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A controllable sliding law for thin-film flows over
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We develop a theoretical and experimental framework for generating slip underneath
thin-film flows of viscous fluids in the laboratory, with the ability to control slip as desired.
Such a framework is useful for large-scale fluid-mechanical experiments in which basal
sliding is important. In particular, we consider the flow of a thin film of viscous fluid
spreading over a structured, slippery substrate, involving a sequence of two-dimensional
cavities that are prewetted with a fluid of smaller viscosity. By averaging over small-scale
inhomogeneities, we demonstrate that such a substrate gives rise to a macroscopic linear
sliding law, or Navier slip condition, that is effectively homogeneous on the large scale.
The slip length, determining the slipperiness of the substrate, is proportional to the
viscosity ratio and width of each cavity. As such, the slipperiness of the substrate can
be controlled by altering the viscosity ratio, as desired. Two asymptotic regimes arise,
describing flow over very slippery substrates and flow over no-slip substrates. The former
regime is valid for early times, when the depth of the overlying fluid is much less than the
slip length, and the latter is valid for late times, when the depth is much greater than the
slip length. Solutions to the full model approach similarity solutions describing the two
regimes for early and late times. We confirm our theoretical predictions by conducting a
series of analogue laboratory experiments.
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1. Introduction

Meaningful understanding of fluid-mechanical phenomena observed in nature can
frequently be obtained through analogue laboratory experiments. This pertains to
understanding the atmosphere (Rottman & Linden 2003), ocean (Simpson 1982),
cryosphere (Robison, Huppert & Worster 2010), solid Earth (Huppert 1986) and
planetary science (Johnson et al. 2016), for example. These fields involve large-scale
fluid-mechanical processes, which can be scaled down to laboratory scales to test
theoretical ideas experimentally. However, an underlying problem is that viscous fluids in
the laboratory commonly obey the no-slip condition when in contact with a rigid substrate.
This makes it difficult to experimentally capture natural fluid-mechanical phenomena that
instead exhibit a degree of basal sliding.

An example is the flow of ice sheets, such as that of Greenland and Antarctica, which
generally slide at their base. Such sliding results from lubrication by a thin layer of
subglacial till, consisting of a mixture of subglacial sediment, clay and water (Schoof
& Hewitt 2013). It is typical to model subglacial sliding using sliding laws that relate the
basal velocity to the basal shear stress (Schoof & Hewitt 2013). The simplest example of
such a sliding law is a Navier-type slip condition. However, reproducing basal sliding in
the laboratory for fluid-mechanical experiments of ice sheets remains a challenge. Instead
of obeying a sliding law, relevant experimental studies involve flows that obey the no-slip
condition at the base. Examples include studies of the dynamics of confined (Robison
et al. 2010; Kowal, Worster & Pegler 2016) and unconfined (Pegler & Worster 2012;
Sayag, Pegler & Worster 2012) marine ice sheets. Although basal sliding is relevant to
the vast majority of geophysical scenarios involving ice flows, there is a small number of
exceptions. Exceptions include regions of ice that are frozen to the bedrock and ice sheets
confined to very narrow channels, for which vertical shear is negligible in comparison to
transverse shear (Pegler et al. 2013).

Motivated by these flows, attempts have been made to introduce slip at the base of a
viscous fluid by injecting another less viscous fluid underneath it (Kowal & Worster 2015;
Kumar et al. 2021; Gyllenberg & Sayag 2022). The slip velocity for such flows varies
spatially, across the flow, and is dependent upon the dynamics of the underlying layer.
While basal sliding is reproduced successfully at early stages of these experiments, the
flow becomes susceptible to a new type of viscous fingering instability at intermediate
and late stages of the experiments (Kowal & Worster 2015; Kumar et al. 2021; Gyllenberg
& Sayag 2022). This instability impedes with the ability to reliably introduce slip at the
base of a viscous gravity current through injection. It has been shown that the instability
originates at the injection front (Kowal & Worster 2019a,b; Kowal 2021), and can be
slightly suppressed by altering the rheology of the fluids (Leung & Kowal 2022a,b).
There is a similarity between this instability and the Saffman–Taylor instability in that
both instabilities involve the intrusion of a less viscous fluid into a more viscous fluid.
However, the Saffman–Taylor instability occurs in porous media (including Hele-Shaw
cells), whereas the instability emerging here does not.

It is the aim of this study to configure an experimental set-up that provides for basal
sliding that is effectively homogenous on the large scale and is unaffected by unwanted
frontal instabilities. We also build into our framework the ability to adjust slip as desired.
To characterise the resulting slip mathematically, we develop a theoretical model that
captures basal sliding with an appropriate basal boundary condition, or what is effectively
a linear sliding law. In particular, we consider the gravity-driven flow of a viscous fluid
over a slippery substrate composed of a sequence of square cavities that are saturated
with a less viscous fluid, as depicted in figure 1. The flow within each cavity is driven
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A sliding law for flows over fluid-saturated substrates
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Figure 1. Schematic of a two-dimensional thin film of viscous fluid flowing over a structured substrate
consisting of a sequence of fluid-filled cavities (a), together with an inset (b), depicting streamlines within one
of the cavities and a resultant interfacial velocity u = us (red arrow) between the two fluids. Although Moffatt
eddies may form near the corners of the cavity, such flows are subdominant to the overarching circulation within
each cavity, and are thus omitted from the schematic diagram.

by an imposed shear stress exerted by the overlying layer, giving rise to a slip velocity
at the interface between the two fluids. As the flow of the less viscous fluid is confined
to its corresponding cavity, we eliminate viscous intrusion and the emergence of viscous
fingering instabilities. This allows us to reliably generate slip, and to control it, as required.
Such an experimental set-up and theoretical model aids the running of fluid-mechanical
experiments in which basal sliding is important on the large scale.

Our choice of substrate is motivated by the structure of hydrophobic substrates involving
small-scale gas-filled or liquid-filled cavities. This is because traditional hydrophobic
surfaces promote slip in microscopic systems, such as droplets (McGraw et al. 2016; Keiser
et al. 2017). The use of hydrophobic surfaces is motivated by a range of microfluidic
applications, including the development of portable devices able to perform small-scale
analytical tasks, e.g. the lab-on-a-chip (Stone, Stroock & Ajdari 2004). Experimental
studies of slip over such substrates report surface roughnesses ranging from 2 Å to 100 µm
and slip lengths ranging from 10 nm to 500 µm for fluids such as water, mercury, glycerine
and silicone oil (Lauga & Stone 2003). While such slip is appreciable for microfluidic
applications, it is negligible for large-scale flows of the order of up to a metre. In particular,
it has been shown by Richardson (1973), using continuum arguments, that small-scale
surface roughness effectively furnishes a no-slip boundary condition on length scales
that are large in comparison to the surface roughness, even if there is perfect slip on
the scale of the roughness (Lauga & Stone 2003). To overcome this obstacle and to
nevertheless generate appreciable slip on the large scale, we consider a large-scale version
of a hydrophobic surface, with liquid-filled cavities of the order of 1 cm. We show,
theoretically and experimentally, that such a substrate gives rise to slip lengths of the order
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of 1 cm, which are appreciable for large-scale fluid-mechanical experiments. An additional
advantage is that it is relatively simple to control the slip length in this setting by adjusting
the viscosity of the saturating liquid. Another consideration for the choice of substrate is
commercial availability and ease of use for experiments. We note that other configurations
may well give rise to similar slip lengths. An example involves saturated porous substrates,
building upon work on gravity currents propagating over porous beds (Acton, Huppert &
Worster 2001; Pritchard & Hogg 2002).

We begin by presenting our theoretical model in § 2, followed by a discussion of results
in § 3. We perform a series of demonstrative fluid-mechanical experiments, which we
discuss and compare against our theoretical predictions in § 4. We conclude with final
remarks in § 5.

2. Theory

Consider the two-dimensional flow of a thin film of viscous fluid, of surface height z = H,
density ρ and dynamic viscosity μ, spreading under gravity over a horizontal, structured
substrate as depicted in figure 1. The substrate is composed of a sequence of square cavities
of depth h, and is prewetted with another fluid of density ρl ≥ ρ, viscosity μl ≤ μ and
equal depth h. We assume that the interface between the two fluids remains horizontal at
z = 0 and that the effects of surface tension are negligible. We also assume that the thin
film is much longer than it is deep and that it is resisted mainly by vertical viscous shear
stresses, allowing us to apply the approximations of lubrication theory for the overlying
layer. This assumption breaks down in the very slippery limit, in which the depth of the
viscous gravity current is much smaller than the slip length. The overlying layer provides
a shear stress to the underlying fluid, which drives a recirculating flow within each cavity.
This flow gives rise to a resultant interfacial velocity u = us indicated by a red arrow in
the schematic of a single cavity depicted in figure 1. This is an effective slip velocity
experienced at the base of the overlying layer.

In what follows, we develop a mathematical model for this slip velocity and demonstrate
that it gives rise to a linear sliding law, or a Navier slip condition, at the base of the
overlying viscous gravity current. To do so, we assume that the horizontal length scale
h of the cavities is much smaller than the horizontal length scale associated with the
flow of the overlying viscous gravity current. This allows us to average out over the
small-scale inhomogeneities on the scale of each cavity and obtain a macroscopic sliding
law, reflecting the effective slip experienced by the overlying viscous gravity current.

2.1. Flow within each cavity
Within each cavity, horizontal and vertical length scales are comparable and the flow is
described by a balance of viscous and gravitational forces given by

0 = −∇pl − ρlgez + μ∇2ul, (2.1)

where pl and ul denote the pressure and velocity of the fluid within each cavity, and g is
the acceleration due to gravity. Throughout this paper, the subscript l denotes quantities
related to the flow in each cavity. Additionally, the flow is incompressible, so that

∇ · ul = 0. (2.2)
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A sliding law for flows over fluid-saturated substrates

We assume no slip and no penetration, ul = 0, on the walls of each cavity. We also assume
continuity of shear stress at its upper interface, so that

μl

(
∂ul

∂z
+ ∂wl

∂x

)
= S, at z = 0, (2.3)

where S is the shear stress exerted by the upper layer (determined in § 2.3).
As reflected in the governing equations above, the flow within each cavity is driven by

an imposed shear stress at the interface. This results in a non-zero interfacial velocity, or
slip velocity, at z = 0. To arrive at a macroscopic description of this interfacial velocity,
we assume that the horizontal length scale, h, of each cavity is much smaller than the
horizontal length scale ℒ of the overlying viscous gravity current. That is, ℒ � h, which
is valid when t � 𝓁h/q0, where 𝓁 is the slip length (2.11) and q0 is the source flux
of the overlying viscous gravity current. Given such a separation of scales, the flow in
each cavity experiences an essentially constant shear stress S, while the overlying gravity
current experiences an effective slip velocity. We therefore approximate S to be uniform
over the horizontal span of each cavity.

The remainder of this section focuses on solving for the flow within in each cavity
and obtaining the average slip velocity. Our derivations assume that the cross-section of
the cavities are square, though other height-to-width ratios are possible, albeit not easily
commercially available for running experiments. We expect deeper (shallower) cavities to
give rise to higher (lower) interfacial slip velocities.

For convenience, we absorb the hydrostatic part of the pressure by defining p̄l = pl +
ρlgz and non-dimensionalize the flow within the cavity using the following length, velocity
and pressure scales:

(x − xn, z) = h(x∗, z∗), ul = Sh
μl

u∗
l , p̄l = Sp̄∗

l . (2.4a–c)

Here, xn is the position of the left-hand wall of the nth cavity, so that x∗ = 0 denotes
the left-hand wall of the nth cavity in dimensionless variables. This gives rise to the
dimensionless Stokes equations

0 = −∇∗p̄∗
l + ∇∗2u∗

l , (2.5)

∇∗ · u∗
l = 0, (2.6)

which are subject to no-slip and no-penetration conditions on the walls as well as a
prescribed upper-layer shear stress

u∗
lz + w∗

lx = 1 (2.7)

at the interface. This shear stress drives a recirculating flow within each cavity, giving
rise to a resultant interfacial slip velocity. Importantly, these dimensionless equations and
boundary conditions are free of dimensionless parameters.

2.2. Sliding law and slip length
In this section we calculate the interfacial slip velocity and use it to find a dimensional slip
length. In particular, we find the following approximate form:

u∗
l ≈ α

[
x∗(1 − x∗)

]β (2.8)

for the slip velocity to within a tolerance of 2 × 10−3. Here α ≈ 0.50 and β ≈ 0.92. This
was found by performing finite element numerical simulations for the weak formulation of
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the flow within a single cavity using the integrated development environment FreeFem++
(Hecht 2012). The form of the interfacial velocity is in line with similar calculations for
structured substrates with mixed no-slip and no-shear boundary conditions (Philip 1972)
and flows over superhydrophobic gratings (Crowdy 2021).

We note that small-scale variations in the velocity across the width of a single cavity
have little effect on the large-scale flow of the overlying viscous gravity current, given
the separation of scales. Instead, the overlying viscous gravity current experiences a net
‘average’ slip velocity at the fluid–fluid interface. Therefore, we average over the width of
each cavity and obtain the following average slip velocity:

ū∗
s ≡

∫ 1

0
u∗

s dx∗ ≈ 0.095. (2.9)

In dimensional terms, this becomes

ūs = 𝓁
μ

S, (2.10)

where
𝓁 ≈ 0.095Mh (2.11)

is the dimensional slip length and M = μ/μl is the viscosity ratio. In systems of practical
interest, such as the experiments of § 4, the slip length 𝓁 ranges from the order of 0.1 cm
to 10 cm.

We show in § 2.3 that assuming an interfacial velocity of the form (2.10) is equivalent
to assuming the Navier slip condition

u = 𝓁 uz at z = 0, (2.12)

at the bottom boundary of the overlying viscous layer. In particular, both of these
conditions give rise to the same effective velocity at the interface between the two fluids
and the same depth-integrated flux of fluid in the overlying viscous layer. That is, averaging
out the small-scale inhomogeneities of the structured substrate is equivalent to producing
an effective Navier slip at the base of the overlying viscous gravity current.

Notably, the slip length is proportional to the viscosity ratio, as seen in (2.11). Therefore,
the larger the viscosity ratio, the more slippery the substrate is. This is natural to expect
on physical grounds as the flow within each of the cavities provides a smaller viscous
drag when the viscosity of the viscous fluid within each cavity is comparatively small.
Conversely, the smaller the viscosity ratio, the less slippery the substrate. This is because
such a substrate gives rise to a larger effective shear stress when the viscosity of the fluid
within each cavity is large in comparison with that of the overlying thin film of viscous
fluid. The M → ∞ limit corresponds to the no-slip limit of a viscous fluid propagating
over a solid substrate.

2.3. The upper layer
Under the approximations of lubrication theory, the upper thin film of viscous fluid,
spreading over the structured substrate, is governed by the momentum equation

0 = −∇p − ρgez + μuzzex, (2.13)

in dimensional variables. The pressure is hydrostatic within the layer, so that

p = ρg(H − z) + p0, (2.14)
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A sliding law for flows over fluid-saturated substrates

where p0 denotes the atmospheric pressure. Integrating the horizontal component of the
momentum equation gives the expression

S = μ
∂u
∂z

= −ρgHHx at z = 0, (2.15)

for the interfacial shear stress S. To arrive at this expression, we assumed that the upper
surface is stress free. Integrating once more yields the velocity,

u = ρg
2μ

(z2 − 2Hz)Hx + ūs, (2.16)

which we obtained after applying the interfacial condition

u = ūs at z = h, (2.17)

where ūs denotes the interfacial velocity (2.10). The expression (2.16) for the velocity
yields the depth-integrated flux, per unit width,

q =
∫ H

0
u dz = −ρg

μ

(
1
3

H3Hx + 𝓁H2Hx

)
. (2.18)

The first term is the usual contribution to the flux arising from the hydrostatic spreading
of the viscous fluid under its own weight over a no-slip substrate, in line with Huppert
(1982). The second term is a plug-like contribution to the flow arising from the sliding of
the thin film of viscous fluid over a slippery substrate.

Importantly, the same interfacial velocity (2.17) and depth-integrated flux (2.18) can be
obtained by replacing the interfacial velocity condition (2.17) by the Navier slip condition
(2.12) with a slip length 𝓁. This indicates that averaging out all the inhomogeneities
associated with the flow within each cavity gives rise to a macroscopic slip described
by the Navier slip condition.

The upper surface of the thin film of viscous fluid is itself a free surface, which evolves
according to the mass conservation equation

Ht = −qx. (2.19)

We assume the viscous fluid is fed at constant flux at the source, so that

q = q0 at x = 0, (2.20)

and that the flux, and, hence, the thickness, of the thin film of viscous fluid vanishes at its
leading edge x = xN , so that

q = 0 at x = xN . (2.21)

The leading edge x = xN(t) is itself evolving, and to determine it, we note that total mass
is conserved within the entire domain of the flow, so that∫ xN

0
H dx = q0t. (2.22)

These governing equations and boundary conditions fully determine the evolution of the
free surface.
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2.4. Non-dimensionalization
We non-dimensionalize the governing equations and boundary conditions describing the
flow of the overlying viscous gravity current, propagating over the slippery substrate, using
the scalings

H = 𝓁H̃, q = q0q̃, x = ρg𝓁4

μq0
x̃, t = ρg𝓁5

μq2
0

t̃, (2.23a–d)

involving the slip length 𝓁. These scalings reflect the typical thickness, extent and time
scale required for the viscous gravity current to reach a thickness comparable to the
slip length of the substrate. Upon dropping tildes, for convenience, we obtain the set of
dimensionless equations

Ht = −qx and q = −1
3

H3Hx − H2Hx, (2.24a,b)

within the domain 0 ≤ x ≤ xN , subject to the boundary conditions

q = 1 at x = 0 and q = 0 at x = xN, (2.25a,b)

and integral condition ∫ xN

0
H dx = t. (2.26)

These equations admit similarity solutions in various limits, which we discuss in the
following sections. It is important to note, however, that no dimensionless parameters
appear in the governing equations and boundary conditions, indicating that numerical
solutions, as well as all experimental data, for the evolution of the frontal position,
for example, should collapse onto a single curve under the choice of scaling (2.23a–d)
involving the slip length 𝓁, determined in § 2.1. This is indeed what happens for our series
of experiments described in § 4.

3. Similarity solutions

We discuss similarity solutions that arise at early and late times, and compare to the full
numerical solutions for intermediate times, in this section.

3.1. Early time similarity solution: very slippery limit
At early times, t � 1, when the thickness of the thin film of viscous fluid is small relative
to the slip length, or, equivalently, H � 1 in dimensionless terms, it follows that

H3Hx � H2Hx. (3.1)

In this limit,

q = −H2Hx, (3.2)

reflecting a mainly plug-like flow, in which the thin film of viscous fluid slides freely over
the slippery substrate. This may be thought of as a very slippery limit. A similarity solution
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A sliding law for flows over fluid-saturated substrates
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Figure 2. Rescaled similarity solutions showing the shape of the thickness of the viscous gravity current for
very slippery substrates t � (solid line) and no-slip substrates t � 1 (dashed line), together with square-root
(3.7) and cube-root, Huppert (1982), asymptotic solutions valid near the front (dots and squares, respectively).

can be found in this scenario, in which

H(x, t) = t1/4F(η), where η = xt−3/4. (3.3)

The similarity solution satisfies the governing equation

1
4

F − 3
4
ηF′ = (F2F′)′, (3.4)

boundary conditions

− F2F′ = 1 (η = 0), −F2F′ = 0 (η = ηN), (3.5a,b)

and integral constraint ∫ ηN

0
F(η) dη = 1. (3.6)

An asymptotic analysis near the front η = ηN reveals a square-root frontal singularity,

F ∼
[

3
2
ηN(ηN − η)

]1/2

as η → ηN . (3.7)

This asymptotic solution, valid near the front, is depicted in figure 2 in comparison to
the full numerical solution, valid over the whole domain. The structure of the frontal
singularity in this limit contrasts with the typical cube-root singularity inherent to the
front of thin films of viscous fluid over no-slip substrates, such as that found by Huppert
(1982), also depicted in figure 2. We note that the horizontal axis in figure 2 is scaled with
the nose position, so as to fix both viscous gravity currents to the interval [0, 1] and accent
the difference in the functional form of the frontal singularity between the early time and
the late time regimes.

A numerical solution of this problem reveals that the frontal position is given by
approximately ηN ≈ 1.116, which yields the power law

xN ∼ 1.116t3/4, (3.8)

for the position of the front as a function of time, as depicted in figure 3. In dimensional
terms, this becomes

xN dim ∼ 1.116

(
ρgq2

0𝓁

μ

)1/4

tdim
3/4, (3.9)

where the subscript dim denotes dimensional quantities. This power law involves a 𝓁1/4

dependence, which is proportional to M1/4, reflecting the fact that the coefficient of the
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10–2 10–1 100

t
101 102

10–1

100

xN

101 Full numerical solution

Early time similarity solution

Late time similarity solution

Figure 3. Rescaled frontal position as a function of time for the full problem, (2.24a,b)–(2.26) (solid line),
compared with two asymptotic results: (3.8) in the early time limit (dashed line) and (3.17) in the late time limit
(dotted line).

power law increases with the slip length, and hence, with the viscosity ratio. That is, the
more slippery the substrate, the larger the coefficient and, hence, the faster the propagation
of the front.

3.2. Late time similarity solution: no-slip limit
At late times, t � 1, when the thickness of the thin film of viscous fluid greatly exceeds
the slip length, or, equivalently, H � 1 in dimensionless terms, it follows that

H3Hx � H2Hx, (3.10)

and so in this limit,

q = −1
3

H3Hx, (3.11)

reflecting the flow of a classical viscous gravity current propagating over a no-slip
substrate, as considered by Huppert (1982). As found by Huppert (1982), such a flow is
self-similar and the similarity solution is of the form

H = t1/5F(η), where η = xt−4/5, (3.12)

where
1
5

F − 4
5
ηF′ = 1

3
(F3F′)′, (3.13)

−F3F′ = 1 (η = 0), −F3F′ = 0 (η = ηN), (3.14a,b)∫ ηN

0
F(η) dη = 1. (3.15)

The front exhibits a cube-root singularity,

F ∼
[

36
5

ηN(ηN − η)

]1/3

as η → ηN (3.16)

(see Huppert 1982), as depicted in figure 2 in comparison to the full numerical solution.
The former is valid near the nose only, while the latter is valid over the whole domain. In
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A sliding law for flows over fluid-saturated substrates

contrast to the early time regime, the front, instead, evolves like

xN ∼ 0.80t4/5 (3.17)

in the no-slip limit. This frontal propagation law is depicted in figure 3 in comparison to the
similarity solution (3.8), valid in the early time, very slippery limit, and the full numerical
solution, valid for intermediate times at which the thickness of the thin film of viscous
fluid is comparable to the slip length. In dimensional terms, the frontal propagation law
(3.17) becomes

xN dim ∼ 0.8

(
ρgq3

0
μ

)1/5

tdim
4/5, (3.18)

where, again, the subscript dim denotes dimensional quantities. In contrast to the prefactor,
the power-law exponent does not change much from the early time, slippery limit to the
late time, no-slip limit (the exponent changes from 3/4 to 4/5, respectively). However, there
is a noteworthy change in the prefactor in dimensional form. Unlike the slippery, early time
limit, the dimensional power law (3.18), and, in particular, its prefactor, is independent of
the slip length 𝓁, and, hence, the viscosity ratio M, in the no-slip limit. In particular, as the
substrate becomes less slippery, that is, as 𝓁 → 0, the prefactor tends towards a constant
that depends on the remaining physical parameters inherent to the upper layer alone. This
contrasts with the prefactor for the dimensional power law (3.9) in the early time, slippery
limit, which varies with the slip length as 𝓁1/4.

3.3. Full numerical solution for intermediate times
To compare the two frontal propagation laws (3.8) and (3.17) against the frontal position
for intermediate times, as depicted in figure 3, we solved the full system of partial
differential equations (2.24a–d)–(2.26) numerically. This was done by mapping the
evolving domain [0, xN] to the fixed interval [0, 1], discretising using second-order
accurate finite differences, and using a kinematic condition at the front to update the
evolution of the frontal position; see Kowal & Worster (2015) for a similar treatment.

The full numerical solution converges towards the asymptotic solution (3.8) for slippery
currents, at early times, as seen in figure 3. Figure 3 also shows that the full numerical
solution converges towards the asymptotic solution (3.17) for no-slip currents, at late times.
The change of regimes, from the early time regime to the late time regime, occurs when
the thickness of the thin film of viscous fluid is comparable to the slip length, which occurs
when t = O(1) under the scaling (2.23a–d). We can, therefore, expect slip to dominate the
dynamics for times t � 1, and for it to have little effect for t � 1.

We note that under the choice of scaling (2.23a–d) involving the slip length 𝓁,
determined in § 2.1, the full numerical solution depends on no dimensionless parameters,
indicating that all experimental data of the flow of thin films of viscous fluid over
structured, slippery substrates should collapse onto a single curve. We test this scaling
by performing a series of experiments described in § 4.

4. Experiments

We carried out a series of analogue fluid-mechanical experiments to test our theoretical
predictions. As shown schematically in figure 4, the experiments were carried out in a
perspex tank of dimensions 201 cm × 24.5 cm × 20.2 cm underlain by a cellular substrate
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Mirror

Calibration ruler

Reservoir gate

Reservoir

20.2 cm

24.5 cm

6.0 cm

195.0 cm

Periodic two-dimensional cells, 1 cm interval

Upper layer

Lower layer

Experimental tank

Figure 4. Schematic of our experimental set-up.

consisting of a sequence of open-top cavities of dimensions 1 cm × 1 cm × 20 cm,
arranged periodically, with period 1 cm, in the direction of flow.

Before each experiment, the cellular substrate was evenly pre-filled with low-viscosity,
lubricating fluid consisting of golden syrup diluted with 10–20 % potassium carbonate
solution of kinematic viscosity νl ≈ 3–50 cm2 s−1 and density ρl ≈ 1.4 g cm−3 up to
constant height 1 cm, within an 0.025 cm error. We use potassium carbonate solution
as an additive to golden syrup in order to decrease its viscosity without decreasing
its density so that it can be used as the underlying fluid, saturating the substrate.
A reservoir of high-viscosity fluid, consisting of golden syrup diluted with 0–5 %
potassium carbonate solution, giving rise to a kinematic viscosity of ν ≈ 50–320 cm2 s−1

and density ρ ≈ 1.4 g cm−3, was installed at the left-hand end of the tank. This
high-viscosity fluid was subsequently released to form a viscous gravity current over the
slippery, structured substrate, pre-filled with lubricating fluid.

Specifically, to initiate each experiment, the reservoir gate was lifted up to a specified
height so that the high-viscosity fluid spread under its own weight over the structured,
fluid-saturated substrate. The reservoir head was maintained constant during each
experiment by manual replenishment to give rise to a constant flux of upper-layer fluid.
The flux of upper-layer fluid was measured by comparing the mass of syrup used to the
duration of the experiment. The errors in general measurement of mass and time are within
�m = ±5 g and �t = ±1 s, respectively, owing to residual losses and human errors in
reaction time.

The densities of the two viscous fluids were prepared to match within an error of
�ρ ≈ 0–0.017 g cm−3 by suitable adjustment of the concentration of potassium carbonate
solution in water. We made sure that the lower-layer fluid was never less dense than the
upper-layer fluid, in order to avoid Rayleigh–Taylor instabilities at the interface between
the two viscous fluids. Different fluids were used for the two layers for all experiments
apart for experiment A, for which we used golden syrup diluted with 8 % water, giving
rise to a kinematic viscosity of ν = 37.2 cm2 s−1 and density ρ = 1.406 g cm−3, for both
layers. The full set of parameter values used in our experiments are shown in table 1.

The viscosities of both viscous fluids were measured using a Kinexus parallel-plate
rheometer to within a relative error of �μ/μ ≈ ±3 %, and the densities were measured
using a hydrometer to within ±0.001 g cm−3. As the viscosity of syrup is strongly
dependent upon its temperature, the temperature of the laboratory was measured with a
thermometer, to within an error of ±0.5 ◦C, and the viscosity measurements were carried
out under the same temperature. The error estimate for the viscosity measurement is based
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A sliding law for flows over fluid-saturated substrates

Experiment ν νl M ρ q0 𝓁
(cm2 s−1) (cm2 s−1) (−) (g cm−3) (cm2 s−1) (cm)

A 37.2 37.2 1 1.406 4.60 0.1
B 257.4 9.9 26 1.429 0.57 2.5
C 323.2 3.4 95 1.431 1.12 9.0
D 271.3 21.0 13 1.429 0.73 1.2
E 149.6 50.9 3 1.431 0.69 0.3
F 86.8 23.5 4 1.432 0.64 0.4
G 50.9 12.3 4 1.429 4.10 0.4
H 280.9 6.8 41 1.431 0.55 3.9
I 65.9 8.6 8 1.435 3.60 0.8
J 189.2 10.9 17 1.426 0.99 1.6

Table 1. Parameter values and slip lengths in our experiments.

upon the fluctuations and error in the measurement of the temperature. It also originates
from inherent differences in viscosity readings made in a sequence of measurements at
different shear stresses and different samples used in the parallel-plate rheometer. The
effect of mixing between the two viscous fluids was negligible on the time scale of our
experiments.

Experimental data was recorded by digital camera set up to take a sequence of
photographs of the side and top view of the experiments in one-second time intervals
for each experiment. Image processing techniques in Mathematica were used to extract the
frontal position xN as a function of time. As our experimental tank was of finite width, the
flow was not fully two dimensional as shear stresses owing to the presence of side walls
were present within boundary layers of roughly 1 cm, resulting in a non-uniform frontal
position when viewed from the top. To estimate this effect, a mirror was installed at an
angle above the experimental tank oriented towards the camera, from which we conclude
that this effect was insignificant.

A supplementary movie of one of our experiments is available at https://doi.org/10.
1017/jfm.2024.127. The interface between the two layers was observed to remain flat for
all experiments apart from experiment C, as seen in the photographs of the side views
of representative experiments in figure 5. This is in line with the assumptions of our
theory. Colour variation owing to a difference in the concentration of food colouring
was used to distinguish the two viscous fluids. For experiment C, the lower, lubricating
layer was of sufficiently low viscosity that it was viscously sheared along with the upper,
more viscous layer, leading to loss of lubricating fluid in the cells near the reservoir.
Additional long-wave, longitudinal instabilities, of a wavelength much larger than the
width of the cavities, emerged in this experiment. These have come about as a result of the
large viscosity difference between the two layers. Such instabilities have been previously
examined in a variety of contexts in which both fluids flowed over a planar substrate;
see, e.g. Yih (1967), Wang, Seaborg & Lin (1978), Hinch (1984) and Balmforth, Craster
& Toniolo (2003). The onset of such long-wave instabilities is reduced over the cellular
substrate. Specifically, higher viscosity ratios were observed to be required in order for
instabilities to emerge over the cellular substrate. As the two fluids are miscible, there is
no surface tension at the interface between them, so surface tension should not contribute
to the onset of these long-wave instabilities, observed in experiment C.

Raw experimental data for all of our experiments as well as a comparison of rescaled
experimental data against our theoretical predictions for the frontal position as a function
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(b)

(a)

(c)

Figure 5. A sequence of photographs of the side views of representative experiments. (a) Experiment A (M ≈
1) for t = 10, 20, 30, (b) experiment D (M ≈ 13) for t = 90, 180, 270 and (c) experiment C (M ≈ 95) for
t = 30, 90, 150. Depletion of the lower layer as well as the onset of a long-wave instability is observed for
experiment C.

of time are shown in figure 6. The experimental data collapse onto a single curve in
rescaled coordinates involving the viscosity ratio. The span of experimental data covers
both the very slippery limit (t � 1) and the no-slip limit (t � 1) over several orders of
magnitude, confirming the validity of the viscosity ratio as a measure of the slip length
and the appropriateness of the identified scalings.

Experimental data for the frontal position of experiment C, for which longitudinal
instabilities and depletion of the lower layer have been observed, is consistently lower
than the theoretical predictions. We attribute this to the combination of two factors. The
first factor involves the depletion of the lower layer, which effectively reduces slip. The
second factor involves excess lubricating fluid, which was viscously sheared along with
the upper layer and has accumulated near the nose of the upper layer for this experiment.
The accumulation of lower-layer fluid near the front of propagation of the upper layer
induced a back pressure near the front. A secondary effect that starts manifesting itself
in the very slippery limit is the effect of viscous extensional stress. While the experiment
with the largest disagreements is experiment C (with the largest viscosity ratio), similar
effects may affect experiments H and B (with the next largest viscosity ratios) to a lesser
degree.

5. Conclusions

Motivated by gravity-driven flows of viscous fluids that slide at their base, we develop a
theoretical and experimental framework for generating slip in the laboratory. We do so by
examining flow over a slippery substrate consisting of periodic, fluid-filled cavities and
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Figure 6. (a) Raw experimental data depicting the extent of slippery viscous gravity currents for all of our
experiments. (b) Comparison of our experimental data (symbols) for the frontal position against our theoretical
prediction (solid curve) in dimensionless coordinates.

develop a macroscopic mathematical framework for modelling such slip. An advantage of
this framework is that it provides a simple mechanism for controlling the degree of slip
experimentally. We also verify our findings by conducting a series of fluid-mechanical
laboratory experiments with simple fluids.

In particular, we have shown that the slippery substrate considered in this study gives
rise to effective basal sliding, which can be described macroscopically by a Navier slip
condition, or a linear sliding law. This was shown by leveraging the separation of scales
inherent to the problem and averaging out over the small-scale inhomogeneities associated
with each cavity. We found that the slip length, characterising the slipperiness of the
substrate, is proportional to the ratio of the viscosity of the overlying viscous gravity
current to that of the underlying liquid saturating the structured substrate. The slip length
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is also proportional to the depth of each cavity. This means that a substrate saturated with
a low-viscosity fluid gives rise to large slip lengths, as expected on physical grounds. The
slip lengths seen in our experiments span two orders of magnitude, from 0.1 cm to 9 cm.

Two dynamical regimes appear: very slippery currents (at early times) and no-slip
currents (at late times). Both of these limits yield similarity solutions. The critical time
at which an exchange of regime occurs is the time at which the thickness of the thin film
of overlying viscous fluid is comparable to the slip length. Essentially, slip is significant
for flows of depth smaller than the slip length, and is insignificant for flows of depths
larger than the slip length. Our experiments confirm a scaling relationship for the evolution
of the front, up to the appearance of long-wave interfacial instabilities for high-viscosity
ratios. In the very slippery limit, the similarity solution and scaling relationship for the
frontal position reveals that its prefactor increases with the slip length and viscosity ratio
as 𝓁1/4 and M1/4, respectively. This indicates that the slippier the substrate, the faster the
propagation of the front. This also contrasts with the no-slip limit, for which the prefactor
is independent of the slip length.

Supplementary movie. Supplementary movie of one of our experiments is available at https://doi.org/10.
1017/jfm.2024.127.
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