶𝑁11𝜅/2−2+2𝜀 ≤ 𝐶𝑁5𝜅/2−𝜀 (5.16)

since 3𝜅 − 2 + 4𝜀 < 0. Analogously, we bound, with (3.12) and Lemma 2.4,

W2

‖𝜉𝜈 ‖2 ≤ 𝐶𝑁−3
∑
𝑟 ∈Λ∗

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |
∑

𝑟 ′,𝑟 ′′,𝑟 ′′ ∈𝑃𝐻
𝑣′,𝑣′′ ∈𝑃𝑆

(𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ )2 |𝜂𝑟 ′′ | |𝜂𝑟 ′′ |𝜎2
𝑣′𝜎

2
𝑣′′

×
∑

𝑝′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }
�̃�′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

𝛿𝑝′′+𝑟 , �̃�′′
[ ∑
𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
𝑝′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

𝛿𝑝′, 𝑝′′ +
∑

𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
�̃�′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

𝛿𝑝′, �̃�′′
]

≤ 𝐶𝑁−3+5𝜅 ‖𝜎𝑆 ‖4
[ ∑
𝑟 ′ ∈𝑃𝐻

|𝑟 ′ |−6
] [

sup
𝑟 ′ ∈Λ∗

∑
𝑟 ∈Λ∗ ,𝑟≠−𝑟 ′

|𝑉 (𝑟/𝑁1−𝜅 ) |
|𝑟 + 𝑟 ′|2

]
≤ 𝐶𝑁5𝜅/2−𝜀 . (5.17)

As for W3, there are (𝑚 − 1) (𝑚 − 2) possible choices of the indices 𝑗 , 𝑘 in (5.14), all leading to the
same contribution. We fix 𝑗 = 𝑚 − 1 and 𝑘 = 𝑚 − 2. Estimating now 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−1

𝑗=1
)
≤ 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−3

𝑗=1
)
,

we obtain, with (3.12),

W3

‖𝜉𝜈 ‖2 ≤ 𝐶𝑁−4
∑
𝑟 ∈Λ∗

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |

×
∑

𝑟 ′,𝑟 ′′,𝑟 ′′′,𝑟 ′′′ ∈𝑃𝐻
𝑣′,𝑣′′,𝑣′′′ ∈𝑃𝑆

(𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ )2(𝜂𝑟 ′′ + 𝜂𝑟 ′′+𝑣′′ )2 |𝜂𝑟 ′′′ | |𝜂𝑟 ′′′ |𝜎2
𝑣′𝜎

2
𝑣′′𝜎

2
𝑣′′′

×
∑

𝑝′′′ ∈{−𝑟 ′′′,𝑟 ′′′+𝑣′′′ }
�̃�′′′ ∈{−𝑟 ′′′,𝑟 ′′′+𝑣′′′ }

𝛿𝑝′′′+𝑟 , �̃�′′′
[ ∑

𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
𝑝′′′ ∈{−𝑟 ′′′,𝑟 ′′′+𝑣′′′ }

𝛿𝑝′′′,−𝑝′+𝑣′′ +
∑

𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
�̃�′′′ ∈{−𝑟 ′′′,𝑟 ′′′+𝑣′′′ }

𝛿 �̃�′′′,−𝑝′+𝑣′′
]

≤ 𝐶𝑁−3+4𝜅 ‖𝜎𝑆 ‖6‖𝜂𝐻 ‖2
∑
𝑟 ′ ∈𝑃𝐻

|𝑟 ′ |−6 ≤ 𝐶𝑁5𝜅/2 · 𝑁12𝜅−7+4𝜀 . (5.18)
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Analogously, with Lemma 2.4 and (5.15), we find

W4

‖𝜉𝜈 ‖2 ≤ 𝐶𝑁−4
∑
𝑟 ∈Λ∗

𝑁 𝜅 |𝑉 (𝑟/𝑁1−𝜅 ) |

×
∑

𝑟 ′,𝑟 ′′,𝑟 ′′′,𝑟 ′′′ ∈𝑃𝐻
𝑣′,𝑣′′,𝑣′′′ ∈𝑃𝑆

(𝜂𝑟 ′ + 𝜂𝑟 ′+𝑣′ )2(𝜂𝑟 ′′ + 𝜂𝑟 ′′+𝑣′′ )2 |𝜂𝑟 ′′′ | |𝜂𝑟 ′′′ |𝜎2
𝑣′𝜎

2
𝑣′′𝜎

2
𝑣′′′

×
∑

𝑝′′′ ∈{−𝑟 ′′′,𝑟 ′′′+𝑣′′′ }
�̃�′′′ ∈{−𝑟 ′′′,𝑟 ′′′+𝑣′′′ }

𝛿𝑝′′′+𝑟 , �̃�′′′
∑

𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
𝑝′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

𝛿𝑣′′′, 𝑝′+𝑝′′

≤ 𝐶𝑁−2+5𝜅 ‖𝜎𝑆 ‖6
∑
𝑟 ′ ∈𝑃𝐻

|𝑟 ′ |−8 ≤ 𝐶𝑁5𝜅/2 · 𝑁12𝜅−7+5𝜀 .

Together with (5.16), (5.17), (5.18), we conclude that

|𝐽V | ≤ 𝐶𝑁5𝜅/2 · max{𝑁−𝜀 , 𝑁12𝜅−7+5𝜀}. (5.19)

Finally, we consider the term V2, associated with the second case listed after (5.9). We fix 𝑖 = 𝑚 and
𝑗 = 𝑚 − 1 and we consider all possible contractions of 𝑎𝑝 with 𝑎∗

�̃�𝑚
, of 𝑎𝑞+𝑟 with 𝑎∗

�̃�𝑚−1
and of 𝑎∗

𝑞 , 𝑎∗
𝑝+𝑟

with 𝑎𝑝𝑚 , 𝑎𝑝𝑚−1 , where 𝑝ℓ ∈ {−𝑟ℓ , 𝑟ℓ + 𝑣ℓ } and 𝑝ℓ ∈ {−𝑟ℓ , 𝑟ℓ + 𝑣ℓ }, for ℓ = 𝑚, 𝑚 − 1. We obtain〈
𝜉𝜈 , V2 𝜉𝜈

〉
=

1
2𝑁

∑
𝑚≥2

1
(𝑚 − 2)!

1
𝑁𝑚

∑
𝑣1∈𝑃𝑆 ,𝑟1 ,𝑟1∈𝑃𝐻 :
𝑟1+𝑣1 , 𝑟1+𝑣1∈𝑃𝐻

· · ·
∑

𝑣𝑚∈𝑃𝑆 ,𝑟𝑚 ,𝑟𝑚∈𝑃𝐻 :
𝑟𝑚+𝑣𝑚 , 𝑟𝑚+𝑣𝑚∈𝑃𝐻

𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)

×
𝑚−2∏
𝑖=1

𝜂𝑟𝑖𝜂𝑟𝑖
(
𝛿𝑟𝑖 ,𝑟𝑖 + 𝛿−𝑟𝑖 ,𝑟𝑖+𝑣𝑖

)
𝜎2
𝑣𝑖

∏
𝑗=𝑚,𝑚−1

𝜂𝑟 𝑗𝜂𝑟 𝑗 𝜎
2
𝑣𝑗

×
∑

𝑟 ∈Λ∗ , 𝑝,𝑞∈𝑃𝐻 :
𝑝−𝑟 ,𝑞−𝑟 ∈𝑃𝐻

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )
∑

�̃�ℓ ∈{−𝑟ℓ ,𝑟ℓ+𝑣ℓ }
ℓ=𝑚−1,𝑚

𝛿𝑝, �̃�𝑚𝛿𝑞+𝑟 , �̃�𝑚−1

×
∑

𝑝ℓ ∈{−𝑟ℓ ,𝑟ℓ+𝑣ℓ }
ℓ=𝑚−1,𝑚

(
𝛿𝑞,𝑝𝑚𝛿𝑝+𝑟 , 𝑝𝑚−1 + 𝛿𝑞,𝑝𝑚−1 𝛿𝑝+𝑟 , 𝑝𝑚

) (
𝛿 �̃�𝑚 , 𝑝𝑚 + 𝛿− �̃�𝑚+𝑣𝑚 ,−𝑝𝑚−1+𝑣𝑚−1

)
.

Estimating 𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
𝜃
(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚𝑗=1

)
≤ 𝜃

(
{𝑟 𝑗 , 𝑣 𝑗 }𝑚−2

𝑗=1
)

and using Lemma 2.4 and the condition
3𝜅 − 2 + 4𝜀 < 0, we find

|
〈
𝜉𝜈 , V2 𝜉𝜈

〉
|

‖𝜉𝜈 ‖2

≤ 𝐶𝑁−3
∑
𝑟 ∈Λ∗

𝑁 𝜅𝑉 (𝑟/𝑁1−𝜅 )
∑

𝑟 ′,𝑟 ′,𝑟 ′′,𝑟 ′′ ∈𝑃𝐻
𝑣′,𝑣′′ ∈𝑃𝑆

|𝜂𝑟 ′ | |𝜂𝑟 ′ | |𝜂𝑟 ′′ | |𝜂𝑟 ′′ |𝜎2
𝑣′𝜎

2
𝑣′′

×
∑

𝑝′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
𝑝′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

∑
�̃�′ ∈{−𝑟 ′,𝑟 ′+𝑣′ }
�̃�′′ ∈{−𝑟 ′′,𝑟 ′′+𝑣′′ }

(𝛿 �̃�′, 𝑝′′+𝑟𝛿 �̃�′′+𝑟 , 𝑝′ + 𝛿 �̃�′, 𝑝′+𝑟𝛿 �̃�′′+𝑟 , 𝑝′′ )

× (𝛿 �̃�′′, 𝑝′′ + 𝛿− �̃�′′+𝑣′′,−𝑝′+𝑣′ )
≤ 𝐶𝑁−3+𝜅 ‖𝜂𝐻 ‖4‖𝜎𝑆 ‖4 ≤ 𝐶𝑁10𝜅−5+2𝜀 ≤ 𝐶𝑁5𝜅/2−𝜀 .

With (5.13) and (5.19), we obtain (5.3).
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A. Proof of Proposition 1.2

The proof of Proposition 1.2 is based on standard results, which are collected in this section for the
reader’s convenience. In particular, we follow [18] (see Lemma 2.1.3) and [20, Sec. 12] for Lemmas
A.1 and A.2 and the proof of Lemma 3.3.2 in [1] for Lemma A.4 (control on the second moment of N
allows us to avoid the condition imposed in [1] that V is strictly positive around the origin).

The proof of Proposition 1.2 is divided into three parts. First, we show how to switch from periodic
boundary conditions to Dirichlet boundary conditions, increasing the size of the box a bit. In the second
step, we replicate the Dirichlet trial state obtained in the first step to obtain an upper bound on the energy
in a sequence of boxes whose size increases to infinity (but with fixed density). In the last step, we show
how to pass from the grand canonical to the canonical setting.

Let Ψ𝐿 = {Ψ (𝑛)
𝐿 }𝑛≥0 ∈ F(Λ𝐿) be a normalised trial state for the Fock-space Hamiltonian H defined

on the box Λ𝐿 with periodic boundary conditions (in fact, we denote by Ψ (𝑛)
𝐿 (𝑥1, . . . , 𝑥𝑛) the L-periodic

extension of Ψ (𝑛)
𝐿 to the whole space R3𝑛). For 𝑢 ∈ Λ𝐿 , we define Ψ𝐷𝐿+2𝑏,𝑢 ∈ F(Λ𝑢𝐿+2𝑏), where

Λ𝑢𝐿+2𝑏 = 𝑢 + Λ𝐿+2𝑏 is a box centred at u, with side length 𝐿 + 2𝑏, setting, for any 𝑛 ∈ N,

(ΨD
𝐿+2𝑏,𝑢)

(𝑛) (𝑥1, . . . , 𝑥𝑛) = Ψ (𝑛)
𝐿 (𝑥1, . . . , 𝑥𝑛)

𝑛∏
𝑖=1

𝑄𝐿,𝑏 (𝑥𝑖 − 𝑢) (A.1)

where 𝑄𝐿,𝑏 (𝑥𝑖) =
∏3
𝑗=1 𝑞𝐿,𝑏 (𝑥 ( 𝑗)

𝑖 ) with 𝑞𝐿,𝑏 : R→ [0; 1] defined by

𝑞𝐿,𝑏 (𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos

( 𝜋 (𝑡+𝐿/2−𝑏)
4𝑏

)
if

��𝑡 + 𝐿
2
�� ≤ 𝑏

1 if |𝑡 | < 𝐿
2 − 𝑏

cos
( 𝜋 (𝑡−𝐿/2+𝑏)

4𝑏
)

if
��𝑡 − 𝐿

2
�� ≤ 𝑏

0 otherwise.

By definition (ΨDir
𝐿+2𝑏,𝑢)

(𝑛) satisfies Dirichlet boundary condition on the box Λ𝑢𝐿+2𝑏 . The following
lemma allows us to compare energy and moments of the number of particles of ΨD

𝐿+2𝑏,𝑢 with those
of Ψ𝐿 .

Lemma A.1. Under the assumptions of Proposition 1.2, let ΨD
𝐿+2𝑏,𝑢 be defined as in (A.1) with 𝑢 ∈ Λ𝐿 .

Then we have ‖ΨD
𝐿+2𝑏,𝑢 ‖ = 1. Moreover, for all 𝑗 ∈ N,〈

ΨD
𝐿+2𝑏,𝑢 ,N 𝑗ΨD

𝐿+2𝑏,𝑢
〉
=

〈
Ψ𝐿 ,N 𝑗Ψ𝐿

〉
,

and there exists �̄� ∈ Λ𝐿 such that

〈
ΨD
𝐿+2𝑏,�̄� ,HΨD

𝐿+2𝑏,�̄�
〉
≤

〈
Ψ𝐿 ,HΨ𝐿

〉
+ 𝐶

𝐿𝑏

〈
Ψ𝐿 ,NΨ𝐿

〉
(A.2)

for a universal constant 𝐶 > 0.

Proof. For an arbitrary L-periodic function 𝜓 ∈ 𝐿2
loc(R), we find

∫ 𝐿
2 +𝑏

− 𝐿
2 −𝑏

𝑑𝑡 |𝜓(𝑡) |2𝑞(𝑡)2 =
∫ 𝐿

2

− 𝐿
2

𝑑𝑡 |𝜓(𝑡) |2. (A.3)

To prove (A.3), we combine (using the periodicity of 𝜓) the integral over [−𝐿/2 − 𝑏;−𝐿/2] with the
integral over [𝐿/2−𝑏; 𝐿/2] and the integral over [−𝐿/2;−𝐿/2+𝑏] with the integral over [𝐿/2; 𝐿/2+𝑏]
(using that cos2 𝑥 + cos2 (𝑥 − 𝜋/2) = 1).
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Applying (A.3) (separately on each variable), we obtain that ‖(ΨD
𝐿+2𝑏,𝑢)

(𝑛) ‖ = ‖Ψ (𝑛)
𝐿 ‖, for all 𝑛 ∈ N.

This implies that ‖ΨD
𝐿+2𝑏,𝑢 ‖ = ‖Ψ𝐿 ‖ = 1 and that 〈ΨD

𝐿+2𝑏,𝑢 ,N 𝑗ΨD
𝐿+2𝑏,𝑢〉 = 〈Ψ𝐿 ,N 𝑗Ψ𝐿〉 for all 𝑗 ∈ N.

To compute the expectation of the kinetic energy in the state ΨD
𝐿+2𝑏,𝑢 , we observe that, for any

L-periodic 𝜓 ∈ 𝐿2
loc(R) with 𝜓 ′ ∈ 𝐿2

loc(R), we have (since 𝜓 ′ is also L-periodic)

∫ 𝐿
2 +𝑏

− 𝐿
2 −𝑏

𝑑𝑡 | (𝑞𝜓)′(𝑡) |2 =
∫ 𝐿

2

𝐿
2

𝑑𝑡 |𝜓 ′(𝑡) |2 +
∫ 𝐿

2 +𝑏

− 𝐿
2 −𝑏

𝑑𝑡
[
|𝜓(𝑡) |2𝑞′(𝑡)2 + 𝑞(𝑡)𝑞′(𝑡) 𝑑

𝑑𝑡
|𝜓(𝑡) |2

]
where we used periodicity of 𝜓 ′ and (A.3). Integrating by parts and using 𝑞(±(𝐿/2+ 𝑏)) = 𝑞′(±(𝐿/2−
𝑏)) = 0, we get

∫ 𝐿
2 +𝑏

− 𝐿
2 −𝑏

𝑑𝑡 | (𝑞𝜓)′(𝑡) |2 =
∫ 𝐿

2

− 𝐿
2

𝑑𝑡 |𝜓 ′(𝑡) |2 −
∫ 𝐿

2 +𝑏

− 𝐿
2 −𝑏

𝑑𝑡 |𝜓(𝑡) |2 𝑞(𝑡)𝑞′′(𝑡)

≤
∫ 𝐿

2

− 𝐿
2

𝑑𝑡 |𝜓 ′(𝑡) |2 + 𝐶

𝑏2

∫
R

𝑑𝑡 |𝜓(𝑡) |2 𝜒𝐿,𝑏 (𝑡)
(A.4)

where 𝜒𝐿,𝑏 (𝑡) = 𝜒𝑏 (𝑡 + 𝐿/2) + 𝜒𝑏 (𝑡 − 𝐿/2) with 𝜒𝑟 (𝑡) the characteristic function of [−𝑟, 𝑟] and we
used |𝑞′′(𝑡) | ≤ 𝐶𝑏−2 𝜒𝐿,𝑏 (𝑡). Applying (A.4) (separately in every direction), we obtain

‖∇𝑥 𝑗 (ΨD
𝐿+2𝑏,𝑢)

(𝑛) ‖2

≤ ‖∇𝑥 𝑗 (ΨD
𝐿+2𝑏,𝑢)

(𝑛) ‖2

+ 𝐶

𝑏2

∫
R3

𝑑𝑥 𝑗 �̃�𝐿,𝑏 (𝑥 𝑗 − 𝑢)
∫
Λ𝑛−1
𝐿

𝑑𝑥1 . . . 𝑑𝑥 𝑗−1𝑑𝑥 𝑗+1 . . . 𝑑𝑥𝑛 |Ψ (𝑛)
𝐿 (𝑥1, . . . , 𝑥𝑛) |2 (A.5)

where we defined �̃�𝐿,𝑏 (𝑥) =
∑3
𝑘=1 𝜒𝐿,𝑏 (𝑥 (𝑘) )

∏3
𝑗≠𝑘 𝜒 𝐿

2
(𝑥 ( 𝑗) ).

To compute the potential energy of 𝜓𝐿 , we have to consider the L-periodic extension 𝑉𝐿 (𝑥) =∑
𝑚∈Z3 𝑉 (𝑥 + 𝑚𝐿) of V. Since we assumed V to be positive and supported in 𝐵𝑅 (0) and that 𝐿 > 𝑅, we

get 𝑉 (𝑥) ≤ 𝑉𝐿 (𝑥), which implies that, for any 𝑖 ≠ 𝑗 ,

| (ΨD
𝐿+2𝑏,𝑢)

(𝑛) (𝑥1, . . . , 𝑥𝑛) |2 𝑉 (𝑥𝑖 − 𝑥 𝑗 )

≤
���Ψ (𝑛)
𝐿 (𝑥1, . . . , 𝑥𝑛)

√
𝑉𝐿 (𝑥𝑖 − 𝑥 𝑗 )

���2 𝑛∏
𝑘=1

𝑄𝐿,𝑏 (𝑥𝑘 − 𝑢)2.

Applying (A.3), we obtain∫
(Λ𝑢

𝐿+2𝑏)𝑛
𝑑𝑥1 . . . 𝑑𝑥𝑛 | (ΨD

𝐿+2𝑏,𝑢)
(𝑛) (𝑥1, . . . , 𝑥𝑛) |2𝑉 (𝑥𝑖 − 𝑥 𝑗 )

≤
∫
Λ𝑛
𝐿

𝑑𝑥1 . . . 𝑑𝑥𝑛 |Ψ (𝑛)
𝐿 (𝑥1, . . . , 𝑥𝑛) |2 𝑉𝐿 (𝑥𝑖 − 𝑥 𝑗 ).

(A.6)

From (A.5) and (A.6), we conclude (using the bosonic symmetry)〈
ΨD
𝐿+2𝑏,𝑢 ,HΨD

𝐿+2𝑏,𝑢
〉

≤
〈
Ψ𝐿 ,HΨ𝐿

〉
+ 𝐶

𝑏2

∑
𝑛≥0

𝑛

∫
R3

𝑑𝑥1 �̃�𝐿,𝑏 (𝑥1 − 𝑢)
∫
Λ𝑛−1
𝐿

𝑑𝑥2 . . . 𝑑𝑥𝑛 |Ψ (𝑛)
𝐿 (𝑥1, . . . , 𝑥𝑛) |2.
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Averaging over 𝑢 ∈ Λ𝐿 we conclude (since ‖ �̃�𝐿,𝑏 ‖1 ≤ 𝐶𝐿2𝑏)∫
Λ𝐿

𝑑𝑢
〈
ΨD
𝐿+2𝑏,𝑢 ,HΨD

𝐿+2𝑏,𝑢
〉
≤ 𝐿3〈Ψ𝐿 ,HΨ𝐿

〉
+ 𝐶𝐿2

𝑏
〈Ψ𝐿 ,NΨ𝐿〉.

Hence, there exists �̄� ∈ Λ𝐿 so that (A.2) holds. �

From now on, let us define ΨD
𝐿+2𝑏 ∈ F(Λ𝐿+2𝑏), setting (ΨD

𝐿+2𝑏)
(𝑛) (𝑥1, . . . , 𝑥𝑛) = (ΨD

𝐿+2𝑏,�̄�)
(𝑛) (𝑥1 −

�̄�, . . . , 𝑥𝑛 − �̄�), with ΨD
𝐿+2𝑏,�̄� from Lemma A.1. Since ΨD

𝐿+2𝑏 satisfies Dirichlet boundary conditions,
we can replicate it into several adjacent copies of Λ𝐿+2𝑏 , separated by corridors of size R (to avoid
interactions between different boxes). This allows us to construct a sequence of trial states on boxes
with increasing volume (but keeping the density fixed).

Let 𝑡 ∈ N and �̃� = 𝑡 (𝐿 + 2𝑏 + 𝑅). We think of the large box Λ�̃� as the (almost) disjoint union of 𝑡3

shifted copies of the small box Λ𝐿+2𝑏+𝑅, centred at

(−�̃�/2,−�̃�/2,−�̃�/2) + (𝐿 + 2𝑏 + 𝑅) · (𝑖1 − 1/2, 𝑖2 − 1/2, 𝑖3 − 1/2) (A.7)

with 𝑖1, 𝑖2, 𝑖3 ∈ {1, . . . , 𝑡}. Let {𝑐𝑖}𝑡
3

𝑖=1 denote an enumeration of the centres (A.7). We define ΨD
�̃�

∈
F(Λ�̃�) by setting

(ΨD
�̃�
) (𝑚) (𝑥1, . . . , 𝑥𝑚) =

1
‖(ΨD

𝐿+2𝑏) (𝑛) ‖𝑡
3−1

𝑡3∏
𝑖=1

(ΨD
𝐿+2𝑏)

(𝑛) (𝑥 (𝑖−1)𝑛+1 − 𝑐𝑖 , . . . , 𝑥𝑖𝑛 − 𝑐𝑖) (A.8)

if 𝑚 = 𝑛𝑡3 for an 𝑛 ∈ N and (ΨD
�̃�
) (𝑚) = 0 otherwise (here we set (ΨD

𝐿+2𝑏)
(𝑛) = 0 if one of its arguments

lies outside Λ𝐿+2𝑏). More precisely, (ΨD
�̃�
) (𝑚) should be defined as the symmetrisation of (A.8) (but we

can use (A.8) to compute the expectation of permutation symmetric observables).

Lemma A.2. Under the assumptions of Proposition 1.2, let ΨD
�̃�

be defined as above. Then ‖ΨD
�̃�
‖ = 1,〈

ΨD
�̃�

,N 𝑗ΨD
�̃�

〉
= 𝑡3 𝑗 〈ΨD

𝐿+2𝑏 ,N 𝑗ΨD
𝐿+2𝑏

〉
for all 𝑗 ∈ N and 〈

ΨD
�̃�

,HΨD
�̃�

〉
= 𝑡3〈ΨD

𝐿+2𝑏 ,HΨD
𝐿+2𝑏

〉
. (A.9)

Proof. From the definition (A.8), we have ‖(ΨD
�̃�
) (𝑛𝑡3) ‖ = ‖(ΨD

𝐿+2𝑏)
(𝑛) ‖ for all 𝑛 ∈ N. Since (ΨD

�̃�
) (𝑚) =

0, if 𝑚 ≠ 𝑛𝑡3, we conclude that ‖ΨD
�̃�
‖ = ‖ΨD

𝐿+2𝑏 ‖ = 1 and also that, for 𝑗 ∈ N,

〈
ΨD
�̃�

,N 𝑗ΨD
�̃�

〉
=

∑
𝑛≥0

(𝑡3𝑛) 𝑗 ‖(ΨD
�̃�
) (𝑡3𝑛) ‖2 = 𝑡3 𝑗

∑
𝑛≥0

𝑛 𝑗 ‖(ΨD
𝐿+2𝑏)

(𝑛) ‖2 = 𝑡3 𝑗 〈ΨD
𝐿+2𝑏,N 𝑗ΨD

𝐿+2𝑏
〉
.

To prove (A.9), we observe, first of all, that for any 𝑖 = 1, . . . , 𝑛𝑡3, when the operator ∇𝑥𝑖 acts on
(ΨD
�̃�
) (𝑛𝑡3) , it only hits one of the factors (ΨD

𝐿+2𝑏)
(𝑛) on the right-hand side of (A.8). Similarly, for any

𝑖, 𝑗 ∈ {1, . . . , 𝑚}, the operator 𝑉 (𝑥𝑖 −𝑥 𝑗 ) has nonzero expectation in the state (ΨD
�̃�
) (𝑛𝑡3) only if 𝑥𝑖 , 𝑥 𝑗 are

arguments of the same factor (ΨD
𝐿+2𝑏)

(𝑛) on the right-hand side of (A.8) (this observation is exactly the
reason for introducing corridors of size R between the small boxes, where the wave function vanishes).
We conclude that

〈
ΨD
�̃�

,HΨD
�̃�

〉
= 𝑡3〈ΨD

𝐿+2𝑏 ,HΨD
𝐿+2𝑏

〉
, as claimed. �

Finally, in Lemma A.4 we show how to obtain an upper bound for the ground state energy per particle
in the canonical ensemble, starting from a trial state in the grand-canonical setting. Recall the notation
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𝐸 (𝑁, 𝐿) for the ground state energy of the Hamiltonian (1.1), describing N particles in the box Λ𝐿 , with
Dirichlet boundary conditions. For 𝜌 > 0 with 𝜌𝐿3 ∈ N, we introduce the notation

𝑒𝐿 (𝜌) =
𝐸 (𝜌𝐿3, 𝐿)

𝐿3 .

Comparing with the definition (1.2), we find 𝑒(𝜌) = lim𝐿→∞ 𝑒𝐿 (𝜌) (where the limit has to be taken along
sequences of L, with 𝜌𝐿3 ∈ N). In the proof of Lemma A.4 we use the existence of the thermodynamic
limit of the specific energy and its convexity (see [19, Thm. 3.5.8 and 3.5.11]), together with the
following result on the Legendre transform of convex functions.

Lemma A.3. Let 𝐷 ⊂ R be a closed interval and 𝑓 : 𝐷 → R be convex and continuous (also at the
boundary of D). We define the Legendre transform 𝑓 ∗ : R→ R of f by

𝑓 ∗(𝑦) = sup
𝑥∈𝐷

[𝑥𝑦 − 𝑓 (𝑥)] . (A.10)

Then 𝑓 ∗ is well-defined (because, by continuity, 𝑥 → 𝑥𝑦 − 𝑓 (𝑥) is bounded on D, for all 𝑦 ∈ R) and, for
all 𝑥 ∈ 𝐷,

𝑓 (𝑥) = sup
𝑦∈R

[𝑥𝑦 − 𝑓 ∗(𝑦)] . (A.11)

Proof. By definition of 𝑓 ∗, we have 𝑓 ∗(𝑦) ≥ 𝑥𝑦 − 𝑓 (𝑥) for all 𝑥 ∈ 𝐷, 𝑦 ∈ R. This implies that
𝑓 (𝑥) ≥ 𝑥𝑦 − 𝑓 ∗(𝑦) for all 𝑥 ∈ 𝐷, 𝑦 ∈ R and therefore that

𝑓 (𝑥) ≥ sup
𝑦∈R

[𝑥𝑦 − 𝑓 ∗(𝑦)] (A.12)

for all 𝑥 ∈ 𝐷. On the other hand, fix 𝑥0 ∈ 𝐷 and 𝑡 ≤ 𝑓 (𝑥0). Then, by convexity of f (and by its continuity
at the boundaries of D), we find a line through (𝑥0, 𝑡) lying below the graph of f. In other words, there
exists 𝑦 ∈ R such that 𝑓 (𝑥) ≥ 𝑡 + 𝑦(𝑥 − 𝑥0) for all 𝑥 ∈ 𝐷. Thus, 𝑦𝑥0 − 𝑡 ≥ 𝑦𝑥 − 𝑓 (𝑥) for all 𝑥 ∈ 𝐷, which
implies that

𝑦𝑥0 − 𝑡 ≥ 𝑓 ∗(𝑦)

and therefore that 𝑡 ≤ 𝑦𝑥0 − 𝑓 ∗(𝑦). In particular, 𝑡 ≤ sup
𝑦∈R

[𝑦𝑥0 − 𝑓 ∗(𝑦)]. Since 𝑡 ≤ 𝑓 (𝑥0) was arbitrary,

we conclude that 𝑓 (𝑥0) ≤ sup
𝑦∈R

[𝑦𝑥0 − 𝑓 ∗(𝑦)]. With (A.12), we obtain that 𝑓 (𝑥) = sup
𝑦∈R

[𝑥𝑦 − 𝑓 ∗(𝑦)] for

all 𝑥 ∈ 𝐷. �

Lemma A.4. Under the assumptions of Proposition 1.2, fix 𝜌 > 0 and suppose that there exists a
sequence ΨD

𝐿 ∈ F(Λ𝐿) (parametrised by L with 𝜌𝐿3 ∈ N), satisfying Dirichlet boundary conditions,
such that

〈ΨD
𝐿 ,NΨD

𝐿 〉 ≥ 𝜌(1 + 𝑐′𝜌)𝐿3, 〈ΨD
𝐿 ,N2ΨD

𝐿 〉 ≤ 𝐶 ′(𝜌𝐿3)2 (A.13)

for some constants 𝑐′, 𝐶 ′ > 0. Then we have

𝑒(𝜌) ≤ lim
𝐿→∞

〈ΨD
𝐿 ,HΨD

𝐿 〉
𝐿3 .
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Proof. Using positivity of H, we have, for any 𝜇 ≥ 0 and 𝑀 > 0,〈
ΨD
𝐿 ,HΨD

𝐿

〉
𝐿3

≥ 𝜇

𝐿3

〈
ΨD
𝐿 ,NΨD

𝐿

〉
+

〈
ΨD
𝐿 , (H − 𝜇N)𝜒(N ≤ 𝑀𝐿3)ΨD

𝐿

〉
𝐿3 − 𝜇

𝐿3

〈
ΨD
𝐿 ,N𝜒(N > 𝑀𝐿3)ΨD

𝐿

〉
≥ 𝜇

𝐿3

〈
ΨD
𝐿 ,NΨD

𝐿

〉
+
𝑀𝐿3∑
𝑚=0

(
𝑒𝐿

(
𝑚

𝐿3

)
− 𝜇

𝑚

𝐿3

)+++(ΨD
𝐿 )

(𝑚)
+++2

− 𝜇

𝑀𝐿6

〈
ΨD
𝐿 ,N2ΨD

𝐿

〉
,

(A.14)

where we used the inequality 𝜒(N > 𝑀𝐿3) ≤ N/(𝑀𝐿3). Hence, with (A.13) and fixing M large enough
(depending on 𝑐′, 𝐶 ′), we find〈

ΨD
𝐿 ,HΨD

𝐿

〉
𝐿3 ≥ 𝜇𝜌 +

𝑀𝐿3∑
𝑚=0

(
𝑒𝐿

(
𝑚

𝐿3

)
− 𝜇

𝑚

𝐿3

)+++(ΨD
𝐿 )

(𝑚)
+++2

. (A.15)

Next, we claim that

𝑒𝐿 (𝜌) ≥
(
1 + 𝑅

𝐿

)3
𝑒

(
𝜌
(
1 + 𝑅

𝐿

)−3
)
. (A.16)

Indeed, starting from an arbitrary normalised trial state 𝜓 describing 𝑁 = 𝜌𝐿3 particles in a box of side
length L, with Dirichlet boundary conditions, we can construct, for any 𝑟 ∈ N, a trial state describing
𝑁 ′ = 𝑁𝑟3 = 𝜌𝐿3𝑟3 particles in a box of side length 𝐿 ′ = 𝑟 (𝐿 + 𝑅), again with Dirichlet boundary
conditions, by placing 𝑟3 copies of the state 𝜓 in adjacent boxes and using that (thanks to the corridors
of size R between the boxes) particles in different boxes do not interact. This construction is very similar
to the one presented around Lemma A.2 (the difference is that here we work in the canonical setting,
which makes things slightly simpler). Since 𝑁 ′ = [𝜌/(1 + 𝑅/𝐿)3]𝐿′3, optimising the choice of 𝜓, we
obtain that 𝐸 ([𝜌/(1 + 𝑅/𝐿)3]𝐿′3, 𝐿 ′) ≤ 𝑟3𝐸 (𝜌𝐿3, 𝐿) and therefore that

𝑒𝐿′ (𝜌/(1 + 𝑅/𝐿)3) ≤ 𝑒𝐿 (𝜌)/(1 + 𝑅/𝐿)3.

Taking the limit 𝐿 ′ → ∞ (along the sequence 𝐿 ′ = 𝑟 (𝐿 + 𝑅), 𝑟 ∈ N), we obtain (A.16). Then (A.15)
and (A.16) yield 〈

ΨD
𝐿 ,HΨD

𝐿

〉
𝐿3 ≥ 𝜇𝜌 −

(
1 + 𝑅

𝐿

)3
𝑒∗(𝜇),

where 𝑒∗ denotes the Legendre transform of 𝑒 : 𝐷 → R, defined on the domain 𝐷 = [0, 𝑀], as in
(A.10) (here we use the convexity of the specific energy e). It follows that

lim
𝐿→+∞

〈
ΨD
𝐿 ,HΨD

𝐿

〉
𝐿3 ≥ 𝜇𝜌 − 𝑒∗(𝜇)

for all 𝜇 ≥ 0. Thus,

lim
𝐿→+∞

〈
ΨD
𝐿 ,HΨD

𝐿

〉
𝐿3 ≥ sup

𝜇≥0

[
𝜇𝜌 − 𝑒∗(𝜇)

]
= sup
𝜇∈R

[
𝜇𝜌 − 𝑒∗(𝜇)

]
= 𝑒(𝜌)

where we used the fact that 𝑒∗(0) = 0 (because 𝑒(𝜌) ≥ 0 for all 𝜌 ≥ 0 and 𝑒(0) = 0) and 𝑒∗(𝜇) ≥
−𝑒(0) = 0 for all 𝜇 ∈ R in the second step and Lemma A.3 in the third step. �

With Lemmas A.1, A.2 and A.4 we are ready to show Proposition 1.2.
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Proof of Proposition 1.2. Given a normalised Ψ𝐿 ∈ F(Λ𝐿) satisfying periodic boundary conditions
with

〈Ψ𝐿 ,NΨ𝐿〉 ≥ 𝜌(1 + 𝑐′𝜌) (𝐿 + 2𝑏 + 𝑅)3, 〈Ψ𝐿 ,N2Ψ𝐿〉 ≤ 𝐶 ′𝜌2(𝐿 + 2𝑏 + 𝑅)6

we find with Lemma A.1 a normalised ΨD
𝐿+2𝑏 ∈ F(Λ𝐿+2𝑏) satisfying Dirichlet conditions such that

〈Ψ𝐿+2𝑏 ,NΨ𝐿+2𝑏〉 ≥ 𝜌(1 + 𝑐′𝜌) (𝐿 + 2𝑏 + 𝑅)3, 〈Ψ𝐿+2𝑏 ,N2Ψ𝐿+2𝑏〉 ≤ 𝐶 ′𝜌2(𝐿 + 2𝑏 + 𝑅)6

and

〈ΨD
𝐿+2𝑏 ,HΨD

𝐿+2𝑏〉 ≤ 〈Ψ𝐿 ,HΨ𝐿〉 +
𝐶

𝐿𝑏
〈Ψ𝐿 ,NΨ𝐿〉.

With Lemma A.2, we obtain a sequence ΨD
�̃�
∈ F(Λ�̃�), with �̃� = 𝑡 (𝐿 + 2𝑏 + 𝑅) for 𝑡 ∈ N, such that

〈ΨD
�̃�

,NΨD
�̃�
〉 ≥ 𝜌(1 + 𝑐′𝜌) �̃�3, 〈ΨD

�̃�
,N2ΨD

�̃�
〉 ≤ 𝐶 ′𝜌2 �̃�6

and

〈ΨD
�̃�

,HΨD
�̃�
〉 ≤ 𝑡3〈Ψ𝐿 ,HΨ𝐿〉 +

𝐶𝑡3

𝐿𝑏
〈Ψ𝐿 ,NΨ𝐿〉.

With Lemma A.4, we conclude that

𝑒(𝜌) ≤ lim
�̃�→∞

〈ΨD
�̃�

,HΨD
�̃�
〉

�̃�3

≤ 1
(1 + 2𝑏/𝐿 + 𝑅/𝐿)3

[
〈Ψ𝐿 ,HΨ𝐿〉

𝐿3 + 𝐶

𝐿4𝑏
〈Ψ𝐿 ,NΨ𝐿〉

]
≤ 〈Ψ𝐿 ,HΨ𝐿〉

𝐿3 + 𝐶

𝐿4𝑏
〈Ψ𝐿 ,NΨ𝐿〉. �
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