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CERTAIN INVARIANT SUBSPACES OF H2 AND L2 

ON A BIDISC 

TAKAHIKO NAKAZI 

1. Introduction. We let T2 be the torus that is the cartesian product of 2 
unit circles in C. The usual Lebesgue spaces, with respect to the Haar 
measure m of 72 , are denoted by If = Lp{j\ and Hp = HP(T2) is the 
space of all / in LP whose Fourier coefficients 

fc> / } = JK ^ ^J^dm(z, w) 

are 0 as soon as at least one component of ( j , / ) is negative. 
A closed subspace M of L2 is said to be invariant if 

zM c M and wM c M. 

Whenever this is the case, it follows t ha t /M c M for every / i n H°°. One 
can ask for a classification or an explicit description (in some sense) of all 
invariant subspaces of L2, but this seems out of reach. 

Ahern and Clark (cf. [6, 80] ) described completely invariant subspaces 
of H , of finite codimension. It is easy to describe invariant subspaces M 
of L2 in case zJM c M for j• ^ 0 (cf. [5, 164-165]). Helson and 
Lowdenslager (cf. [2, 8] ) described invariant subspaces M of L2 in case 
~zJwM c M for j ^ 0. Recently Curto, Muhly, Nakazi and Yamamoto [1] 
considered invariant subspaces M of L2 in case IJwnM c M for y = 0 
when n > 0 is fixed. However these invariant subspaces do not have the 
form FH2 for some unimodular function F. 

In this paper we consider invariant subspaces of L2 which have the form 
FH2 for some unimodular function F. This is a direct generalization of a 
Beurling's theorem (cf. [2, 8] ) in the case of one variable. It should be 
noted that there are many invariant subspaces M even in H2 such that M 
does not have the form FH . Hence we wish to consider an invariant 
subspace of L which has the form FN for some unimodular function 
F where N is an invariant subspace between H and the L -closure of 
U„^0 z~nH . In this paper, if M is an invariant subspace of H2, of finite co-
dimension, it is shown that M has the form FN for some unimodular 
function F. 

Let C(T ) be the space of complex-valued continuous functions on T . 
We shall let J^ , âiïj and % denote the following subalgebras of C(T2) for 
j = 1, 2: 
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(i) jrfj is the uniform closure of the polynomials in z where zx = z and 
z2 = w; 

(ii) ai- is the uniform closure of the polynomials in z-, z- and z, where 
J * i; 

(iii) ^ is the uniform closure of the polynomials in zy and z;. 

Definition. The closure in L2 of ^ , [^.]2, will be denoted H . We define 
^ = [Vj]2 and JH? = ltf]2. 

Observe that: 
(iv) Jff- is isometrically isomorphic to the classical Hardy space on T\ 
(v) ££• is isometrically isomorphic to the Lebesgue space on T\ 

(vi) H is the tensor product of «££ and 3% where j ¥= /', that is, 
H; = JS£"® J0f. 

2. Invariant subspaces containing //". We are specially interested in 
invariant subspaces in 772. But we have interest in invariant subspaces 
containing H2 because they shed light on researches about invariant 
subspaces in H . 

THEOREM 1. If M is an invariant subspace which contains H properly, 
then M 0 H is infinite dimensional. 

Proof. Suppose M 0 H is finite dimensional. Let P be the orthogonal 
projection in L2 with range M 0 7/2, and let the operator S^ on M © H2 

be defined by S^f = P(4>f) where <J> e //°°. S^ is of finite rank and 
hence there exists an analytic polynomial p such that p(S.) = 0. There­
fore S ^ = 0 because S^ = S^S^ for any <j> and \p in H . If we choose 
<#> = z then S (z) = 0 and hence p(z)M c //2 . By the inner outer factoriza­
tion of p(z) e ^ (cf. [2, 12] ), there is a finite Blashke product qx e J^ 
such that ^jM c 7/2. Similarly there is a finite Blashke product 
q2 e j ^ such that #2M c T/2. Thus 

4, / / 2 n #2//2
 D M . 

While qxH
2 n ^2//2 = # 2 because ^ / / 2 c H, and q2H

2 c H2. This 
contradiction implies that M 0 / / is infinite dimensional. 

The theorem above is interesting because there are many invariant 
subspaces in 7/2, of finite codimension. We shall study some special in­
variant subspaces containing H2. 

LEMMA 1. Suppose M is an invariant subspace which contains H and 
K = M © H2. IfwK c K then K c zJf 0 3%. 

Proof. If there is a function / e K such that f(j\ / ) ^ 0 for some 
y ^ 0 and ( < 0, then w^f is not orthogonal to H2. While wf^K be­
cause wAT c AT and — / > 0. This contradiction implies /(y, / ) = 0 if 
j ^ 0 and € < 0, and hence # c zfl2 = z ^ ® f 2 . Since 
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zK c H2®K=jq®zH2®K 

and zK is orthogonal to zH2, zK a J%® K. U f <E K then 

OO 

7 = 2 up 
. 7 = 1 

where w e J^ because / G Z H 2 . Hence 

OO 

zf = ux + 2a ulj 

7 = 2 

w , E ^ and 2 7 ^ 2 up~] belongs to K because zf ^ J^2® K. Proceeding 
similarly w- e ^ for ; è 2 and hence AT c z J | ® J^. 

THEOREM 2. Let M be an invariant subspace of L2. Suppose M z> H and 
K = M © H2. 

(1) wK a K if and only if M c H,. 
(2) zK a K and wK a K if and only if M = H2. 

Proof (1) By Lemma \ if wK cz K then M c H , . Conversely i f M c H , 
and / <= K then 

OO 

/ = 2 ^ and fj e ^ . 

Since i v / e z ^ ® ^ and M>/ e M, wf belongs to K. (2) If zK c AT and 
wK a K then by (1) A/ c H, n H2 = //2. 

3. The dimension of M © wM. Let M be an invariant subspace of L . If 
M = wM then 

M = x £ | F H 2 + XEL2 

where XE is a characteristic function of Borel set on Î1 in J^ and 
XE ~^~ XE — ^ a e - by [1] and [5, 164-165]. Thus, we are interested in M 
with M ê wM * {0}. 

THEOREM 3. Suppose M is an invariant subspace of L such that if 
gM c M then g belongs to H°°. Then M © wM is infinite dimensional. 

Proof Suppose M © wM is finite dimensional. Let P be the orthogonal 
projection in L2 with range M © wM, and let the operator ^ o n M G wM 
be defined by S^f = P(<j>f) where <j> e H°°. As in the proof of Theorem 1, 
there is a finite Blashke product q e 3fé[ such that qM c wM because Sz is 
of finite rank. Thus qwM c M. This contradiction implies that M © wM 
is infinite dimensional. 
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PROPOSITION 4. Let M be an invariant subspace. If M © wM is one 
dimensional then 

n W"M * {0}. 

Proof. Suppose 

n wnM = {0}. 

Then 

oo 

M = 2 © [/]. w 7 
12 

because M 0 wM is one dimensional. Hence 

oo 

zf = 2 cy>^ 
7 = 0 

and z is in the closure of J ^ in L ( | / | dm). This contradiction im­
plies that 

n wnM * {0}. 

Set M = F{qJ^2 © zH2) where F and q are unimodular functions, and 
q e j ^ . This is an example of an invariant subspace such that M © wM is 
one dimensional. 

4. Beurling type. Beurling (cf. [2, 8] ) showed that any nonzero invariant 
subspaces in the usual Hardy space H2(T) on T has the form FH2(T) for 
some inner function F, that is, some unimodular function in H2(T). This 
was generalized to invariant subspaces M in the usual Lebesgue space 
L2(T) on T such that M 0 wM ¥> {0} by [3]. We wish to generalize this 
well known Beurling's theorem to invariant subspaces in L (T ). 

THEOREM 5. Let M be an invariant subspace of L and M © wM = 
S * {0}. 

(1) zS = S if and only if 

M = X £ F H , © xEL2 

where \E '5 m «^b X/s + XE — 1 a-e- flA2^ F ^s a unimodular function. 
(2) zS Ç S if and only if M = FH2 for some unimodular function F. 

Proof. (1) The 'if part is obvious. If zS = S then zM = M. Hence by the 
remark above Theorem 3, the 'only if part follows. 

(2) The 'if part is obvious. Suppose zS Ç S and set S0 = S Q zS. 
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Suppose nonzero/ G S0. Since zJf e S for any j ^ 0, zJf is orthogonal to 
H # if ^ ^ 1 and y â 0. Hence 

j \f\2zJw'drn = 0 if £ ^ 1 and y â 0. 

Since z-W^ e M/M for any y = 0 and any £ ^ 1, / is orthogonal to zJwf 
if / ^ 1 and j ^ 0. Hence 

/ | / | ¥ i 4 n = 0 if / â 1 and j ^ 0. 

Moreover / is orthogonal to zJf if y â 1 and hence 

\f\2zjdm = 0 if y ^ 1. / 
Thus, for any non zero / e S0, \f\2 is constant a.e. If / , g e 5 0 

and l/l = |g| = 1 a.e. then |1 + / g | = 2 and hence arg / = arg g. 
Thus f = g because | / | = |g|, and S0 = [F]2 for some unimodular 
function F. 

Set 

oo oo 

Mi n wJM and 5, = n zAS 

then 

M = I 2 0 S V ) 0 Mj and S = ( 2 © S0z7] 0 5, . 
\j=o ! \j=o I 

Since S0 = [F]2 and \F\ = \, S = FJ% ® Sx and z5, = S}. Hence 

M = FH2 © ( 2 © S > 7 J © M,. 
V=o / 

Since wMl = M,, 

^ i = X£^2H2 © XE2L
2 

where XE ^ ^ XE "*" XE = 1 a e - a n <i 1̂ 21 ^ * a-e- Since zSj = S,, 
b y ( l ) 

oo 

7=0 

where %c, G °̂ î a n d l^il = ' a-e- Hence 

M = FH2® Xc^.H, 0 XEF2H2 ® xEL2-

Since i7//2 is orthogonal to XE ̂ -> XE L2 = {0}. Thus if we set 

K = xc FF\H\ ® XE FF2H2 and N = H2 ® K, 
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then M = FN and TV is an invariant subspace containing H , zK c AT and 
w# c K By (2) of Theorem 2 TV = H2 and M = FH2. 

If M is an invariant proper subspace of H , of finite codimension 
and M = FT/ then FM contains H2 properly and FM © H is finite di­
mensional. This contradicts Theorem 1. Hence we wish to consider 
invariant subspaces which don't have the form FH . 

THEOREM 6. Let M be an invariant subspace of L and M © wM = S. 
(1) There exists f in S such that zJf belongs to S for any j and \f\ > 0 a.e. 

if and only if M = FHj for some unimodular function F. 
(2) There exists f in S such that zJf belongs to S for any j = 0 and zf is 

not in S for some S < 0, if and only if M = FN where N is an invariant 
subspace which contains H and is contained properly in H1? and F is a 
unimodular function. 

Proof Putting M, = n -^0
 w 7^> 

M = ( 2 ® SwJ)@ Mx. 
V=o ' 

Let S' be the largest closed subspace of S with zS" c S'. If we let 

S, = S 0 S', S? = H zÂS" and S} = S' 0 52, 

then 

M - ( 2 © SX) 0 1 2 © S^7) 0 1 2 © S>7 J © M,. 

(1) Since 2/^o © «S^7 n a s n o reducing subspaces under the multiplica­
tion by w and zS2 = ^ by (1) in Theorem 5 

2 © S2wJ = X E / H , 

where XE G ^ î a n < 3 1^1 = 1 a e - If there exists f in S such that z7 / G S 
for any y and \f\ > 0 a.e., then f Œ S2 and so x# = 1 a.e. Thus 

M D H , and w(FM © H,) c FM 0 H,. 

This implies M = FHj . The converse is obvious. 
(2) If there exists / e S such that z7 / G S for any y ^ 0 and zf £ S 

for some £ < 0 then Ŝ  ^ {0}. By (2) in Theorem 5, 

2 © S>y = FH2 

for some unimodular function F. Thus 

FM z> H2 and w ( M © H2) a FM G H2. 
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By (1) in Theorem 2 FM c H,. Set N = FM then N is the desired invari­
ant subspace. Conversely if M = FN and H2 c N Ç Hx then wK c Kby 
(1) in Theorem 2, where K = N G H2. Hence 

M 6 w M = F ^ e F(tf 0 wK). 

This implies that zÀF e M © wM for any y g 0. If zyF e M © wM for any 
j then 

J2| c j£f © (K 0 w/Q 

and hence z ^ c ^ 0 wtf. Thus # = IJ^ 0 Jf2
 a n d N = H i T h i s 

contradiction implies that z F £ M © wM for some £ < 0. 

COROLLARY 1. Le/ M èe «« invariant subspace of H and M © wM = S. 
(1) zS c S if and only if M — FH for some inner function F. 
(2) There exists f in S such that zJf belongs to S for any j = 0 if and 

only if M = FN where N is an invariant subspace containing H and is con­
tained properly in Hj, and F is an inner function. 

5. Invariant subspaces between H2 and H,. In Theorems 2 and 6 in-
variant subspaces between H and Hj were important. In this section 
we shall study invariant subspaces TV between H2 and H,. Suppose 
K = N © H2. Let Q be the orthogonal projection from L2 to z ^ 0 J?2. 
The operator 7^ o n z ^ ® ^ is defined by T^f = Q(<j)f) where <t> <= H°°. 
H © AT is an invariant subspace in Hx if and only if wK c K and 
TZK c K. 

Definition. For a closed subspace ĴT in ~z~3%[ 0 ^ we say AT has the prop­
erty (*) when wK c K and TZA: C K. 

In order to study invariant subspaces between H and Hj it is sufficient 
to study closed subspaces K in ~z3%[ 0 J^2 that have the property (*). 

PROPOSITION 7. Let K be a closed subspace in ~z^x 0 3tf{ with the prop­
erty (*). If T^ has finite rank n on K then K © wK is finite dimensional 
£ ^ n. 

Proof. As in the proof of Theorems 1 and 3 there is a finite Blashke 
product ^ Ê j ^ o f degree £' ^ n such that T K = {0}. Hence 

oo 

tf c q(H2 © <?//2) = 2 © qW © <7^>7 

^ ° 
oo 

= 2 © ( ^ © Iq^)wf 
7 = 0 

By Corollary 1 in [4] K © wK is finite dimensional / ^ A 
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PROPOSITION 8. Let K be a closed subspace in z3%[ ® 3tf{ witn tne prop­
erty (*). T" is zero on K for some n > 0 if and only if 

K = [W;A,...,f„+l]2 

where [w; / | , . . . , X + i h ^ a closed invariant subspace under the multipli­
cation by w that is generated by f, . . . , fn+\. Here f, . . . , f1+] satisfy the 
following conditions: 

(i) jf = 2 fyz* 

where ft is in J^2 and \f^ \ = 1 a.e. for \ tk { Ik n\ 

(2) 2 fjjie = «,,-; 

n 

(3) Zà fjt~z * is in K for any t = n. 

Proof. Suppose T" = 0 on K. By the proof of Proposition 7 

oo 

K c 2 © ( ^ © r + 1 J j v . 
7 = 0 

By a theorem of Lax (cf. [2, 61-64] ), AT has the form [w; f, . . . , fn+\]2 that 
satisfies (1) and (2). (3) follows from TZK c K. The converse is obvious. 

By Proposition 8, Tz is zero on K if and only if K = z~qJ?2 for some inner 
function q in ^ . 

THEOREM 9. Le/ K be a closed subspace in ~zJ?[ ® J^2 with the prop­
erty (*). 

(1) Tz is rank one on K if and only if 

K = z(l - tfz)"1^ 

where \a\ < 1, a ^ 0 and q is an inner function in J^2. 
(2) K 0 wK is one dimensional if and only if 

oo 

K = 2 © [/]2w
7 

7 = 0 

where f = t/(l — vz) , « w /« ^ a/7d v /s />7 //ze closure oj sfi, in 
L\\f\2dm\ 

Proof. (1) If 71 is rank one on K then by the proof of Proposition 7 for 
some nonzero a with \a\ < 1 
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K c 2 © Mi e *—-^K 
7=o \ z - a I 

and hence K c z(l — o z ) - 1 ^ . Thus by Beurling's theorem 

A' = z(l - dz)~xqje2 

for some inner function q in J^. For the converse, since 

Tz(z(\ - az)~]) = az(\ - dz)~\ 

K has the property (*). 
(2) If K 0 wK is one dimensional then 

oo 

= / X {the closure of J^2 in L2( | / |2dm) }. 

We can write 

oo 

/ = 2 /^ 
/=1 

where ^ G ^ . Then f = z/j + z/v for some v in the closure of J ^ in 
^2( \f\2dm) because 

oo 

<f=2 

is in Â . Set u = fx then 
/ = H(l - V Z ) - 1 . 

Conversely if / = w(l — vz) _ 1 then 

zf = u + vf and r z / = vf <E K. 
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