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Abstract

We show that there exist symmetric properties in the discrete n-cube whose threshold
widths range asymptotically between 1/

√
n and 1/log n. These properties are built using

a combination of failure sets arising in reliability theory. This combination of sets is
simply called a product. Some general results on the threshold width of the product of
two sets A and B in terms of the threshold locations and widths of A and B are provided.
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1. Introduction

Let n be a positive integer, let p be a real number in [0, 1], and denote by µn,p the probability
measure on {0, 1}n which is the product of n Bernoulli measures with common parameter p.
Then, for all x = (x1, . . . , xn) ∈ {0, 1}n,

µn,p(x) = p
∑n

i=1 xi (1 − p)
∑n

i=1(1−xi ).

We write µp instead of µn,p when no confusion is possible. For a subset A of {0, 1}n, we say
that A is monotone if and only if

x ∈ A, x � y �⇒ y ∈ A,

where ‘�’is the coordinate-wise partial order on {0, 1}n. It follows from an elementary coupling
device that, for a monotone subset A, the mapping p �→ µp(A) is increasing. In many examples
of interest (see Section 3), a threshold phenomenon occurs for property A in the sense that the
function p �→ µp(A) ‘jumps’ from near 0 to near 1 over a very short interval of values of p.
The width of this interval is known as the threshold width (see the definition below). Such
threshold phenomena have been shown to occur in most discrete probabilistic models, such as
random graphs [4, p. 40], percolation [13, p. 52], satisfiability in random constraint models
[10], [11], [5], local properties in random images [9], reliability [22], and the like. This paper
deals with the problem of building properties whose threshold widths are prescribed and which,
in addition, are in some sense symmetric. To make these notions precise, we first need some
definitions and notation.

We say that a subset A of {0, 1}n is nontrivial if it is nonempty and different from {0, 1}n
itself. When A is nontrivial and monotone, the mapping p �→ µp(A) is invertible, and for
α ∈ [0, 1] we let pA(α) be the unique real in [0, 1] such that µp(α)(A) = α. We shall sometimes
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Figure 1: Example of a threshold width at level ε.

write pA,α for pA(α) and omit the subscript ‘A’ when there is no ambiguity. The threshold
width of a subset at level ε is the length of the ‘transition interval’, that is to say, the interval
over which its µp-probability increases from ε to 1 − ε.

Definition 1.1. Let A be a nontrivial monotone subset of {0, 1}n. Let ε ∈ (0, 1
2 ]. The threshold

width of A at level ε is defined by

τ(A, ε) = p(1 − ε) − p(ε)

(see Figure 1).

The investigation of the threshold of a monotone property, for example connectivity in
a random graph, involves a sequence of nontrivial, monotone subsets A = (An)n∈N∗ ∈
({0, 1}αn)N

∗
, where (αn)n∈N∗ is an increasing sequence of integers. In what follows, for

technical reasons we shall suppose that (αn)n∈N∗ is only nondecreasing. Note that, in order
to have an intrinsic notion of width or localisation order, we must keep in mind the respective
dimensions, αn, of the spaces of which the An are subsets: if the threshold width of a subset
An of {0, 1}αn is of order a(n), then we should properly express it as a ◦ α−1(αn), where α−1

is the pseudoinverse of α, such that

α−1(n) = sup{k ∈ N : αk ≤ n} for all n ≥ α0.

In order to describe the asymptotic behaviour of a property, we shall therefore use the following
definitions.

Definition 1.2. Let A = (An)n∈N∗ ∈ ({0, 1}αn)N
∗

be a monotone property, let a(n) and b(n)

be two sequences of real numbers in [0, 1], and let α ∈ [0, 1]. The property A has a threshold
located at α if, for all ε ∈ (0, 1),

pAn,ε → α as n → ∞.

The location of A is of order a if, for all ε ∈ (0, 1),

pAn,ε = O(a(αn)) as u → ∞.
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The threshold width of A is of order b if, for all ε ∈ (0, 1),

τ(An, ε) = O(b(αn)) as n → ∞.

The property A has a sharp threshold if, for all ε ∈ (0, 1),

τ(An, ε)

pAn,1/2(1 − pAn,1/2)
→ 0 as n → ∞.

The property A has a coarse threshold if it does not have a sharp threshold.

Intuitively it is tempting to say that a subset A will have a narrow threshold unless a few co-
ordinates have a strong influence on its definition (as an example, think of A = {x : x(1) = 1}).
In many examples, this idea is captured by the notion of symmetry.

Definition 1.3. A subset A of {0, 1}n is said to be symmetric if and only if there exists a
subgroup G of Sn (the group of permutations) that acts transitively on {1, . . . , n} and under
which A is invariant, that is,

g · x = (xg−1(1), . . . , xg−1(n)) ∈ A for all g ∈ G and all x ∈ A.

For a symmetric subset, no coordinate has a stronger influence than any other. In [12] it
was proven that the threshold width of any symmetric subset A ⊂ {0, 1}n is at most of order
1/log n, and for properties whose threshold is located away from 0 and 1 it was shown that
this upper bound is tight and that the threshold width is at least of order 1/

√
n. In order to

complete these results, it is natural to ask whether, given an increasing sequence of positive
real numbers a(n) between log n and

√
n, there exists a symmetric property whose threshold

width is 1/a(n). This is the main question addressed in this paper.

2. Summary and plan of the paper

The main result of this paper is Theorem 5.1, which asserts that, under a mild hypothesis of
smoothness on the sequence a(n), there exists a symmetric property whose threshold width is
of order O(1/a(n)) when a(n) lies between log n and

√
n. Therefore, we answer the question

raised in the introduction in the affirmative. Our strategy is to construct the desired property
using a suitable combination of well-known properties arising in reliability theory. Section 3 is
devoted to the presentation of these properties, along with some others, which turn out to have
explicitly known threshold widths and locations. The aforementioned ‘suitable combination’,
which we shall simply call a product, will be defined, and its basic properties derived, in
Section 4. Notably, it behaves particularly well with respect to the threshold widths: we shall
prove that the product of two properties A and B has a threshold width which is the product of
those of A and B, given that the threshold of B is located away from 0 and 1. This will allow us
to construct, in Section 5, a property that has a threshold width of order O(1/a(n)) when a(n)

lies between log n and
√

n (see Theorem 5.1). For the sake of completeness, in Section 6 we
turn back to the theoretical study of the threshold width of the product: we examine the case
in which the threshold of B tends to 0 or 1. Although we do not give a complete treatment of
this case, we show that if A and B have thresholds respectively located at 0 and 1, then A ⊗ B

(their product) has a sharp threshold.
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3. Examples of explicit threshold widths and locations

In presenting the following examples of thresholds, our aim is twofold. First, we want to
describe some of the few types of behaviour already known. Second, we shall use some of
these examples in Section 5, to derive more general widths by taking products of properties.

In the framework of reliability theory, at instant t two characteristic quantities of the system
are especially important: the reliability, that is, the probability that no breakdown occurred
before t , and the nonavailability, which is the probability that the system is down at instant t

(see, for example, [1]). Of course, these quantities differ from those in repairable systems. The
analysis of the reliability of a large system, for example its asymptotic behaviour, is generally
much more difficult than the analysis of the nonavailability. We shall focus only on the latter, but
want to stress the fact that when dealing with a large system composed of repairable Markovian
components, it is natural to expect strong similarities between the asymptotics of the two
quantities (see, for example, [23]).

Let A denote a system composed of n binary components. We can jointly describe the states
of these components as a state in {0, 1}n, with 1 standing for a failed component and 0 standing
for a working component. We can therefore associate to A its failure subset, which is the subset
A of {0, 1}n containing all the configurations of the n components such that the system A fails.
If we assume that a component has failed, independently of the others, with probability p, then
µn,p is the distribution of the state of A in {0, 1}n and µn,p(A) is the nonavailability of A. It is
very natural to assume that the subset A is monotone (if the system is down and a component
fails, then the system remains down). The question of how quickly µn,p(A) ‘jumps’ from 0
to 1 is of great importance (see [22] for an application of [12] and [7] in this context). The
main result of this article, Theorem 5.1, makes use of the properties described in Examples 3.1
and 3.2.

Example 3.1. (k-out-of-n system.) The k-out-of-n system fails when the total number of failed
components is greater than or equal to a certain threshold k ≡ k(n). The failure subset is
therefore

Ak,n =
{
x ∈ {0, 1}n :

n∑
i=1

xi ≥ k

}
.

Note that the particular cases of Am−1,m and A1,r respectively correspond to parallel and series
systems. Obviously, Ak,n is monotone and invariant under every permutation of the coordinates.
It is therefore a monotone, symmetric subset of {0, 1}n. Since the sum

∑n
i=1 xi has mean np

and variance np(1 − p) when x is distributed according to µp, it follows intuitively that Ak,n

has a threshold that is located at k/n and has width of order
√

(k/n) × (1 − k/n)/
√

n. We
shall make this intuition precise in Lemma 5.1, where k = �n/2�. (Here �x� denotes the largest
integer less than or equal to x.)

Example 3.2. (Parallel–series system.) A parallel–series system contains n = r × m compo-
nents which are assembled into r blocks each containing m components. The system fails as
soon as a block fails, and a block fails if all of its components fail. Of course, the nonavailability
of such a system is very easy to derive. Let Bn denote its failure subset. Then

µp(Bn) = 1 − (1 − pm)r .

For example, when m = �log2 k�, r = �k/log2 k�, and k ≥ 2, the threshold of Bn is located
at 1

2 and has width of order 1/log n (see Lemma 5.2, below). Note that Bn is monotone and
symmetric (under permutation of the components inside a block and permutation of the blocks).
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Such systems, with multistate components instead of binary ones, were studied in [15] and [16],
and a well-defined application was presented in [17] (see also the recent book [18]). We can
also define the dual series–parallel system, in which components are assembled into r blocks
each containing m components: the system fails when all blocks fail, and a block fails as soon
as one of its components fails.

Example 3.3. (Consecutive-k-out-of-n system.) In a consecutive-k-out-of-n system the com-
ponents are arranged around a circle. The system fails as soon as at least k(n) consecutive
components have failed. This model has asymptotic behaviour similar to that of the parallel–
series system with �n/k� blocks of k components. For example, when k = �n/log2 n� the
threshold of the failure subset is located at 1

2 and has width of order 1/log n (for a similar result,
see [22]). This model was introduced by Kontoleon [19] to model some problems arising
in engineering science, such as oil transportation using pipelines, telecommunication using
spacecraft relay stations, transmission of data in a ring network of computers, etc.

4. The product of subsets of {0, 1}n
To the author’s knowledge, whereas the effect of simple operations between properties has

been extensively studied in the context of the so-called 0–1 laws which occur in logic [8], no
such work has been undertaken regarding the threshold phenomenon. The first combinations
of properties that come to mind, union and intersection, behave in quite an unpleasant way with
respect to the threshold width [24, Chapter 3]. In this section, we will show the nice behaviour
of another combination, which we simply call the product. Even though linearity does not play
any role in this setting, it is worth noting the similarity between this product and the Kronecker
product of matrices. Given two properties A and B, on two distinct spaces, their product is a
property combining the elements of A and B in the following way.

Definition 4.1. For any subset C of a set X, let 1C denote the characteristic function of the
subset C: it takes the value 1 on C and the value 0 on X \ C.

Let A be a subset of {0, 1}r and let B be a subset of {0, 1}m. The product of A and B,
denoted by A ⊗ B, is the subset of ({0, 1}r )m defined by

η ∈ A ⊗ B ⇐⇒ (1{η1∈A}, . . . , 1{ηm∈A}) ∈ B,

where
η = (η1, . . . , ηm) and, for all j ∈ {1, . . . , m}, ηj ∈ {0, 1}r .

In order to visualise the precise meaning of this definition, it is convenient to consider
this product in the language of reliability theory. Let A denote the failure set of a system,
A, composed of r components, and let B be the failure set of another system, B, with
m components. Then A ⊗ B is the failure subset of the system obtained by replacing the
components of B by m independent copies of A. For example, the parallel–series and series–
parallel systems can be obtained from some elementary building blocks, namely the series and
parallel systems (see Figure 2). This process can be continued by embedding systems into one
another (see Figure 3).

Let us now describe the basic properties of this product. A useful feature is the link between
the probability of A ⊗ B and those of A and B. Also, invariance and monotonicity properties
for A⊗B follow if A and B have similar properties. Below, for η = (η1, . . . , ηm) in ({0, 1}r )m
with ηj ∈ {O, 1}r for every j , we will denote by ηi,j the ith coordinate of ηj , which is therefore
0 or 1. In this way, we identify ({0, 1}r )m and {0, 1}rm.
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A, the set of failure states of A
(parallel system)

B, the set of failure states of B
(series sytem)

The set of failure states A B⊗
(parallel–series system)

The set of failure states B A⊗
(series–parallel system)

Figure 2: Parallel–series and series–parallel systems obtained as products.

A, the set of failure states of A

B, the set of failure states of B

The set of failure states A B⊗

Figure 3: An example of a product in reliability theory.

Proposition 4.1. Let A ⊂ {0, 1}r and B ⊂ {0, 1}m.

1. For every p ∈ [0, 1],
µmr,p(A ⊗ B) = µm,µr,p(A)(B).

2. If A and B are monotone then A ⊗ B is monotone.

3. If A is invariant under the action of a subgroup G of Sr and B is invariant under the action
of a subgroup H of Sm, then A ⊗ B is invariant under the action of the subgroup G × H of the
permutations of {1, . . . , r} × {1, . . . , m} defined by

(g, h) · (i, j) = (g · i, h · j) for all i ∈ {1, r} and all j ∈ {1, m}.
Proof. If η1, . . . , ηm are independent and distributed according to the law µr,p, then

(1η1∈A, . . . , 1ηm∈A) has law µm,µr,p(A). This proves the first assertion. To prove the second
assertion, let η and ζ belong to ({0, 1}r )m and suppose that η ≤ ζ , that is,

ηi ≤ ζi, for all i ∈ {1, . . . , m}.
Since A is monotone,

(1{η1∈A}, . . . , 1{ηm∈A}) � (1{ζ1∈A}, . . . , 1{ζm∈A}). (4.1)
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Suppose now that η ∈ A ⊗ B. Then

(1{η1∈A}, . . . , 1{ηm∈A}) ∈ B. (4.2)

Since B is monotone, it follows from (4.1) and (4.2) that ζ ∈ B, which proves the monotonicity
of A ⊗ B.

To prove the final assertion of the proposition, let η ∈ A ⊗ B and (g, h) ∈ G × H and write
ζ = (g, h) · η, that is,

ζi,j = η(g,h)·(i,j) = ηg·i,h·j ,

which can be restated as
ζ = (g · ηh·1, . . . , g · ηh·m).

On the other hand,
η = (η1, . . . , ηm),

with ηi ∈ {0, 1}r , and
(1{η1∈A}, . . . , 1{ηm∈A}) ∈ B.

Therefore,
(1{g(η1)∈A}, . . . , 1{g(ηm)∈A}) ∈ B,

h · (1{g(η1)∈A}, . . . , 1{g(ηm)∈A}) ∈ B,

implying that
(1{g(ηh·1)∈A}, . . . , 1{g(ηh·m)∈A}) ∈ B.

Thus, ζ ∈ A ⊗ B and the proof is complete.

Intuitively, the first assertion in Proposition 4.1 suggests that if the threshold of B is located
away from both 0 and 1, then the threshold effects of A and B will conjugate and give rise to a
threshold width the order of which will be the product of the widths of A and B. This is indeed
the case, and this is roughly the statement of Proposition 4.2. Actually, this result is valid as
long as the threshold of B is located away from both 0 and 1 and some additional hypotheses of
homogeneity hold for the threshold widths of A and B. When a threshold phenomenon occurs
for a property A, it is usually true that the threshold width is homogeneous, in the sense that
all the transition intervals shrink at the same speed. This allows us to consider the exact order
of the threshold width, since this does not depend on the level ε. We will use the following
definitions of homogeneity and strong homogeneity.

Definition 4.2. Let A ⊂ {0, 1}αn be a nontrivial, monotone property, and let (an)n∈N be a
sequence of positive real numbers. The threshold width of the property A is homogeneous of
order an if, for all β, γ ∈ (0, 1) such that β < γ ,

pA,γ − pA,β = �(an).

The threshold width of the property A is strongly homogeneous of order an if, in addition, for
all sequences of real numbers (βn)n∈N and (γn)n∈N such that there exists an ε ∈ (0, 1) for
which

ε < βn < γn < 1 − ε for all n ∈ N,

we have
pA,γn − pA,βn = O((γn − βn)an).
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We are now able to state the main result about the width of a product.

Proposition 4.2. Let (rn)n∈N and (mn)n∈N be two nondecreasing sequences of integers, and let
A ⊂ {0, 1}rn and B ⊂ {0, 1}mn be two monotone properties. Suppose that the threshold width
of A is strongly homogeneous of order an and that the threshold width of B is homogeneous of
order bn. Suppose, in addition, that the threshold of B is located away from both 0 and 1, that
is, for all ε ∈ (0, 1) there exists a δ ∈ (0, 1) such that

δ < pB,ε < 1 − δ for all n ∈ N.

Then the threshold of A ⊗ B ⊂ {0, 1}rnmn has a homogeneous width of order anbn. Moreover,
if the threshold of A is located at α ∈ [0, 1], then so is the threshold of A ⊗ B.

Proof. Let ε be a real number in (0, 1
2 ). According to Proposition 4.1,

µmnrn,p(A ⊗ B) = µmn,µrn,p(A)(B).

Therefore, µrn,pA⊗B,ε
(A) = pB,ε and, so,

pA⊗B,ε = pA,pB,ε
,

pA⊗B,1−ε − pA⊗B,ε = pA,pB,1−ε
− pA,pB,ε

.

Since the threshold width of B is of order bn, we have

pB,1−ε − pB,ε = �(bn).

Recall that, by hypothesis, there exists a δ ∈ (0, 1) such that

δ < pB,ε < pB,1−ε < 1 − δ for all n ∈ N.

Thus, the fact that A has a strongly homogeneous threshold width of order an (see Definition 4.2)
implies that

pA,pB,1−ε
− pA,pB,ε

= �((pB,1−ε − pB,ε)an) = �(anbn).

Therefore, the threshold of A ⊗ B ⊂ {0, 1}rnmn has a homogeneous width of order anbn.
Now suppose that A is located at α ∈ [0, 1], and let ε be a real number in (0, 1). Recall that

there exists a δ ∈ (0, 1) such that

δ < pB,ε < 1 − δ for all n ∈ N.

Since pA⊗B,ε = pA,pB,ε
,

pA,δ < pA⊗B,ε < pA,1−δ for all n ∈ N.

Thus, pA⊗B,ε tends to α as n tends to ∞. This completes the proof.

5. Symmetric threshold widths between 1/log n and 1/
√

n

In this section we show how to derive from Proposition 4.2 a large variety of threshold
widths, ranging from 1/log n to 1/

√
n. To this end, we need as elementary building blocks

some properties the thresholds of which are easy to study, and which we shall eventually
combine in order to obtain the desired threshold widths. These blocks will be taken from the
reliability examples of Section 3.
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Recall that, for any k ∈ {1, . . . , n}, we denote by Ak,n the following subset of configurations
in {0, 1}n (see Example 3.1):

Ak,n =
{
x ∈ {0, 1}n :

n∑
i=1

xi ≥ k

}
.

In what follows we shall use A�n/2�,n and A1,r ⊗ Am−1,m, for different values of n, r , and m.

Lemma 5.1. Let A = (A�n/2�,n)n∈N∗ . Then, for every n ∈ N
∗,

τ(A�n/2�,n, ε) ≤ 2

√
log(1/ε)

2n
.

Moreover, A has a strongly homogeneous threshold located at 1
2 , with a width of order 1/

√
n.

Proof. A simple way to show that A has a threshold located at 1
2 with a width of order 1/

√
n

is to use the concentration property of the binomial law. Indeed, Hoeffding’s inequality [14]
ensures that

µp

( n∑
k=1

xi − np > λ
√

n

)
≤ e−2λ2

for all λ > 0 (5.1)

and that

µp

( n∑
k=1

xi − np < −λ
√

n

)
≤ e−2λ2

for all λ > 0. (5.2)

Let ε ∈ (0, 1) and let c = √
log(1/ε)/2 or, equivalently, exp(−2c2) = ε. If p(ε) is such that

µn,p(ε)(A�n/2�,n) = ε, then �n/2� is at most a distance of order
√

n from np(ε). Inequalities
(5.1) and (5.2) imply that

�n/2� −
√

n log(1/(1 − ε))

2
≤ np(ε) ≤ �n/2� +

√
n log(1/(1 − ε))

2
.

Therefore, the threshold of A�n/2�,n is located at 1
2 , that is,

p(ε) → 1
2 for all ε ∈ (0, 1),

and its threshold width is at most of order 1/
√

n, that is,

τ(A�n/2�,n, ε) ≤ 2

√
log(1/(ε))

2n
for all n ∈ N

∗ and all ε ∈ (0, 1
2 ).

To see that this is the right order, we can express the derivative dµp(A)/dp as follows:

dµp(A)

dp
=

∑
x∈{0,1}n

1A(x)
dµp(x)

dp
,

=
n∑

i=1

∑
x∈{0,1}n

1A(x)
xi − p

p(1 − p)
µp(x),

= 1

p(1 − p)
cov(1A, Sn).
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Then, by the Cauchy–Schwarz inequality,

dµp(A)

dp
≤ 1

p(1 − p)

√
µp(A)(1 − µp(A))

√
np(1 − p),

dµp(A)

dp
≤

√
µp(A)(1 − µp(A))√

p(1 − p)

√
n,

1√
µp(A)(1 − µp(A))

dµp(A)

dp
≤

√
n√

p(1 − p)
. (5.3)

It is easy to integrate this differential inequation. Let us define

J (x) = (1 − x)
√

x(1 − x) + arctan

(√
x

1 − x

)
.

Then

J ′(x) = 1√
x(1 − x)

for all x ∈ (0, 1).

Therefore, integrating (5.3) between p(ε) and p(1 − ε) gives

J (1 − ε) − J (ε) ≤ √
n(J (p(1 − ε)) − J (p(ε))).

As n tends to ∞, p(ε) and p(1 − ε) tend to 1
2 . Therefore,

J (1 − ε) − J (ε) ≤ √
nJ ′( 1

2 )(p(1 − ε) − p(ε) + o(p(1 − ε) − p(ε))),

p(1 − ε) − p(ε) ≤ J (1 − ε) − J (ε)

2
√

n
+ o

(
1√
n

)
.

Therefore, τ(A, ε) = O(1/
√

n).
Finally, to prove the strong homogeneity of the width, we need a sharp minorization of

dµp(A)/dp. A smooth way to do this is to use one of the discrete isoperimetric inequalities
of Margulis and Talagrand. The work of Margulis [21] has motivated a number of increasingly
accurate discrete isoperimetric inequalities [26], [2], [3], [27]. For example, let φ denote the
Gaussian density, that is, φ(t) = (1/

√
2π) e−t2/2, and 
 the Gaussian cumulative distribution,

that is, 
(x) = ∫ x

−∞ φ(t) dt . From the main result of [27] it follows that

dµp(A)

dp
≥

√
n

p
√

log(1/p)
�(µp(A)),

where � stands for φ ◦ 
−1. Therefore,

dµp(A)

dp
≥ √

ne�(µp(A)).

Let (βn)n∈N and (γn)n∈N be two sequences of real numbers in (0, 1). Integrating this inequality
between p(βn) and p(γn) leads to

p(γn) − p(βn) ≤ 1√
ne

∫ γn

βn

�(u) du.
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Now suppose that there exists an ε ∈ (0, 1) such that

ε < βn < γn < 1 − ε for all n ∈ N.

Since � is continuous and strictly positive on (0, 1), we have∫ γn

βn

�(u) du = �(γn − βn).

Finally,
p(γn) − p(βn) = O((γn − βn)/

√
n)

and, thus, the strong homogeneity of the threshold width of A holds.

Now consider a parallel–series system composed of r blocks containing m components (see
Example 3.2). The system fails as soon as a block fails, and a block fails if all of its components
fail. The failure subset of such a system is Am,m ⊗ A1,r . It is symmetric and monotone. Its
probability can easily be explicitly derived:

µp(Am,m ⊗ A1,r ) = 1 − (1 − pm)r .

Thus, for any α ∈ (0, 1),
pα = (1 − (1 − α)1/r )1/m.

Lemma 5.2. For every k ∈ N
∗, let Bk be the following parallel–series failure subset:

Bk = A�log2 k�,�log2 k� ⊗ A1,�k/log2 k� ⊂ {0, 1}K,

where K = �log2 k��k/log2 k�. The property Bk has a sharp threshold located at 1
2 with

homogeneous width of order 1/log K . More precisely, the threshold width of Bk has the
following asymptotic expansion:

τ(Bk, ε) = 1

2 log K
log

log(1/ε)

log(1/(1 − ε))
+ o

(
1

log2 K

)
.

Proof. Let α ∈ (0, 1). We have

pα = (1 − (1 − α)1/�k/log2 k�)1/�log2 k�

=
(

log2 k

k
log

1

1 − ε
+ o

(
log2 k

k

))1/log2 k+o(1/log k)

= exp

(
− log k

log2 k
+ log log2 k

log2 k
+ log log(1/(1 − ε))

log2 k
+ o

(
1

log k

))

= 1

2

(
1 + log log2 k

log2 k
+ log log(1/(1 − ε))

log2 k
+ o

(
1

log k

))
.

Therefore, the threshold of Bk is located at 1
2 . Moreover, for any ε ∈ (0, 1

2 ),

τ(Bk, ε) = 1

2 log k
log 2 log

log(1/ε)

log(1/(1 − ε))
+ o

(
1

log k

)
.

Since K(k) = �log2 k� × �k/log2 k� is equivalent to k as k tends to ∞,

τ(Bk, ε) = 1

2 log K
log 2 log

log(1/ε)

log(1/(1 − ε))
+ o

(
1

log K

)
.

Thus, Bk has a threshold with homogeneous width of order 1/log K .
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We are now able to prove our main result.

Theorem 5.1. Let c(n) be a nondecreasing sequence of integers such that

log n ≤ c(n) ≤ √
n for all n ∈ N

∗,

and suppose that
c(2n) = �(c(n)).

Then there exist an increasing sequence of integers (N(n))n∈N∗ and a monotone, symmetric
property C ⊂ {0, 1}N(n) whose threshold is located at 1

2 and has width of order 1/c(N(n)).

Remark 5.1. The condition c(2n) = �(c(n)) implies that c increases rather smoothly. Be-
cause of the way we chose to build the property mentioned in Theorem 5.1, we cannot avoid
this condition. Of course, any condition of the type c(rn) = �(c(n)) with r an integer
strictly greater than 1 would be sufficient, since c is nondecreasing. Note that this condition
is satisfied for most natural choices of nondecreasing function. Nevertheless, it is possible to
imagine ‘unnatural’ examples in which this condition is not satisfied. Indeed, let (aj )j∈N∗ be
the increasing sequence of integers recursively defined by

a0 = 2, aj+1 = e�√2aj �, j ≥ 0.

Note that aj+1 − 1 ≥ 2aj for every j ≥ 1. Let c(n) be the nondecreasing sequence of integers
defined by

c(n) =
{

log(n) for all n ∈ [aj , 2aj − 1],√
2aj for all n ∈ [2aj , aj+1 − 1].

On one hand
log(n) ≤ c(n) ≤ √

n for all n ∈ N
∗,

and on the other hand

c(aj ) = log aj and c(2aj ) = √
2aj for all j ∈ N

∗.

Therefore, c(2n)/c(n) is not bound from above.

Proof of Theorem 5.1. For any integer k ≥ 2, let Bk be the failure subset of a parallel–series
system composed of �k/log2 k� blocks each containing �log2 k� components. Suppose that
1 ≤ a(n) ≤ n. Let us define the integer

N =
⌊

n

a(n)

⌋
a(n)

and the following monotone, symmetric subset of {0, 1}N :

CN = A�a(n)/2�,a(n) ⊗ B�n/a(n)�.

According to Lemma 5.1, A�a(n)/2�,a(n) has a threshold located at 1
2 with strongly homogeneous

width of order 1/
√

a(n). From Lemma 5.2, B�n/a(n)� has a threshold located at 1
2 with

homogeneous width of order 1/log�n/a(n)�. Therefore, we can deduce from Proposition 4.2
that CN has a threshold located at 1

2 with homogeneous width of order
√

a(n) log�n/a(n)�.
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It is apparent that this device allows us to build properties with threshold widths of nearly any
order between 1/log N and 1/

√
N .

Indeed, let φn be the following function:

φn : [1, n] → R, x �→
(

log
n

x

)2

.

The derivative of φn is easy to compute:

φ′
n(x) = log

n

x
log

ne−2

x
for all x ∈ [1, n].

Therefore, φn is a bijection from [1, n/e2] to [(log n)2, 4n/e2]. Let c(n) be a sequence of
integers such that

log n ≤ c(n) ≤ √
n for all n ∈ N

∗.

Define c̃(n) = inf{c(n), 2
√

n/e}. Thus,

(log n)2 ≤ c̃(n)2 ≤ 4n/e2 for all n ∈ N
∗.

Let a(n) = φ−1
n (c̃(n)2) ∈ [1, n/e2]. The subset CN has a threshold width of order

1/
√

φn(a(n)) = 1/c̃(n). It is clear that c̃(n) and c(n) are of the same order as n tends to
∞. Therefore, CN has a threshold width of order 1/c(n). Furthermore, suppose that c is
nondecreasing. Since n ≤ N(n) ≤ 2n, we have

c(n) ≤ c(N(n)) ≤ c(2n) for all n ∈ N
∗.

Now suppose that c(2n) = �(c(n)). Then c(N(n)) = �(c(n)). Finally, CN has a threshold
width of order 1/c(N(n)). The result follows.

6. How to obtain a sharp threshold from two coarse ones

When the localisation of the threshold of B is not bounded away from 0 and 1, Proposition 4.2
is useless in describing the threshold width of A ⊗ B. Moreover, its conclusion is no longer
valid. Indeed, consider the failure subset,

Bk = A�log2 k�,�log2 k� ⊗ A1,�k/log2 k� ⊂ {0, 1}K,

defined in Lemma 5.2. We can easily compute the probability of A1,n to be

µp(A1,n) = 1 − (1 − p)n;
therefore,

p(ε) = 1 − (1 − ε)1/n.

Thus, as n tends to ∞, p(ε) is equivalent to log(1/(1 − ε))/n and τ(A1,n, ε) is equivalent to
log((1 − ε)/ε)/n. This is a typical example of a coarse threshold. We similarly obtain

µp(An−1,n) = pn,

whence
p(ε) = ε1/n.
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Thus, as n tends to ∞, p(ε) is equivalent to 1− log(1/ε)/n and τ(An−1,n, ε) is again equivalent
to log((1 − ε)/ε)/n.

Consequently, A�log2 k�,�log2 k� and A1,�k/log2 k� have threshold widths of respective orders
1/log k and log k/k. According to Lemma 5.2, their product is a subset of {0, 1}K , where
K = �log2 k� × �k/log2 k�, and has a threshold width of order 1/log K . This is much bigger
than 1/K , the order we would find were the conclusion of Proposition 4.2 to remain valid.

Nevertheless, in this example we witness an interesting phenomenon. The two subsets
A�log2 k�,�log2 k� and A1,�k/log2 k� of {0, 1}K clearly have coarse thresholds, but their product has
a sharp one. We shall prove this to be very general behaviour: if A and B have thresholds
located respectively at 0 and 1, then, even if these are coarse, their product A ⊗ B has a sharp
threshold. To prove this we shall use a well-known tensorisation property of the entropy. The
major role of this property in concentration and threshold topics has been pointed out many
times (see, for example, [20], [6], and [25]). First, let us recall the definition of the entropy of
a nonnegative function f on a probability space (X, µ):

Entµ(f ) =
∫

f (x) log f (x) dµ(x) −
∫

f (x) dµ(x) log
∫

f (x) dµ(x).

Entropy satisfies the following tensorisation inequality (see, for example, [20, Proposi-
tion 5.6]): for every nonnegative function f on {0, 1}n,

n∑
i=1

Eµp(Entxi
(f )) ≥ Entµp(f ), (6.1)

where in Entµi
only the ith coordinate of µ is involved in the integration. The following lemma

is the key towards the main result of this section, Proposition 6.1.

Lemma 6.1. Let A be a monotone subset of {0, 1}n. Then, for every p ∈ [0, 1],

p log
1

p

dµp(A)

dp
≥ µp(A) log

1

µp(A)
, (6.2)

(1 − p) log
1

1 − p

dµp(A)

dp
≥ (1 − µp(A)) log

1

1 − µp(A)
.

Proof. The following formula is easily obtained by considering the derivative of µp(x) with
respect to p. For any real function f on {0, 1}n,

d

dp

∫
f (x) dµp(x) =

n∑
i=1

∫
∇if (x) dµp(x),

where, for all x ∈ {0, 1}n,

∇if (x) = f (x1, . . . , xi−1, 1, xi+1, . . . , xn) − f (x1, . . . , xi−1, 0, xi+1, . . . , xn).

On the other hand, if A is a monotone subset then

Entxi
(1A) =

∫
1A log

1A∫
1A dxi

dxi = p log
1

p
∇i1A.
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Therefore,
n∑

i=1

Eµp(Entxi
(f )) = p log

1

p

dµp(A)

dp
.

Note that, for any subset A,

Entµp(1A) = µp(A) log
1

µp(A)
.

Thus, when applied to f = 1A, (6.1) gives

p log
1

p

dµp(A)

dp
≥ µp(A) log

1

µp(A)
.

Now note that

Entxi
(1Ac) =

∫
1Ac log

1Ac∫
1Ac dxi

dxi = p log
1

p
∇i1A.

Since

Entµp(1Ac) = µp(Ac) log
1

µp(Ac)
,

when applied to f = 1Ac (6.1) gives

(1 − p) log
1

1 − p

dµp(A)

dp
≥ (1 − µp(A)) log

1

1 − µp(A)
.

Proposition 6.1. Let (rn)n∈N and (mn)n∈N be two increasing sequences of integers, and let
A ⊂ {0, 1}rn and B ⊂ {0, 1}mn be two nontrivial, monotone properties. Suppose that the
threshold of A is located at 1 and that the threshold of B is located at 0, that is, for all
ε ∈ (0, 1),

pA,ε → 1 as n → ∞
and

pB,ε → 0 as n → ∞.

Then the thresholds of A ⊗ B and B ⊗ A are sharp.

Proof. First, let us remark that A ⊗ B has a coarse threshold if and only if, for every
ε ∈ (0, 1),

pA⊗B,ε(1 − pA⊗B,ε)
dµp(A ⊗ B)

dp

∣∣∣∣
p=pA⊗B,ε

→ ∞ as n → ∞

(see [12] or [24, p. 99]). Now, for all monotone subsets A and B and every p ∈ (0, 1), from
Proposition 4.1 we have

µp(A ⊗ B) = µµp(A)(B). (6.3)

Let us denote by f (p) the quantity µp(A ⊗ B). We therefore have

f ′(p) = dµp(A)

dp

dµq(B)

dq

∣∣∣∣
q=µp(A)

.

https://doi.org/10.1239/jap/1175267170 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1175267170


Arbitrary symmetric threshold widths 179

According to Lemma 6.1,

dµp(A)

dp
≥ µp(A) log(1/µp(A))

p log(1/p)
,

dµq(B)

dq

∣∣∣∣
q=µp(A)

≥ (1 − f (p)) log(1/(1 − f (p)))

(1 − µp(A)) log(1/(1 − µp(A)))
.

Thus,

f ′(p) ≥ (1 − f (p)) log(1/(1 − f (p)))

p log(1/p)

µp(A) log(1/µp(A))

(1 − µp(A)) log(1/(1 − µp(A)))
. (6.4)

We shall focus on A ⊗ B, since the threshold of B ⊗ A can be treated in the same way
by switching the roles of A and B. Suppose that the threshold of B is located at 0, and let
ε ∈ (0, 1). From (6.3), we obtain

pA⊗B,ε = pA,pB,ε
.

Let us define pε := pA⊗B,ε. From (6.4) we obtain

f ′(pε) ≥ (1 − ε) log(1/(1 − ε))

pε log(1/pε)

pB,ε log(1/pB,ε)

(1 − pB,ε) log(1/(1 − pB,ε))
.

Since pB,ε tends to 0 as n tends to ∞, we have

f ′(pε) ≥ (1 − ε) log(1/(1 − ε))

pε log(1/pε)

(
log

1

pB,ε

+ o(1)

)
,

pε(1 − pε)f
′(pε) ≥ (1 − ε) log

1

1 − ε

(1 − pε)

log(1/pε)

(
log

1

pB,ε

+ o(1)

)
.

(6.5)

Since log(1/x) is equivalent to 1−x as x tends to 1, if pε is bounded away from 0 then inequality
(6.5) implies that A ⊗ B has a sharp threshold. If pε is not bounded away from 0 then we need
to show that having the location of A at 1 implies that log(1/pε) is asymptotically negligible
compared to log(1/pB,ε). This follows from (6.2). Indeed, integrating this inequality between
pε = pA,pB,ε

and pε = pA,ε yields

[
log

1

|log µp(A)|
]pA,ε

pA,pB,ε

≥
[

log
1

|log p|
]pA,ε

pA,pB,ε

,

log
1

|log ε| − log
1

|log pB,ε| ≥ log
1

|log pA,ε| − log
1

|log pA,pB,ε
| ,

log
log(1/pA,pB,ε

)

log(1/pB,ε)
≤ log

1

log(1/ε)
+ log

1

|log pA,ε| ,
log(1/pA,pB,ε

)

log(1/pB,ε)
≤ log(1/pA,ε)

log(1/ε)
.

Since pA,ε tends to 1 as n tends to ∞, log(1/pA⊗B,ε) is asymptotically negligible in comparison
with log(1/pB,ε).
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