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SIMPLE GROUPS OF SMALL ENGEL DEPTH

ROLF BRANDL AND DANIELA B, NIKOLOVA

It is proved that the simple group PSL(23q) satisfies a law

\_x3 _y] = [Xj yl j s > 3, if and only if q = 43 5, 8.

1. Introduction.

Every finite group G satisfies a law

[X'J)] = Ca;̂  i/U , for some S > r ,

where

= x, lx,nyl = [ C^n32/3 ,!/3 . for

If r is chosen minimal with respect to this property, then r is

called the Engel depth of G ([7]). It was proved in [2], [?] and [5]

that finite groups of Engel depth r < 2 are soluble. However, there

are nonabelian simple groups of depth three. For example, the groups

PSL(2,4) and PSL(2}8) have this property, as can be seen from the

following table exhibiting the minimal parameters r, s for some groups
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G = PSL(2,q):

\G\

V

s

4

60

3

63

7

168

4

172

8

504

3

129

9

360

4

124

11

660

6

1986

13

1092

7

2191

The computations have been performed on a 27? 440 at the Rechen-

zentrum der Universitat WUrzburg and on an EC 1040 at the Computing

Centre of the Bulgarian Academy of Sciences, Sofia. Note that there seems

to be a relationship between s-r and the order of the group.

We are interested in finite simple groups contained in the class

V of all finite groups of Engel depth £ r. In this context a theorem

of H. Heineken and P. M. Neumann [3] deserves attention, stating that any

nontrivial variety of groups contains only finitely many of the finite

simple groups PSL(2,q) or Sz(q). The classes V^, are not varieties,

but we feel that they should have some common properties with varieties.

In particular, we conjecture that any 1/ contains only finitely many

nonabelian simple groups.

Here we prove the following

THEOREM. Let G = PSL(2,q), for q>_ 4. Then G e \l3 if and

only if q = 4, 5, or 8.

There is some evidence that the groups mentioned above are the

only finite simple groups in V . For example, the smallest Suzuki group

Sz(8) has Engel depth at least 11.

2. Proof of the Theorem

For the proof of the Theorem we need to construct elements x}y e G,

such that \_x, y] , for all s > 3. In computational experiments

such elements abound, but for a general proof some care is needed. Our

choice is motivated by the following
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Example. Let G = PSL(2,9). For all x, y e G, such that

\y\ ̂  4, we have [x, ,t/] = [Xj-,y] . Nevertheless, there exist x e G

e~2 0}
and y = \ e. G* , for some e £2FO, such that [a;̂  _y] is not a

<9 e-1

transvection, but [x, y] is a transvection, for all s > 3.
s

The following result exhibits elements of Engel depth three:

LEMMA 1. Let q be a prime power and let X 3 s, u3 e e JF be

such that

Let 3- =
Xe

e Xu

Xsutt - e ) = 1 and e f 0 .

-1

and y =
0

0

(C).

Then

4 ± !> s - 3-

Proof. The statement follows from a straightforward calculation,

as Ls.j y ] are all transvections, for S'> 3.

The next result reduces the proof of the Theorem to solving a

quadratic equation in the field of q elements.

LEMMA 2. If the equation

(1 - e V +
A 9

e - l)u + e• = 0 (E)

has a solution u, e e W , where e ^ 0, ±1, then there exists

z e PSL(2,q), such that ts , . ! / ] f [s , j ] , for all s > 4.
o's"

Proof. Let z and y be as in Lemma 1. According to it, it

suffices to find z e PSL(2,q) , such that [ z , y] = z . Let

* Henceforth, we shall identify 2x2-matrices in SL(2,q)

with their images in PSL(2,q).
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= ( j ) . Then [ z jj/] = Z- is equivalent to y z y = z z ,
Q CL O J. O O J.

that is to

-2
e Q

a z2b

d

\ea Xub sa+ub\

iso + e \ud sa+ud

This in turn, is equivalent to the following system of linear

equations for a, b, e, d:

(\s-l)a + e Xub

2
sa + (u-z )b

(Xfs-e~2)c

= 0

= 0

= 0

so + (u-l)d = 0 .

(S)

There exists a solution (a,b) \= (0,0) if and only if

= 1 - u + e (1 - \s) = 0.

Similarly, there exists a nontrivial solution (a3d) if and only if

D. =
1

Xfl-2

s

e Xu

u-e*

D2 =

Xs-e 2,
e Xu = Z 2(1 - U + Z

2(l - \8)) = 0.

S U-l

Both conditions are equivalent to

= 0 .

Using the condition (C) from Lemma 1, we get that (S) has a

nontrivial solution If and only if

(l-e2)u2 + (e4-l)u +z2 = 0

has a solution u, £ e JF 3 where e \= 0,+ 1. Then the parameters X

s can be determined from (C).

Moreover, it follows from (S) that the vectors (a, b) and

(Xs-1} e Xu) are perpendicular with respect to the usual scalar product,

-2 2

so are the vectors (a, d) and (Xs-z , e Xu). Hence, if all non-

trivial solutions (a, b) and (c,d) of (S) were linearly dependent,
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2 -2 2
then (Xet-1, z Xu) and (Xs-z , z Xu) would be linearly dependent.

2 —2

But (C) implies that e Aw ^ 0 and so \s-l = A-s-e , contradicting

our assumption z \= 1. So, there exists 3 e. GL(2,q) with detCz j f 0

and [z jj/] = z . Multiplying the first row of z by the inverse of

detfs ), we get an element of PSL(2,q) with the required properties.

We now solve (E) in JF . Let
q

F(x,y) = (1 - y2)x2 + (y4 - l)x + y2

and let N be the number of pairs (u,z ) e JF x jp such that

F(u3 £•) = 0. A simple appeal to Eisenstein's Theorem shows that F

is absolutely irreducible. Prom a well-known Theorem of A. Weil in

Algebraic Geometry (see [6 ;p. 449]) it follows that \N - q\ < 12 fq + 5.

There are at most six "trivial" solutions u,z of (E) where
2
e = 0,± 1. Hence if q > 169, we get N > 7 and so (E) has at least

one "nontrivial" solution.

We now deal with the remaining cases. First let q be odd.

Then (E) has a solution u e IF if and only if its discriminant

D(e) = (z4 - 2z + l)(z4 + 2e + 1)

is a square in IF . Hence our problem is reduced in this case to

2
proving that there exists e e IF , z ^ 0,± 1 such that D(z) is a

square. If q = p with 7 < p < 168 , then a direct calculation shows

that such z e W exists.
P

We consider the cases p = 2,3,5 separately. Here the problem is

more complicated as PSL(2,p), PSL(2,4) and PSL(2,8) belong to l/_

6

and so, in these cases (E) does not have any solution with the required

properties.
f f

Let q = 3 or q = 5 . As JF * contains IF , for every
P P

divisor d of / , we may assume that f is a prime. So it remains

to consider the cases when / = 2,3.
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We have

Dfx) = (x2 - 1)(x3 + x2 + x - 1)(x3 - x2 + x + 1) ,

where the cubic factors are irreducible over W~ and JFC . Hence, if
o o

2
f = 3, there exists e e JF , e J 0, + 1 , such that D(e) = 0 .

Now, let z.. e Wg be a root of the polynomial X + X - 1 . Then

2
D(z~) = - e7 . As -1 is a square in £ , D(z-.) is a square. More-

l i y i

2 2
over, Zy = - Zy + 1 implies £ / 03 + 1 . Similarly, if e e ]E

o 2
is a root of XT' - X + 1 , then flfe.J = 4 and e , ? 0, + 1 .

The following result completes the proof of the Theorem.

LEMMA 3. Let q = 2^3 where f t 4 . Then (E) has a solution

u, e eW , such that z k 0, 1.

Proof. In characteristic 2 equation (E) reads as follows:

(l+z)2u2 + (l+e)4u + e2 = 0 .

2
Let e =f i. Setting u = y(l+z) the solubility of (E) is

equivalent to the solubility of

y + y + v(z) = 0 , where \i(z) = e /(1+z)

Now, by Hilbert's Theorem 90[4, p. 215] this is equivalent to

showing that there exists e with Tr(\i(z))= 0. Let e = z~ + 1 .

4 6
Then ufe; = e + z and so

Tr(v(z)) = Trfzp+Trfzp = Tr(z^+Tr(z3,) ,

o
since Tr(a) = Tc(a ) , a e JF . Hence if (E) cannot be solved, then

and so

Tr(a)+Tr(a3) = 1 , for a l l a + °>

g(x) = (x2+x)(Tr(x)+Tr(x3)

https://doi.org/10.1017/S0004972700003117 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003117


Small Engel Depth 251

would be zero on JF . Hence, g(x) would be d iv i s ib l e by x" + x.

We now show that t h i s i s not the case i f / > 4 . We have

f-1 f-1
P 1 P 3 P^-"' Pi 3 P

g(x) = (x +x)(1+x+x +..,+x +x ' +...+X +x ) .

As the degree of g(x) is less than 2q-l =2^ -1 , for f > S,

it is sufficient to consider the coefficients of x" and x . If we can

show that these are different, then it is clear that g(x) is not

divisible by x" + x . Now, every exponent occuring in g(x) equals 1

or is of the form

2%+l, 2V+2, 5.2V+1, 3.2V+2, for some 0 < i < f-1.

If i 2 2, then all of these numbers are congruent to 1 or 2

Cmod 4) , and if -1 = 0, 1, then these numbers are equal to 2, 3> 4, S,

7, 8. As q > 16, the coefficient of x" is zero. As the coefficient

of x equals 1, the conclusion follows.
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