CORRIGENDUM

Effect of a cod protein hydrolysate on postprandial glucose metabolism in healthy subjects: a double-blind cross-over trial — CORRIGENDUM

Hanna Fjeldheim Dale1,2*, Caroline Jensen1, Trygve Hausken1,2,3, Einar Lied4, Jan Gunnar Hatlebakk1,2,3, Ingeborg Bronstad5,6, Dag Arne Lihaug Hoff7,8 and Gülen Arslan Lied1,2,3

1Department of Clinical Medicine, Centre for Nutrition, University of Bergen, Bergen, Norway
2Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
3National Centre of Functional Gastrointestinal Disorders, Haukeland University Hospital, Bergen, Norway
4Firmenich Bjørg Biomarin AS, Ellingsøy, Ålesund, Norway
5Department of Clinical Medicine, University of Bergen, Bergen, Norway
6National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
7Division of Gastroenterology, Department of Medicine, Ålesund Hospital, More & Romsdal Hospital Trust, Ålesund, Norway
8Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway

Journal of Nutritional Science (2019), vol. 8, e1, page 1 of 2 doi:10.1017/jns.2018.30, Published online by Cambridge University Press, 28 November 2018

doi:10.1017/jns.2018.23, Published online by Cambridge University Press, 28 November 2018

Original text and correction:

ORIGINAL TEXT (page 3, Subjects and methods)

Fig. 1. Flowchart depicting the inclusion process for the study evaluating the effect of a marine protein hydrolysate (MPH) from Atlantic cod (Gadus morhua) on postprandial glucose metabolism in healthy individuals aged 40–65 years. Participants were recruited through advertisements on the Internet and posters at Haukeland University Hospital and Ålesund Hospital between October 2017 and February 2018.

Fig. 2. Study protocol for the evaluation of the effect of a marine protein hydrolysate (MPH) from Atlantic cod (Gadus morhua) on postprandial glucose metabolism. We included forty-one healthy subjects (age range 40–64 years).

CORRECTION

Fig. 1. Study protocol for the evaluation of the effect of a marine protein hydrolysate (MPH) from Atlantic cod (Gadus morhua) on postprandial glucose metabolism. We included forty-one healthy subjects (age range 40–64 years).

Fig. 2. Flowchart depicting the inclusion process for the study evaluating the effect of a marine protein hydrolysate (MPH) from Atlantic cod (Gadus morhua) on postprandial glucose metabolism in healthy individuals aged 40–65 years. Participants were recruited through advertisements on the Internet and posters at Haukeland University Hospital and Ålesund Hospital between October 2017 and February 2018.

* Corresponding authors: H. F. Dale, email hanna.dale@outlook.com; C. Jensen, email caroline.j@uib.no

© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
ORIGINAL TEXT (page 8, Acknowledgements)

E. L. is Professor Emeritus at the University of Bergen, Bergen, Norway and the managing director of Science of Firmenich Bjørge Biomarin AS, Ellingsoy, Ålesund, Norway. The other authors declare no conflict of interest.

CORRECTION

E. L. is Professor Emeritus at the University of Bergen, Bergen, Norway, and former Scientific Advisor of Firmenich Bjørge Biomarin AS, Ellingsøy, Ålesund, Norway, where he holds a royalty agreement. The other authors declare no conflict of interest.

Reference