
Proceedings of the Edinburgh Mathematical Society (2021) 64, 916–923

doi:10.1017/S0013091521000663

THE FIRST �2-BETTI NUMBER AND GROUPS ACTING ON TREES

INDIRA CHATTERJI1, SAM HUGHES2 AND PETER KROPHOLLER2

1
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1. Introduction

The �2-Betti numbers were introduced by Atiyah as dimensions of heat kernels of certain
operators on Riemannian manifolds. The modern formulation assigns �2-Betti numbers
b
(2)
i (G) to arbitrary groups G. We refer the reader to Lück’s account where the history

can be found in the introduction of [12]. Technical results about �2-Betti numbers that
we need can be found in chapters 6 and 8 of loc. cit. The �2-Euler characteristic χ(2)(G)
is defined to be the alternating sum of these Betti numbers when this series is absolutely
convergent. Let C denote the class of groups F such that

•
∑

i≥0 b
(2)
i (G) is finite (this being the condition for absolute convergence),

• b
(2)
1 (F ) = b

(2)
2 (F ) = 0, and

• either χ(2)(F ) = 0 or F is finite.

Note that C contains all �2-acyclic groups (i.e. the groups for which b
(2)
i = 0 for all

i > 0) and, in particular, it contains all amenable groups. Relevant background on
�2-cohomology is included in § 2. In this note, we prove the following theorem.
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Theorem 1.1. Let F be a group acting simplicially and cocompactly on a simplicial
tree, with vertex and edge stabilizers in C, let N be a subgroup normally generated by
m elements, intersecting the vertex stabilizers trivially, and let G denote F/N . Then
χ(2)(F ) is defined and setting k := χ(2)(F ) + m the following conclusions hold:

(i) If k ≤ 0, then G is infinite.

(ii) If k < 0, then b
(2)
1 (G) ≥ −k > 0.

(iii) If G is finite, then k > 0 and |G| ≥ 1
k .

Note that the hypotheses of this theorem guarantee that N acts freely on the speci-
fied tree and, in particular, N is necessarily a free group. Note also that, according to
[2, Corollary 1.4], if b

(2)
1 (G) > 0 then G has no commensurated infinite amenable sub-

group and according to [3, Corollary 6] does not have property (T). If we also have
b
(2)
2 (G) = 0, then G is in the class Dreg by [15, Lemma 2.8]. We refer the reader to [4] for

background on property (T) and to [15, Definition 2.6] for the definition of the class Dreg.
Acylindrically hyperbolic groups form a large class of groups admitting coarsely proper
actions on hyperbolic metric spaces. The class is a generalization of relative hyperbolicity
including many Artin groups, mapping class groups, and Out(Fn). By the main result of
Osin’s paper [13], we have the following corollary.

Corollary 1.2. Let G, F and N be as in Theorem 1.1. Assume that G is finitely
presented, (virtually) indicable and that χ(2)(F ) + m < 0. Then G is (virtually) acylin-
drically hyperbolic.

The simplest way in which the indicability hypothesis may arise is through stable let-
ters: Let T denote the F -tree of Theorem 1.1. Let K denote the (necessarily normal)
subgroup generated by the vertex stabilizers. Then there is a subgroup E ≤ F that com-
plements K and all such subgroups are free of uniquely determined rank. Such a subgroup
may be referred to as a subgroup of stable letters of the action. The group G has an infi-
nite cyclic quotient when N ∩ E has infinite index in E, in other words, when there is a
stable letter that is faithfully represented in G, and in this case, G is indicable.

Recall that a group G is C∗-simple if the reduced group C∗-algebra, denoted C∗
r (G),

has exactly two norm closed 2-sided ideals, 0, and the algebra C∗
r (G) itself. By

[5, Corollary 6.7], we obtain the following.

Corollary 1.3. Let G, F and N be as in Theorem 1.1. Then G is C∗-simple if and
only if it has trivial amenable radical.

These two corollaries highlight the relation between the first �2-Betti number and other
areas of geometric group theory. It is an interesting matter for further research to find
out whether they lead to new examples.

Theorem 1.1 has some historical pedigree. It originally began life as a result about
quotients of free groups due to Thomas (see Theorem 1.4(i)) and was proved using com-
binatorial methods [16]. The result was generalized by Allcock to incorporate a bound on
the rank of the abelianisation of the quotient group [1]. The introduction of �2-cohomology
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came when Peterson–Thom [14, Theorem 3.6] and Kar–Niblo [11] independently linked
the inequality of Thomas to the first �2-Betti number. These discoveries are summarized
in the following result.

Theorem 1.4 (Thomas [16], Allcock [1], Peterson–Thom [14], Kar–Niblo
[11]). Let G be a group with a presentation

〈x1, . . . , xn| rk1
1 , . . . , rkm

m 〉
in which the elements ri have order ki when interpreted in G.

(i) If n −∑m
i=1

1
ki

≥ 1 then G is infinite.

(ii) If G is finite then |G| ≥ 1
1−n+

∑m
i=1 ki

.

(iii) If n −∑m
i=1

1
ki

> 1 then G is non-amenable.

Deduction of Theorem 1.4 from Theorem 1.1. Let G be a group with a presen-
tation

G = 〈x1, . . . , xn| rk1
1 , . . . , rkm

m 〉.
Adding m fresh generators y1, . . . , ym, we can give the following alternative presentation
of the same group:

G ∼= 〈x1, . . . , xn, y1, . . . , ym| yk1
1 , . . . , ykm

m , r1y
−1
1 , . . . , rmy−1

m 〉.
Let F be the group with presentation

F = 〈x1, . . . , xn, y1, . . . , ym| yk1
1 , . . . , ykm

m 〉
and let N be the subgroup of F normally generated by r1y

−1
1 , . . . , rmy−1

m . Then F is
a free product of cyclic groups which has a natural action on a simplicial tree T (the
Bass–Serre tree). In particular, it is virtually free and has Euler characteristic χ(F ) =∑m

i=1
1
ki

− n − m + 1 (as explained in [6, Chapter IX.7]). This is equal to χ(2)(F ) by [12,
Remark 6.81]. The condition that the ri have order ki in the original presentation ensures
that N does not meet any of the finite subgroups of F , so is torsion-free and acts freely
on T . Applying Theorem 1.1 with these choices of F , N , G and T yields Theorem 1.4. �

Throughout this paper, for a group or subgroup G, we will adopt the convention that
1
|G| be interpreted as zero if G is infinite.

Finally, we compute the first �2-Betti number for certain groups acting on trees lead-
ing to Theorem 1.5 below, which is proved in § 4. This generalizes a result of Lück
[7], which covers the case of an amalgamated free product, and a result of Tsouvalas
[17, Corollary 3.7]. Tsouvalas assumes the vertex stabilisers are either residually finite
or virtually torsion-free and the edge stabilisers are finite. Here we replace both of these
assumptions with Lück’s less restrictive assumption that the first �2-Betti numbers of the
edge stabilisers vanish. So, for example, the theorem applies to fundamental groups of
graphs of C-groups.
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Theorem 1.5. Let F be a group acting simplicially on a simplicial tree and let V and
E denote sets of representatives of F -orbits of vertices and edges. Assume for each e ∈ E

that b
(2)
1 (Fe) = 0, then we have

b
(2)
1 (F ) =

∑
v∈V

(
b
(2)
1 (Fv) − 1

|Fv|
)

+
∑
e∈E

1
|Fe| +

1
|F | .

2. Background on �2-homology

Let G be a group. Then both G and the complex group algebra CG act by left multipli-
cation on the Hilbert space �2G of square-summable sequences. The group von Neumann
algebra NG is the ring of G-equivariant bounded operators on �2G. The regular elements
of NG form an Ore set and the Ore localization of NG can be identified with the ring of
affiliated operators, and is denoted by UG. One has the inclusions CG ⊆ NG ⊆ �2G ⊆ UG
and it is also known that UG is a self-injective ring which is flat over NG. For more details
concerning these constructions, we refer the reader to [12] and especially to Theorem 8.22
of § 8.2.3 therein. The von Neumann dimension and the basic properties we need can be
found in [12, § 8.3]. Now let Y be a G-CW complex as defined in [12, Definition 1.25
of § 1.2]. The �2-homology groups of Y are then defined to be the equivariant homology
groups HG

i (Y ;UG), and we have

b
(2)
i (Y ) = dimUG HG

i (Y ;UG).

The �2-Betti numbers of a group G are then defined to be the �2-Betti numbers of EG,
that is to say

b
(2)
i (G) := b

(2)
i (EG). (1)

By [12, Theorem 6.54(8)], the zeroeth �2-Betti number of G is equal to 1/|G|. Moreover,
if G is finite then b

(2)
n (G) = 0 for n ≥ 1.

Let C∗(Y ;UG) denote the standard cellular chain complex of Y with coefficients in
UG. We have the formula

dimUG Ci(Y ;UG) =
∑

σ

1
|Gσ|

where σ runs through a set of orbit representatives of i-dimensional cells in Y . Suppose
that the �2-Euler characteristic of Y is defined. Standard arguments of homological alge-
bra give the connection between two Euler characteristic computations (for the details
see [12, Lemma 6.80(1)]):

χ(2)(Y ) =
∑

i

(−1)ib
(2)
i (Y ) =

∑
i

(−1)i dimUG Ci(Y ;UG) =
∑

i

(−1)i
∑

σ

1
|Gσ| . (2)

We will need the following lemma for the proofs in the next section. One should think of
it as a mild generalization of Theorem 6.54(2) in [12].
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Lemma 2.1 (Comparison with the Borel construction up to rank). Let X be

a G-CW complex. Suppose for all x ∈ X the isotropy group Gx is finite or b
(2)
p (Gx) = 0

for all 0 ≤ p ≤ n, then

b(2)
p (X) = b(2)

p (EG × X) for 0 ≤ p ≤ n.

Proof. It suffices to prove that the von Neumann dimensions of the kernel and cokernel
of the map

prp : HG
p (EG × X;UG) → HG

p (X;UG)

induced by the projection EG × X → X are zero for 0 ≤ p ≤ n. Here EG × X carries
the diagonal action of G. By an identical argument to [12, Theorem 6.54(2)], it suffices
to prove for each isotropy subgroup H ≤ G and 0 ≤ p ≤ n the kernel and cokernel of the
map prp : HH

p (EH;UH) → HH
p (∗;UH) have dimension equal to zero. If H is finite this

follows from [12, Theorem 6.54(8a)], and is immediate if b
(2)
p (H) = 0 for all 0 ≤ p ≤ n. �

3. The main theorem

To prove Theorem 1.1, one needs the following method of computing the �2-Euler char-
acteristic of a group acting on a tree analogous to Chiswell’s result [9] for rational Euler
characteristic.

Proposition 3.1 (Chatterji–Mislin [8]). Let F be a group acting on a tree and let
V and E denote sets of representatives of F -orbits of vertices and edges. If the �2-Euler
characteristic of each vertex and edge group is finite, then

χ(2)(F ) =
∑
v∈V

χ(2)(Fv) −
∑
e∈E

χ(2)(Fe).

Proof of Theorem 1.1. There is a cocompact action of F on a tree T with vertex
and edge stabilisers in the class C. Let V and E denote the vertex and edge sets. Let
T denote the quotient graph T/N and write V and E for its vertex and edge sets. Now
G = F/N acts cocompactly on T with vertex and edge stabilizers in C. The augmented
chain complex of T is the short exact sequence

0 → ZE → ZV → Z → 0

of ZF -modules. Restricting to the action of N this short exact sequence leads to a long
exact sequence for the homology of N . It is straightforward to identify H0(N ; ZV ) with
ZV and H0(N ; ZE) with ZE, so that the tail end of the sequence takes the form

H1(N ; Z) → ZE → ZV → Z → 0. (3)

Let {ri : i = 1, ..m} denote a normal generating set for N . Choose a vertex v0 in T to
be a fixed basepoint. For 1 ≤ i ≤ m, consider the geodesic from v0 to v0ri. In the quotient
graph T , this geodesic descends to a loop because v0 and v0ri become identified in T .
Now 2-discs can be glued to each loop. By adjoining free G-orbits of 2-discs equivariantly,
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we can build a 2-complex Y with an action of G, whose 1-skeleton is T , and which has
augmented cellular chain complex

ZGm → ZE → ZV → Z → 0. (4)

By construction the map ZGm → ZE factors through a surjection ZGm → H1(N ; Z).
Therefore, the exactness of (3) ensures the exactness of (4). It follows that Y is 1-acyclic.

Let V0 and E0 be sets of orbit representatives of vertices and edges in Y . Now, applying
Proposition 3.1 then (2), we have that

χ(2)(F ) + m =
∑
v∈V0

1
|Gv| −

∑
e∈E0

1
|Ge| + m

= b
(2)
0 (Y ) − b

(2)
1 (Y ) + b

(2)
2 (Y ).

Lemma 2.1 with n = 2, yields

χ(2)(F ) + m = b
(2)
0 (EG × Y ) − b

(2)
1 (EG × Y ) + b

(2)
2 (EG × Y )

≥ b
(2)
0 (EG × Y ) − b

(2)
1 (EG × Y ).

Applying [12, Theorem 6.54(1a)] to the projection f : EG × Y → EG with n = 2 (note
that we are using the fact Y is 1-acyclic), we obtain b

(2)
i (EG × Y ) = b

(2)
i (EG) for i = 0, 1.

Recalling (1), we therefore have

χ(2)(F ) + m ≥ b
(2)
0 (G) − b

(2)
1 (G).

Let k = χ(2)(F ) + m. If k ≤ 0, then b
(2)
0 (G) − b

(2)
1 (G) ≤ 0 and so G is infinite, this proves

(i). Now, assume k < 0. In this case, G is infinite and therefore b
(2)
0 (G) = 0. It follows

that b
(2)
1 (G) ≥ −k > 0, this proves (ii).

If G is finite, then b
(2)
0 (G) = 1

|G| , b
(2)
1 (G) = 0, and k > 0. In particular, k ≥ 1

|G| > 0 and
(iii) follows. �

4. On the �2-invariants for certain groups acting on trees

Proof of Theorem 1.5. Let V and E denote sets of representatives of F -orbits of
vertices and edges for the action of F on the tree. We consider the relevant part of the
E1-page for the F -equivariant spectral sequence (see Chapter VII.9 of [6]) applied to the
tree:
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If F is finite then b
(2)
1 (F ) = 0, so d1 is injective and E2

1,0 = 0. The result follows from the
fact E1

0,1 = 0.

Now, assume F is infinite, then d1 is surjective since b
(2)
0 (F ) = 0. Thus,

dimUF (Ker(d1)) =
∑
e∈E

b
(2)
0 (Fe) −

∑
v∈V

b
(2)
0 (Fv).

Now, the spectral sequence obviously collapses on the E2-page and E1
0,1 = E2

0,1. Since
von Neumann dimension is additive over short exact sequences, we have

b
(2)
1 (F ) = dimUF (Ker(d1)) + dimUF (E2

0,1)

=

(∑
e∈E

b
(2)
0 (Fe) −

∑
v∈V

b
(2)
0 (Fv)

)
+
∑
v∈V

b
(2)
1 (Fv),

and the result follows. �
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