ON THE SINGULAR BEHAVIOUR OF THE TITCHMARSH-WEYL m-FUNCTION FOR THE PERTURBED HILL'S EQUATION ON THE LINE

DOMINIC P. CLEMENCE

Abstract. For the perturbed Hill's equation on the line,

$$
-\frac{d^{2} y}{d x^{2}}+[P(x)+V(x)] y=E y, \quad-\infty<x<\infty
$$

we study the behaviour of the matrix m-function at the spectral gap endpoints. In particular, we extend the result of Hinton, Klaus and Shaw that E_{n}, a gap endpoint, is a half-bound state (HBS) if and only if $\left(E-E_{n}\right)^{\frac{1}{2}} m(E)$ approaches a nonzero constant as $E \rightarrow E_{n}$, to the present case.

1. Introduction. In this short note we study the behaviour of the Titchmarsh-Weyl m-function for the equation

$$
\begin{equation*}
-\frac{d^{2} y}{d x^{2}}+[P(x)+V(x)]=E y, \quad-\infty<x<\infty \tag{1.1}
\end{equation*}
$$

Under the assumption that $P(x)$ and $V(x)$ are real-valued potentials with $P(x) \in L_{1}([0,1])$, $P(x+1)=P(x)$ and

$$
\int_{-\infty}^{\infty}(1+|x|)|V(x)| d x<\infty
$$

the spectrum of the operator H induced by (1.1) on $L_{2}(\mathbf{R})$ is well known. In particular, it consists of an absolutely continuous part which is the union of closed intervals of type [$E_{2 n,} E_{2 n+1}$], $-\infty<E_{0}<E_{1} \leq E_{2}<E_{3} \cdots$ and may have at most a finite number of eigenvalues in any of the spectral gaps ($E_{2 n+1}, E_{2 n+2}$). Information about eigenvalues of H is readily available in the literature (see [10] for example).

Our concern in this article is the Titchmarsh-Weyl m-function associated to (1.1), in particular its behaviour at the spectral gap endpoints. Specifically, we extend the four-part m-function spectral characterization of Hinton and Shaw [9] to the case when a spectral point E_{n} is a so-called half-bound state (HBS), by which we mean that the equation $H y=E_{n} y$ has a nontrivial bounded solution which is not square integrable.

The problem we study here has been studied by Hinton, Klaus and Shaw [7] for the operator H restricted to $L_{2}([0, \infty))$, and as such our result here is an extension of that paper. Similar results have been obtained in [8] and [1] for the case where $P(x) \equiv 0$ in the Dirac counterpart of (1.1) as well as for the periodic Dirac case [2] on $[0, \infty)$. The methods used in all the above-mentioned papers are similar, and we continue in the same

[^0]spirit in the present article. As a result, we shall only provide outlines of our proofs and refer the reader accordingly for details; in particular, we rely heavily on the analysis of [4]. Let us point out that the analysis presented here also works for the Dirac System, in view of [3].

This paper is organized as follows. In the next section we introduce all the pertinent solutions of (1.1), relabel the spectral parameter by the so-called quasimomentum, and express the m-function in terms of Jost-type functions. Then in Section 3 we present the asymptotic behaviour of the m-function, which we obtain via the asymptotic behaviour of our Jost-type functions.
2. Preliminaries. To begin with, we want to regard (1.1) as a perturbation of the equation

$$
\begin{equation*}
-\frac{d^{2} y}{d x^{2}}+P(x) y=E y, \quad-\infty<x<\infty \tag{2.1}
\end{equation*}
$$

with $P(x)$ as in (1.1). Now, let $\phi_{0}(x, E)$ and $\theta_{0}(x, E)$ be the solutions of (2.1) satisfying the conditions

$$
\begin{equation*}
\theta_{0}(0, E)=\theta_{0}^{\prime}(0, E)=1 \quad \text { and } \quad \phi_{0}(0, E)=\phi_{0}^{\prime}(0, E)=0 . \tag{2.2}
\end{equation*}
$$

Further denote $\phi_{0}(E)=\phi_{0}(1, E), \theta_{0}(E)=\theta_{0}(1, E)$, and recall the definition of the quasimomentum k [6]:

$$
\begin{equation*}
k=k(E)=\cos ^{-1}[\triangle(E)] \tag{2.3}
\end{equation*}
$$

where $\triangle(E)=\frac{1}{2}\left[\phi_{0}^{\prime}(E)+\theta_{0}(E)\right]$. The properties of k are well documented in [6] and recaptured in [4]. In the sequel, our spectral parameter will be k, and hence we shall write $\phi_{0}(x, k)$ in place of $\phi_{0}(x, E)$, etc.

Next, let us recall that the m-functions $m \pm(k)$ associated with (1.1) are defined by

$$
\begin{equation*}
m \pm(k)=\lim _{x \rightarrow \pm \infty}-\frac{\theta(x, k)}{\phi(x, k)} \tag{2.4}
\end{equation*}
$$

where $\theta(x, k)$ and $\phi(x, k)$ are solutions of (1.1) satisfying condition (2.2), with a similar definition for $m_{0} \pm(k)$ associated with (2.1). Then we know from the Titchmarsh-Weyl theory that for $\Im k>0$, we have that

$$
\begin{gather*}
\psi_{0}^{+}(x, k) \equiv \theta_{0}(x, k)+m_{0}^{+}(k) \phi_{0}(x, k) \in L_{2}(0, \infty) \tag{2.5}\\
\psi_{0}^{-}(x, k) \equiv \theta_{0}(x, k)+m_{0}^{-}(k) \phi_{0}(x, k) \in L_{2}(-\infty, 0) \tag{2.6}
\end{gather*}
$$

Further, the Floquet theory provides us with functions $\xi^{ \pm}(x, k)$ with $\xi^{ \pm}(x+1, k)=\xi^{ \pm}(x, k)$, $\xi^{ \pm}(0, k)=1$, such that

$$
\begin{equation*}
\psi_{0}^{ \pm}(x, k)=\xi_{0}^{ \pm}(x, k) e^{ \pm i k x} \tag{2.7}
\end{equation*}
$$

From (2.3), (2.5)-(2.7), we arrive at

$$
\begin{equation*}
\left[\psi_{0}^{+}(\cdot, k) ; \psi_{0}^{-}(\cdot, k)\right]=m_{0}^{-}(k)-m_{0}^{+}(k)=-\frac{2 i \sin k}{\phi(k)} \tag{2.8}
\end{equation*}
$$

where $[f(\cdot) ; g(\cdot)]$ denotes the Wronskian of $f(\cdot)$ and $g(\cdot)$. In addition to the solutions $\theta(x, k)$ and $\phi(x, k)$ introduced above, we also have the Jost solutions $F^{ \pm}(x, k)$ of (1.1), which are defined by the integral equations

$$
\begin{align*}
F^{+}(x, k) & =\psi_{0}^{+}(x, k)-\int_{x}^{\infty} A(x, t ; k) V(t) F^{+}(t, k) d t \tag{2.9}\\
F^{-}(x, k) & =\psi_{0}^{-}(x, k)+\int_{-\infty}^{x} A(x, t ; k) V(t) F^{-}(t, k) d t \tag{2.10}
\end{align*}
$$

where

$$
\begin{equation*}
A(x, t ; k) \equiv-\left[\psi_{0}^{+}(\cdot, k) ; \psi_{0}^{-}(\cdot, k)\right]^{-1}\left[\psi_{0}^{+}(x, k) \psi_{0}^{-}(t, k)-\psi_{0}^{-}(x, k) \psi_{0}^{+}(t, k)\right] . \tag{2.11}
\end{equation*}
$$

Let us define the following functions, which we call Jost functions. For any solution y of (1.1) we define

$$
\begin{equation*}
F_{y}^{+}(k)=\left(-m_{0}^{+}(k), 1\right)\binom{y(0, k)}{y^{\prime}(0, k)}+\int_{0}^{\infty} \psi_{0}^{+}(t, k) V(t) y(t, k) d t \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y}^{-}(k)=\left(-m_{0}^{-}(k), 1\right)\binom{y(0, k)}{y^{\prime}(0, k)}+\int_{0}^{\infty} \psi_{0}^{-}(t, k) V(t) y(t, k) d t \tag{2.13}
\end{equation*}
$$

It is then a straightforward exercise (see [9]) to show that

$$
\begin{equation*}
y(x, k)=\frac{\xi_{0}^{+}(x, k) e^{i k x}}{m_{0}^{-}(k)-m_{0}^{+}(k)}\left[F_{y}^{+}(k)+o(1)\right] \quad \text { as } x \rightarrow+\infty \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
y(x, k)=\frac{\xi_{0}^{-}(x, k) e^{-i k x}}{m_{0}^{-}(k)-m_{0}^{+}(k)}\left[F_{y}^{-}(k)+o(1)\right] \quad \text { as } x \rightarrow-\infty . \tag{2.15}
\end{equation*}
$$

In view of (2.4), we therefore arrive at the m-function representations

$$
\begin{equation*}
m^{+}(k)=-\frac{F_{\theta}^{+}(k)}{F_{\phi}^{+}(k)} \quad \text { and } \quad m^{-}(k)=-\frac{F_{\theta}^{-}(k)}{F_{\phi}^{-}(k)} . \tag{2.16}
\end{equation*}
$$

Recalling that the whole-line m-function for (1.1) is (suppressing the k-dependence)

$$
M(k)=\left(m^{-}-m^{+}\right)^{-1}\left(\begin{array}{cc}
1 & \frac{1}{2}\left(m^{-}+m^{+}\right) \\
\frac{1}{2}\left(m^{-}+m^{+}\right) & m^{-}+m^{+}
\end{array}\right),
$$

we therefore arrive at the representation, by (2.16),

$$
M(k)=\left(\begin{array}{ll}
m_{11} & m_{12} \tag{2.17}\\
m_{21} & m_{22}
\end{array}\right)
$$

where $m_{11}=\frac{F_{\phi}^{+}(k) F_{\phi}^{-}(k)}{F(k)}, m_{22}=\frac{F_{\theta}^{+}(k) F_{\theta}^{-}(k)}{F(k)}$ and $m_{12}=m_{21}=\frac{F_{\theta}^{+}(k) F_{\phi}^{-}(k)+F_{\phi}^{+}(k) F_{\theta}^{-}(k)}{2 F(k)}$ with $F(k) \equiv$ $F_{\phi}^{+}(k) F_{\phi}^{-}(k)-F_{\theta}^{+}(k) F_{\phi}^{-}(k)$. It is easy to check that

$$
\begin{gather*}
F(k)=\left[F^{+}(\cdot, k) ; F^{-}(\cdot, k)\right], \tag{2.18}\\
F_{y}^{+}(k)=\left[F^{+}(\cdot, k) ; y(\cdot, k)\right] \text { and } F_{y}^{-}(k)=\left[F^{-}(\cdot, k) ; y(\cdot, k)\right] . \tag{2.19}
\end{gather*}
$$

3. Asymptotic behaviour of $M(E)$. The asymptotic behaviour of the m-function at the gap endpoints k_{n}, which is our aim in this note, is now easily deduced from that of the Jost-type functions $F_{\phi}^{ \pm}(k), F_{\theta}^{ \pm}(k)$ and $F(k)$.

First, let us note that the numerators in the expression for $M(k)$, (2.17), do not simultaneously vanish at $k=k_{n}$. This is due to the well-known [5] behaviour of the solutions of (1.1) at $k=k_{n}$, in particular that one solution is bounded while another is unbounded, and the following lemma, whose proof we omit.

Lemma 1 (See [4] Lemma (2.1)). Let $Z\left(x, k_{n}\right)$ be a solution of (1.1) for $k=k_{n}$. Then $Z\left(x, k_{n}\right)$ is bounded for $x \geq 0$ (resp., $x \leq 0$) if and only if $F_{z}^{+}\left(k_{n}\right)=0\left(\operatorname{resp} ., F_{z}^{-}\left(k_{n}\right)=0\right)$.

In particular, Lemma 1 tells us, since $\phi\left(x, k_{n}\right)$ and $\theta\left(x, k_{n}\right)$ cannot be simultaneously bounded as either $x \rightarrow+\infty$ or $x \rightarrow-\infty$, that the pairs $\left(F_{\theta}^{+}\left(k_{n}\right), F_{\phi}^{+}\left(k_{n}\right)\right)$, and $\left(F_{\theta}^{-}\left(k_{n}\right), F_{\phi}^{-}\left(k_{n}\right)\right)$ are non-vanishing.

It therefore only remains to compute the asymptotic behaviour of $F(k)$ as $k \rightarrow k_{n}$. In the case we do not have a HBS at $k=k_{n}$, then $F^{+}\left(x, k_{n}\right)$ and $F^{-}\left(x, k_{n}\right)$ are linearly independent and hence, by (2.18), $F\left(k_{n}\right)$ is nonzero. Therefore in this case $M(k)$ approaches a nonzero constant matrix as $k \rightarrow k_{n}$.

In case we have a HBS at $k=k_{n}$, so that there is a constant a_{n} with $F^{+}\left(x, k_{n}\right)=$ $a_{n} F^{-}\left(x, k_{n}\right)$, we proceed as follows. Define a solution $z(x, k)$ by

$$
\begin{equation*}
z(x, k)=F^{+}\left(0, k_{n}\right) \theta(x, k)+{F^{+\prime}}^{\prime}\left(0, k_{n}\right) \phi(x, k), \tag{3.1}
\end{equation*}
$$

where we assume, without loss, that $F^{+}\left(0, k_{n}\right) \neq 0$. It is then a straightforward calculation to arrive at the identity

$$
\begin{equation*}
F^{+}\left(0, k_{n}\right)\left[F^{+}(\cdot, k) ; F^{-}(\cdot, k)\right]=F^{-}(0, k)\left[F^{+}(\cdot, k) ; z(\cdot, k)\right]-F^{+}(0, k)\left[F^{-}(\cdot, k) ; z(\cdot, k)\right] \tag{3.2}
\end{equation*}
$$

Using (2.19) and (3.1), we easily arrive at the identities

$$
\left[F^{+}(\cdot, k) ; z(\cdot, k)\right]=-m_{0}^{+}(k) F^{+}\left(0, k_{n}\right)+F^{+\prime}\left(0, k_{n}\right)+\int_{0}^{\infty} \psi_{0}^{+}(t, k) V(t) z(t, k) d t
$$

and

$$
\left[F^{-}(\cdot, k) ; z(\cdot, k)\right]=-m_{0}^{-}(k) F^{+}\left(0, k_{n}\right)+F^{+\prime}\left(0, k_{n}\right)+\int_{-\infty}^{0} \psi_{0}^{-}(t, k) V(t) z(t, k) d t
$$

Writing, in the preceding identities,

$$
\begin{aligned}
\psi_{0}^{ \pm}\left(t, k_{n}\right) V(t) z(t, k)=\psi_{0}^{ \pm} & \left(t, k_{n}\right) V(t) z(t, k)+\left[\psi_{0}^{ \pm}(t, k)-\psi_{0}^{ \pm}\left(t, k_{n}\right)\right] V(t) z\left(t, k_{n}\right) \\
& +\psi_{0}^{ \pm}(t, k) V(t)\left[z(t, k)-z\left(t, k_{n}\right)\right]
\end{aligned}
$$

and using standard bounds on the bracketed terms as well as the boundedness of $z\left(t, k_{n}\right)$, we finally obtain (see [4] for details, and [3] for the Dirac case), as $k \rightarrow k_{n}$ through real values,

$$
\begin{equation*}
\left[F^{+}(\cdot, k) ; z(\cdot, k)\right]=(-1)^{n+1} i\left[\phi_{0}\left(k_{n}\right)\right]^{-1}\left(k-k_{n}\right)+o\left(k-k_{n}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[F^{-}(\cdot, k) ; z(\cdot, k)\right]=(-1)^{n} a_{n} i\left[\phi_{0}\left(k_{n}\right)\right]^{-1}\left(k-k_{n}\right)+o\left(k-k_{n}\right) \tag{3.4}
\end{equation*}
$$

Combining (3.2)-(3.4) we hence obtain that as $k \rightarrow k_{n}$ through real values,

$$
\begin{equation*}
F(k)=\frac{(-1)^{n+1} i\left(a_{n}^{2}+1\right)}{\phi_{0}\left(k_{n}\right) a_{n}}\left(k-k_{n}\right)+o\left(k-k_{n}\right) . \tag{3.5}
\end{equation*}
$$

To extend the validity of (3.5) to complex values, we note the bound

$$
\begin{equation*}
\left|F^{ \pm}(x, k)\right| \leq C e^{\mp \Im\left(k-k_{n}\right) x}(1+\max \{\mp x, 0\}), \tag{3.6}
\end{equation*}
$$

which follows from (2.9), (2.10) and the bound

$$
|A(x, t)| \leq C e^{\mp \Im\left(k-k_{n}\right) x}(1+|x-t|) .
$$

In view of (3.6) and (2.18), we may therefore apply the Phragmen-Lindelöf theorem to conclude validity of (3.5) in the sector

$$
0 \leq \arg \left(k-k_{n}\right) \leq \pi
$$

Before we summarise our considerations in the form of a theorem, let us note that (2.3), by simple expansion, yields an analytic function $g(k)$ which does not vanish at $k=k_{n}$ such that

$$
E-E_{n}=g\left(k_{n}\right)\left(k-k_{n}\right)^{2} \quad \text { as } E \rightarrow E_{n} .
$$

We therefore have the following result.
THEOREM 2. The point $E=E_{n}$ is an HBS if and only if there exists a non-zero constant matrix C_{n} such that

$$
\lim _{E \rightarrow E_{n}}\left(E-E_{n}\right)^{\frac{1}{2}} M(E)=C_{n} .
$$

Moreover, if E_{n} is not an HBS, then $M(E)$ approaches a nonzero constant matrix as $E \rightarrow E_{n}$.
4. Acknowledgements. I thank the anonymous referees who made useful suggestions about the statement of Theorem 2. I also thank my dearest friend, Belinda G. B. Clemence, for the expert typesetting of the manuscript.

References

1. D. P. Clemence, On the Titchmarsh-Weyl M(λ)-coefficient and spectral density for a Dirac system. Proc. Roy. Soc. Edinburgh Sect. A 114(1990), 259-277.
2. $\xrightarrow{\text { 2. M-function behaviour for a periodic Dirac System. Proc. Roy. Soc. Edinburgh Sect. A 124(1994), }}$ 149-159.
3.
4. D. P. Clemence and M. Klaus, Continuity of the S-matrix for the perturbed Hill's equation. J. Math. Phys. 35(1994), 3285-3300.
5. W. A. Coppel, Stability and Asymptotic Behaviour of Differential Equations. Boston, D. C. Heath and Co, 1965.
6. N. E. Firsova, Riemann surface of quasimomentum and scatter theory for the perturbed Hill operator. J. Soviet Math. 11(1979), 487-497.
7. D. B. Hinton, M. Klaus and J. K. Shaw, On the Titchmarsh-Weyl function for the half line perturbed periodic Hill's equation. Quart. J. Math. Oxford 41(1990), 189-224.
8. _L_Levinson's theorem and Titchmarsh-Weyl theory for Dirac systems. Proc. Roy. Soc. Edinburgh Sect. A 109(1988), 173-186.
9. D. B. Hinton and J. K. Shaw, On the absolutely continuous spectrum of the perturbed Hill's equation. Proc. London Math. Soc. 50(1985), 175-182.
10. V. A. Zheludev, Eigenvalues of the perturbed Schrödinger operator with a periodic potential. In: Topics in Mathematical Physics, (ed. M. Sh. Birman), Consultants Bureau, New York, 1968, Vol. 2, 87-101.

Department of Mathematics
NCA\&T State University
Greensboro, North Carolina 27411
U.S.A.
e-mail: clemence@athena.ncat.edu

[^0]: Received by the editors October 20, 1995.
 AMS subject classification: 34L05, 34B20, 34B24.
 (C)Canadian Mathematical Society 1997.

