CERTAIN INVARIANT SUBSPACES OF H^{2} AND L^{2} ON A BIDISC

TAKAHIKO NAKAZI

1. Introduction. We let T^{2} be the torus that is the cartesian product of 2 unit circles in \mathbf{C}. The usual Lebesgue spaces, with respect to the Haar measure m of T^{2}, are denoted by $L^{p}=L^{p}\left(T^{2}\right)$, and $H^{p}=H^{p}\left(T^{2}\right)$ is the space of all f in L^{p} whose Fourier coefficients

$$
\hat{f}(j, \ell)=\int_{K} f(z, w) \bar{z}^{j} \bar{w}^{\ell} d m(z, w)
$$

are 0 as soon as at least one component of (j, ℓ) is negative.
A closed subspace M of L^{2} is said to be invariant if

$$
z M \subset M \text { and } w M \subset M .
$$

Whenever this is the case, it follows that $f M \subset M$ for every f in H^{∞}. One can ask for a classification or an explicit description (in some sense) of all invariant subspaces of L^{2}, but this seems out of reach.

Ahern and Clark (cf. [6, 80]) described completely invariant subspaces of H^{2}, of finite codimension. It is easy to describe invariant subspaces M of L^{2} in case $\bar{z}^{j} M \subset M$ for $j \geqq 0$ (cf. [5, 164-165]). Helson and Lowdenslager (cf. [2, 8]) described invariant subspaces M of L^{2} in case $\bar{z}^{j} w M \subset M$ for $j \geqq 0$. Recently Curto, Muhly, Nakazi and Yamamoto [1] considered invariant subspaces M of L^{2} in case $\bar{z}^{j} w^{n} M \subset M$ for $j \geqq 0$ when $n>0$ is fixed. However these invariant subspaces do not have the form $F H^{2}$ for some unimodular function F.

In this paper we consider invariant subspaces of L^{2} which have the form $F H^{2}$ for some unimodular function F. This is a direct generalization of a Beurling's theorem (cf. [2,8]) in the case of one variable. It should be noted that there are many invariant subspaces M even in H^{2} such that M does not have the form $F H^{2}$. Hence we wish to consider an invariant subspace of L^{2} which has the form $F N$ for some unimodular function F where N is an invariant subspace between H^{2} and the L^{2}-closure of $\cup_{n} \geqq 0 \bar{z}^{n} H^{2}$. In this paper, if M is an invariant subspace of H^{2}, of finite codimension, it is shown that M has the form $F N$ for some unimodular function F.

Let $C\left(T^{2}\right)$ be the space of complex-valued continuous functions on T^{2}. We shall let $\mathscr{A}_{j}, \mathscr{B}_{j}$ and \mathscr{C}_{j} denote the following subalgebras of $C\left(T^{2}\right)$ for $j=1,2$:

[^0](i) \mathscr{A}_{j} is the uniform closure of the polynomials in z_{j} where $z_{1}=z$ and $z_{2}=w ;$
(ii) \mathscr{B}_{j} is the uniform closure of the polynomials in z_{j}, \bar{z}_{j} and z_{i} where $j \neq i$;
(iii) \mathscr{C}_{j} is the uniform closure of the polynomials in z_{j} and \bar{z}_{j}.

Definition. The closure in L^{2} of $\mathscr{B}_{j},\left[\mathscr{B}_{j}\right]_{2}$, will be denoted \mathbf{H}_{j}. We define $\mathscr{L}_{j}=\left[\mathscr{C}_{j}\right]_{2}$ and $\mathscr{H}_{j}=\left[\mathscr{A}_{j}\right]_{2}$.

Observe that:
(iv) \mathscr{H}_{j} is isometrically isomorphic to the classical Hardy space on T;
(v) \mathscr{L}_{j} is isometrically isomorphic to the Lebesgue space on T;
(vi) \mathbf{H}_{j} is the tensor product of \mathscr{L}_{j} and \mathscr{H}_{i} where $j \neq i$, that is, $\mathbf{H}_{j}=\mathscr{L}_{j} \otimes \mathscr{H}_{i}$.
2. Invariant subspaces containing H^{2}. We are specially interested in invariant subspaces in H^{2}. But we have interest in invariant subspaces containing H^{2} because they shed light on researches about invariant subspaces in H^{2}.

Theorem 1. If M is an invariant subspace which contains H^{2} properly, then $M \ominus H^{2}$ is infinite dimensional.

Proof. Suppose $M \ominus H^{2}$ is finite dimensional. Let P be the orthogonal projection in L^{2} with range $M \ominus H^{2}$, and let the operator S_{ϕ} on $M \ominus H^{2}$ be defined by $S_{\phi} f=P(\phi f)$ where $\phi \in H^{\infty}$. S_{ϕ} is of finite rank and hence there exists an analytic polynomial p such that $p\left(S_{\phi}\right)=0$. Therefore $S_{p(\phi)}=0$ because $S_{\phi \psi}=S_{\phi} S_{\psi}$ for any ϕ and ψ in H^{∞}. If we choose $\phi=z$ then $S_{p(z)}=0$ and hence $p(z) M \subset H^{2}$. By the inner outer factorization of $p(z) \in \mathscr{H}_{1}(\mathrm{cf} .[2,12])$, there is a finite Blashke product $q_{1} \in \mathscr{H}_{1}$ such that $q_{1} M \subset H^{2}$. Similarly there is a finite Blashke product $q_{2} \in \mathscr{H}_{2}$ such that $q_{2} M \subset H^{2}$. Thus

$$
\bar{q}_{1} H^{2} \cap \bar{q}_{2} H^{2} \supset M .
$$

While $\bar{q}_{1} H^{2} \cap \bar{q}_{2} H^{2}=H^{2}$ because $\bar{q}_{1} H^{2} \subset \mathbf{H}_{1}$ and $\bar{q}_{2} H^{2} \subset \mathbf{H}_{2}$. This contradiction implies that $M \ominus H^{2}$ is infinite dimensional.

The theorem above is interesting because there are many invariant subspaces in H^{2}, of finite codimension. We shall study some special invariant subspaces containing H^{2}.

Lemma 1. Suppose M is an invariant subspace which contains H^{2} and $K=M \ominus H^{2}$. If $w K \subset K$ then $K \subset \bar{z} \mathscr{\mathscr { H }}_{1} \otimes \mathscr{H}_{2}$.

Proof. If there is a function $f \in K$ such that $\hat{f}(j, \ell) \neq 0$ for some $j \geqq 0$ and $\ell<0$, then $\bar{w}^{\ell} f$ is not orthogonal to H^{2}. While $\bar{w}^{\ell} f \in K$ because $w K \subset K$ and $-\ell>0$. This contradiction implies $\hat{f}(j, \ell)=0$ if $j \geqq 0$ and $\ell<0$, and hence $K \subset \bar{z} \overline{\mathbf{H}}_{2}=\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{L}_{2}$. Since

$$
z K \subset H^{2} \oplus K=\mathscr{H}_{2} \oplus z H^{2} \oplus K
$$

and $z K$ is orthogonal to $z H^{2}, z K \subset \mathscr{H}_{2} \oplus K$. If $f \in K$ then

$$
f=\sum_{j=1}^{\infty} u_{j} \bar{z}^{j}
$$

where $u_{j} \in \mathscr{L}_{2}$ because $f \in \bar{z} \overline{\mathbf{H}}_{2}$. Hence

$$
z f=u_{1}+\sum_{j=2}^{\infty} u_{j} \bar{z}^{j-1}
$$

$u_{1} \in \mathscr{H}_{2}$ and $\sum_{j=2}^{\infty} u_{j} \bar{z}^{j-1}$ belongs to K because $z f \in \mathscr{H}_{2} \oplus K$. Proceeding similarly $u_{j} \in \mathscr{H}_{2}$ for $j \geqq 2$ and hence $K \subset \bar{z} \mathscr{\mathscr { H }}_{2} \otimes \mathscr{H}_{2}$.

Theorem 2. Let M be an invariant subspace of L^{2}. Suppose $M \supset H^{2}$ and $K=M \ominus H^{2}$.
(1) $w K \subset K$ if and only if $M \subset \mathbf{H}_{1}$.
(2) $z K \subset K$ and $w K \subset K$ if and only if $M=H^{2}$.

Proof. (1) By Lemma 1 if $w K \subset K$ then $M \subset \mathbf{H}_{1}$. Conversely if $M \subset \mathbf{H}_{1}$ and $f \in K$ then

$$
f=\sum_{j=1}^{\infty} f_{j} \bar{z}^{j} \quad \text { and } \quad f_{j} \in \mathscr{H}_{2} .
$$

Since $w f \in \bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ and $w f \in M$, wf belongs to K. (2) If $z K \subset K$ and $w K \subset K$ then by (1) $M \subset \mathbf{H}_{1} \cap \mathbf{H}_{2}=H^{2}$.
3. The dimension of $M \ominus w M$. Let M be an invariant subspace of L^{2}. If $M=w M$ then

$$
M=\chi_{E_{1}} F \mathbf{H}_{2}+\chi_{E_{2}} L^{2}
$$

where $\chi_{E_{1}}$ is a characteristic function of Borel set on T^{2} in \mathscr{L}_{2} and $\chi_{E_{1}}+\chi_{E_{2}} \leqq 1$ a.e. by [1] and [5, 164-165]. Thus, we are interested in M with $M \ominus w M \neq\{0\}$.

Theorem 3. Suppose M is an invariant subspace of L^{2} such that if $g M \subset M$ then g belongs to H^{∞}. Then $M \ominus w M$ is infinite dimensional.

Proof. Suppose $M \ominus w M$ is finite dimensional. Let P be the orthogonal projection in L^{2} with range $M \ominus w M$, and let the operator S_{ϕ} on $M \ominus w M$ be defined by $S_{\phi} f=P(\phi f)$ where $\phi \in H^{\infty}$. As in the proof of Theorem 1, there is a finite Blashke product $q \in \mathscr{H}_{1}$ such that $q M \subset w M$ because S_{z} is of finite rank. Thus $q \bar{w} M \subset M$. This contradiction implies that $M \ominus w M$ is infinite dimensional.

Proposition 4. Let M be an invariant subspace. If $M \ominus w M$ is one dimensional then

$$
\cap_{n \geqq 0} w^{n} M \neq\{0\} .
$$

Proof. Suppose

$$
\bigcap_{n \geqq 0}^{\cap} w^{n} M=\{0\} .
$$

Then

$$
M=\sum_{j=0}^{\infty} \oplus[f]_{2} w^{j}
$$

because $M \ominus w M$ is one dimensional. Hence

$$
z f=\sum_{j=0}^{\infty} c_{j} f w^{j}
$$

and z is in the closure of \mathscr{A}_{2} in $L^{2}\left(|f|^{2} d m\right)$. This contradiction implies that

$$
\bigcap_{n \cong 0} w^{n} M \neq\{0\} .
$$

Set $M=F\left(q \mathscr{H}_{2} \oplus z \mathbf{H}_{2}\right)$ where F and q are unimodular functions, and $q \in \mathscr{H}_{2}$. This is an example of an invariant subspace such that $M \ominus w M$ is one dimensional.
4. Beurling type. Beurling (cf. [2, 8]) showed that any nonzero invariant subspaces in the usual Hardy space $H^{2}(T)$ on T has the form $F H^{2}(T)$ for some inner function F, that is, some unimodular function in $H^{2}(T)$. This was generalized to invariant subspaces M in the usual Lebesgue space $L^{2}(T)$ on T such that $M \ominus w M \neq\{0\}$ by [3]. We wish to generalize this well known Beurling's theorem to invariant subspaces in $L^{2}\left(T^{2}\right)$.

Theorem 5. Let M be an invariant subspace of L^{2} and $M \ominus w M=$ $S \neq\{0\}$.
(1) $z S=S$ if and only if

$$
M=\chi_{E_{1}} F \mathbf{H}_{1} \oplus \chi_{E_{2}} L^{2}
$$

where $\chi_{E_{1}}$ is in $\mathscr{L}_{1}, \chi_{E_{1}}+\chi_{E_{2}} \leqq 1$ a.e. and F is a unimodular function.
(2) $z S^{L_{1}} \subsetneq S$ if and only if $M=F H^{2}$ for some unimodular function F.

Proof. (1) The 'if' part is obvious. If $z S=S$ then $z M=M$. Hence by the remark above Theorem 3, the 'only if' part follows.
(2) The 'if' part is obvious. Suppose $z S \subsetneq S$ and set $S_{0}=S \ominus z S$.

Suppose nonzero $f \in S_{0}$. Since $z^{j} f \in S$ for any $j \geqq 0, z^{j} f$ is orthogonal to $w^{\ell} f$ if $\ell \geqq 1$ and $j \geqq 0$. Hence

$$
\int|f|^{2} z^{j} \bar{w}^{\ell} d m=0 \quad \text { if } \ell \geqq 1 \text { and } j \geqq 0
$$

Since $z^{j} w^{\ell} f \in w M$ for any $j \geqq 0$ and any $\ell \geqq 1, f$ is orthogonal to $z^{j} w^{\ell} f$ if $\ell \geqq 1$ and $j \geqq 0$. Hence

$$
\int|f|^{2} \bar{z}^{j} \bar{w}^{\ell} d m=0 \quad \text { if } \ell \geqq 1 \text { and } j \geqq 0
$$

Moreover f is orthogonal to $z^{j} f$ if $j \geqq 1$ and hence

$$
\int|f|^{2} \bar{z}^{j} d m=0 \quad \text { if } j \geqq 1
$$

Thus, for any non zero $f \in S_{0},|f|^{2}$ is constant a.e. If $f, g \in S_{0}$ and $|f|=|g|=1$ a.e. then $|1+\bar{f} g|=2$ and hence $\arg f=\arg g$. Thus $f=g$ because $|f|=|g|$, and $S_{0}=[F]_{2}$ for some unimodular function F.

Set

$$
M_{1} \bigcap_{j=0}^{\infty} w^{j} M \quad \text { and } \quad S_{1}=\bigcap_{j=0}^{\infty} z^{j} S
$$

then

$$
M=\left(\sum_{j=0}^{\infty} \oplus S w^{j}\right) \oplus M_{1} \quad \text { and } \quad S=\left(\sum_{j=0}^{\infty} \oplus S_{0} z^{j}\right) \oplus S_{1} .
$$

Since $S_{0}=[F]_{2}$ and $|F|=1, S=F \mathscr{H}_{1} \oplus S_{1}$ and $z S_{1}=S_{1}$. Hence

$$
M=F H^{2} \oplus\left(\sum_{j=0}^{\infty} \oplus S_{1} w^{j}\right) \oplus M_{1}
$$

Since $w M_{1}=M_{1}$,

$$
M_{1}=\chi_{E_{1}} F_{2} \mathbf{H}_{2} \oplus \chi_{E_{2}} L^{2}
$$

where $\chi_{E_{1}} \in \mathscr{L}_{2}, \chi_{E_{1}}+\chi_{E_{2}} \leqq 1$ a.e. and $\left|F_{2}\right|=1$ a.e. Since $z S_{1}=S_{1}$, by (1)

$$
\sum_{j=0}^{\infty} \oplus S_{1} w^{j}=\chi_{G_{1}} F_{1} \mathbf{H}_{1}
$$

where $\chi_{G_{1}} \in \mathscr{L}_{1}$ and $\left|F_{1}\right|=1$ a.e. Hence

$$
M=F H^{2} \oplus \chi_{G_{1}} F_{1} \mathbf{H}_{1} \oplus \chi_{E_{1}} F_{2} \mathbf{H}_{2} \oplus \chi_{E_{2}} L^{2}
$$

Since $F H^{2}$ is orthogonal to $\chi_{E_{2}} L^{2}, \chi_{E_{2}} L^{2}=\{0\}$. Thus if we set

$$
K=\chi_{G_{1}} \bar{F} F_{1} \mathbf{H}_{1} \oplus \chi_{E_{1}} \bar{F} F_{2} \mathbf{H}_{2} \quad \text { and } \quad N=H^{2} \oplus K
$$

then $M=F N$ and N is an invariant subspace containing $H^{2}, z K \subset K$ and $w K \subset K$. By (2) of Theorem $2 N=H^{2}$ and $M=F H^{2}$.

If M is an invariant proper subspace of H^{2}, of finite codimension and $M=F H^{2}$ then $\bar{F} M$ contains H^{2} properly and $\bar{F} M \ominus H^{2}$ is finite dimensional. This contradicts Theorem 1. Hence we wish to consider invariant subspaces which don't have the form $F H^{2}$.

Theorem 6. Let M be an invariant subspace of L^{2} and $M \ominus w M=S$.
(1) There exists f in S such that z^{j} f belongs to S for any j and $|f|>0$ a.e. if and only if $M=F \mathbf{H}_{1}$ for some unimodular function F.
(2) There exists f in S such that $z^{j} f$ belongs to S for any $j \geqq 0$ and $z^{\ell} f$ is not in S for some $\ell<0$, if and only if $M=F N$ where N is an invariant subspace which contains H^{2} and is contained properly in \mathbf{H}_{1}, and F is a unimodular function.

Proof. Putting $M_{1}=\cap_{j \geqq 0} w^{j} M$,

$$
M=\left(\sum_{j \geqq 0} \oplus S w^{j}\right) \oplus M_{1}
$$

Let S^{\prime} be the largest closed subspace of S with $z S^{\prime} \subset S^{\prime}$. If we let

$$
S_{3}=S \ominus S^{\prime}, \quad S_{2}=\bigcap_{j \geqq 0}^{\cap} z^{j} S^{\prime} \quad \text { and } \quad S_{1}=S^{\prime} \ominus S_{2}
$$

then

$$
M=\left(\sum_{j \geqq 0} \oplus S_{1} w^{j}\right) \oplus\left(\sum_{j \geqq 0} \oplus S_{2} w^{j}\right) \oplus\left(\sum_{j \geqq 0} \oplus S_{3} w^{j}\right) \oplus M_{1}
$$

(1) Since $\Sigma_{j \geqq 0} \oplus S_{2} w^{j}$ has no reducing subspaces under the multiplication by w and $z S_{2}=S_{2}$, by (1) in Theorem 5

$$
\sum_{j \geqq 0} \oplus S_{2} w^{j}=\chi_{E_{1}} F \mathbf{H}_{1}
$$

where $\chi_{E_{1}} \in \mathscr{L}_{1}$ and $|F|=1$ a.e. If there exists f in S such that $z^{j} f \in S$ for any j and $|f|>0$ a.e., then $f \in S_{2}$ and so $\chi_{E_{1}}=1$ a.e. Thus

$$
\bar{F} M \supset \mathbf{H}_{1} \quad \text { and } \quad w\left(\bar{F} M \ominus \mathbf{H}_{1}\right) \subset \bar{F} M \ominus \mathbf{H}_{1}
$$

This implies $M=F \mathbf{H}_{1}$. The converse is obvious.
(2) If there exists $f \in S$ such that $z^{j} f \in S$ for any $j \geqq 0$ and $z^{\ell} f \notin S$ for some $\ell<0$ then $S_{1} \neq\{0\}$. By (2) in Theorem 5,

$$
\sum_{j \geqq 0} \oplus S_{1} w^{j}=F H^{2}
$$

for some unimodular function F. Thus

$$
\bar{F} M \supset H^{2} \quad \text { and } \quad w\left(\bar{F} M \ominus H^{2}\right) \subset \bar{F} M \ominus H^{2}
$$

By (1) in Theorem $2 \bar{F} M \subset \mathbf{H}_{1}$. Set $N=\bar{F} M$ then N is the desired invariant subspace. Conversely if $M=F N$ and $H^{2} \subset N \subsetneq \mathbf{H}_{1}$ then $w K \subset K$ by (1) in Theorem 2, where $K=N \ominus H^{2}$. Hence

$$
M \ominus w M=F \mathscr{H}_{1} \oplus F(K \ominus w K)
$$

This implies that $z^{j} F \in M \ominus w M$ for any $j \geqq 0$. If $z^{j} F \in M \ominus w M$ for any j then

$$
\mathscr{L}_{1} \subset \mathscr{H}_{1} \oplus(K \ominus w K)
$$

and hence $\bar{z} \overline{\mathscr{H}}_{1} \subset K \ominus w K$. Thus $K=\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ and $N=\mathbf{H}_{1}$. This contradiction implies that $z^{\ell} F \notin M \ominus w M$ for some $\ell<0$.

Corollary 1. Let M be an invariant subspace of H^{2} and $M \Theta w M=S$.
(1) $z S \subset S$ if and only if $M=F H^{2}$ for some inner function F.
(2) There exists f in S such that $z^{j} f$ belongs to S for any $j \geqq 0$ if and only if $M=F N$ where N is an invariant subspace containing H^{2} and is contained properly in \mathbf{H}_{1}, and F is an inner function.
5. Invariant subspaces between H^{2} and \mathbf{H}_{1}. In Theorems 2 and 6 invariant subspaces between H^{2} and \mathbf{H}_{1} were important. In this section we shall study invariant subspaces N between H^{2} and \mathbf{H}_{1}. Suppose $K=N \ominus H^{2}$. Let Q be the orthogonal projection from L^{2} to $\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$. The operator T_{ϕ} on $\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ is defined by $T_{\phi} f=Q(\phi f)$ where $\phi \in H^{\infty}$. $H^{2} \oplus K$ is an invariant subspace in \mathbf{H}_{1} if and only if $w K \subset K$ and $T_{z} K \subset K$.

Definition. For a closed subspace K in $\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ we say K has the property (${ }^{*}$) when $w K \subset K$ and $T_{z} K \subset K$.

In order to study invariant subspaces between H^{2} and \mathbf{H}_{1} it is sufficient to study closed subspaces K in $\bar{z} \mathscr{\mathscr { H }}_{1} \otimes \mathscr{H}_{2}$ that have the property $\left(^{*}\right)$.

Proposition 7. Let K be a closed subspace in $\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ with the property (*). If T_{z} has finite rank n on K then $K \ominus w K$ is finite dimensional $\ell \leqq n$.

Proof. As in the proof of Theorems 1 and 3 there is a finite Blashke product $q \in \mathscr{H}_{1}$ of degree $\ell^{\prime} \leqq n$ such that $T_{q} K=\{0\}$. Hence

$$
\begin{aligned}
K \subset \bar{q}\left(H^{2} \ominus q H^{2}\right) & =\sum_{j=0}^{\infty} \oplus \bar{q}\left(\mathscr{H}_{1} \ominus q \mathscr{H}_{1}\right) w^{j} \\
& =\sum_{j=0}^{\infty} \oplus\left(\bar{z} \overline{\mathscr{H}}_{1} \ominus \bar{z} \bar{q} \overline{\mathscr{H}}_{1}\right) w^{j} .
\end{aligned}
$$

By Corollary 1 in [4] $K \ominus w K$ is finite dimensional $\ell \leqq \ell^{\prime}$.

Proposition 8. Let K be a closed subspace in $\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ with the property $\left(^{*}\right) . T_{z}^{n}$ is zero on K for some $n>0$ if and only if

$$
K=\left[w ; f_{1}, \ldots, f_{n+1}\right]_{2}
$$

where $\left[w ; f_{1}, \ldots, f_{n+1}\right]_{2}$ is a closed invariant subspace under the multiplication by w that is generated by f_{1}, \ldots, f_{n+1}. Here f_{1}, \ldots, f_{n+1} satisfy the following conditions:
(1) $f_{j}=\sum_{\ell=1}^{n} f_{j \ell} \bar{z}^{\ell}$
where $f_{j \ell}$ is in \mathscr{H}_{2} and $\left|f_{j \ell}\right| \leqq 1$ a.e. for $1 \leqq \ell \leqq n$;
(2) $\sum_{\ell=1}^{n} f_{j \ell} \bar{f}_{i \ell}=\delta_{j i}$;
(3) $\sum_{\ell=t}^{n} f_{j \ell} \bar{z}^{\ell-t}$ is in K for any $t \leqq n$.

Proof. Suppose $T_{z}^{n}=0$ on K. By the proof of Proposition 7

$$
K \subset \sum_{j=0}^{\infty} \oplus\left(\bar{z} \overline{\mathscr{H}}_{1} \ominus \bar{z}^{n+1} \overline{\mathscr{H}}_{1}\right) w^{j}
$$

By a theorem of Lax (cf. $[2,61-64]$), K has the form $\left[w ; f_{1}, \ldots, f_{n+1}\right]_{2}$ that satisfies (1) and (2). (3) follows from $T_{z} K \subset K$. The converse is obvious.

By Proposition $8, T_{z}$ is zero on K if and only if $K=\bar{z} q \mathscr{H}_{2}$ for some inner function q in \mathscr{H}_{2}.

Theorem 9. Let K be a closed subspace in $\bar{z} \overline{\mathscr{H}}_{1} \otimes \mathscr{H}_{2}$ with the property (*).
(1) T_{z} is rank one on K if and only if

$$
K=\bar{z}(1-a \bar{z})^{-1} q \mathscr{H}_{2}
$$

where $|a|<1, a \neq 0$ and q is an inner function in \mathscr{H}_{2}.
(2) $K \ominus w K$ is one dimensional if and only if

$$
K=\sum_{j=0}^{\infty} \oplus[f]_{2} w^{j}
$$

where $f=u(1-v \bar{z})^{-1}, u$ is in \mathscr{H}_{2} and v is in the closure of \mathscr{A}_{2} in $L^{2}\left(|f|^{2} d m\right)$.

Proof. (1) If T_{z} is rank one on K then by the proof of Proposition 7 for some nonzero a with $|a|<1$

$$
K \subset \sum_{j=0}^{\infty} \oplus\left(\bar{z} \overline{\mathscr{H}}_{1} \ominus \bar{z} \frac{1-\bar{a} z}{z-a} \overline{\mathscr{H}}_{1}\right) w^{j}
$$

and hence $K \subset \bar{z}(1-a \bar{z})^{-1} \mathscr{H}_{2}$. Thus by Beurling's theorem

$$
K=\bar{z}(1-a \bar{z})^{-1} q \mathscr{H}_{2}
$$

for some inner function q in \mathscr{H}_{2}. For the converse, since

$$
T_{z}\left(\bar{z}(1-a \bar{z})^{-1}\right)=a \bar{z}(1-a \bar{z})^{-1}
$$

K has the property $\left(^{*}\right)$.
(2) If $K \ominus w K$ is one dimensional then

$$
\begin{aligned}
K & =\sum_{j=0}^{\infty} \oplus[f]_{2} w^{j}=\left[f \mathscr{A}_{2}\right]_{2} \\
& =f \times\left\{\text { the closure of } \mathscr{A}_{2} \text { in } L^{2}\left(|f|^{2} d m\right)\right\} .
\end{aligned}
$$

We can write

$$
f=\sum_{\ell=1}^{\infty} f_{\ell} \bar{z}^{\ell}
$$

where $f_{\ell} \in \mathscr{H}_{2}$. Then $f=\bar{z} f_{1}+\bar{z} f_{v}$ for some v in the closure of \mathscr{A}_{2} in $L^{2}\left(|f|^{2} d m\right)$ because

$$
T_{z} f=\sum_{\ell=2}^{\infty} f_{\ell} \bar{z}^{\ell-1}
$$

is in K. Set $u=f_{1}$ then

$$
f=u(1-v \bar{z})^{-1} .
$$

Conversely if $f=u(1-v \bar{z})^{-1}$ then

$$
z f=u+v f \quad \text { and } \quad T_{z} f=v f \in K .
$$

References

1. R. E. Curto, P. S. Muhly, T. Nakazi and T. Yamamoto, On superalgebras of the polydisc algebra, Acta Sci. Math. 51 (1987), 413-421.
2. H. Helson, Lectures on invariant subspaces (Academic Press, New York and London, 1964).
3. H. Helson and D. Lowdenslager, Invariant subspaces, Proc. Int. Symp. Linear Spaces, Jerusalem, 1960 (MacMillan (Pergamon), 1961), 251-262.
4. T. Nakazi, Invariant subspaces of unitary operators, J. Math. Soc. Japan 34 (1982), 627-635.
5. Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math. 69 (1977), 151-167.
6. W. Rudin, Function theory in polydiscs (Benjamin, New York, 1969).

Hokkaido University, Sapporo, Japan

[^0]: Received June 8, 1987 and in revised form July 7, 1988. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

