CERTAIN INVARIANT SUBSPACES OF H^2 AND L^2 ON A BIDISC

TAKAHIKO NAKAZI

1. Introduction. We let T^2 be the torus that is the cartesian product of 2 unit circles in C. The usual Lebesgue spaces, with respect to the Haar measure *m* of T^2 , are denoted by $L^p = L^p(T^2)$, and $H^p = H^p(T^2)$ is the space of all *f* in L^p whose Fourier coefficients

$$\hat{f}(j,\,\ell)\,=\,\int_K\,f(z,\,w)\overline{z}^j\overline{w}^\ell dm(z,\,w)$$

are 0 as soon as at least one component of (j, ℓ) is negative.

A closed subspace M of L^2 is said to be invariant if

 $zM \subset M$ and $wM \subset M$.

Whenever this is the case, it follows that $fM \subset M$ for every f in H^{∞} . One can ask for a classification or an explicit description (in some sense) of all invariant subspaces of L^2 , but this seems out of reach.

Ahern and Clark (cf. [6, 80]) described completely invariant subspaces of H^2 , of finite codimension. It is easy to describe invariant subspaces Mof L^2 in case $\overline{z}^j M \subset M$ for $j \ge 0$ (cf. [5, 164-165]). Helson and Lowdenslager (cf. [2, 8]) described invariant subspaces M of L^2 in case $\overline{z}^j w M \subset M$ for $j \ge 0$. Recently Curto, Muhly, Nakazi and Yamamoto [1] considered invariant subspaces M of L^2 in case $\overline{z}^j w^n M \subset M$ for $j \ge 0$ when n > 0 is fixed. However these invariant subspaces do not have the form FH^2 for some unimodular function F.

In this paper we consider invariant subspaces of L^2 which have the form FH^2 for some unimodular function F. This is a direct generalization of a Beurling's theorem (cf. [2, 8]) in the case of one variable. It should be noted that there are many invariant subspaces M even in H^2 such that M does not have the form FH^2 . Hence we wish to consider an invariant subspace of L^2 which has the form FN for some unimodular function F where N is an invariant subspace between H^2 and the L^2 -closure of $\bigcup_{n\geq 0} \overline{z}^n H^2$. In this paper, if M is an invariant subspace of H^2 , of finite co-dimension, it is shown that M has the form FN for some unimodular function F.

Let $C(T^2)$ be the space of complex-valued continuous functions on T^2 . We shall let \mathscr{A}_j , \mathscr{B}_j and \mathscr{C}_j denote the following subalgebras of $C(T^2)$ for j = 1, 2:

Received June 8, 1987 and in revised form July 7, 1988. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

(i) \mathscr{A}_j is the uniform closure of the polynomials in z_j where $z_1 = z$ and $z_2 = w$;

(ii) \mathscr{B}_j is the uniform closure of the polynomials in z_j , \overline{z}_j and z_i where $j \neq i$;

(iii) \mathscr{C}_i is the uniform closure of the polynomials in z_i and \overline{z}_i .

Definition. The closure in L^2 of \mathscr{B}_j , $[\mathscr{B}_j]_2$, will be denoted \mathbf{H}_j . We define $\mathscr{L}_j = [\mathscr{C}_j]_2$ and $\mathscr{H}_j = [\mathscr{A}_j]_2$.

Observe that:

(iv) \mathscr{H}_{j} is isometrically isomorphic to the classical Hardy space on T;

(v) \mathscr{L}_i is isometrically isomorphic to the Lebesgue space on T;

(vi) \mathbf{H}_j is the tensor product of \mathcal{L}_j and \mathcal{H}_i where $j \neq i$, that is, $\mathbf{H}_j = \mathcal{L}_j \otimes \mathcal{H}_i$.

2. Invariant subspaces containing H^2 . We are specially interested in invariant subspaces in H^2 . But we have interest in invariant subspaces containing H^2 because they shed light on researches about invariant subspaces in H^2 .

THEOREM 1. If M is an invariant subspace which contains H^2 properly, then $M \ominus H^2$ is infinite dimensional.

Proof. Suppose $M \ominus H^2$ is finite dimensional. Let P be the orthogonal projection in L^2 with range $M \ominus H^2$, and let the operator S_{ϕ} on $M \ominus H^2$ be defined by $S_{\phi}f = P(\phi f)$ where $\phi \in H^{\infty}$. S_{ϕ} is of finite rank and hence there exists an analytic polynomial p such that $p(S_{\phi}) = 0$. Therefore $S_{p(\phi)} = 0$ because $S_{\phi\psi} = S_{\phi}S_{\psi}$ for any ϕ and ψ in H^{∞} . If we choose $\phi = z$ then $S_{p(z)} = 0$ and hence $p(z)M \subset H^2$. By the inner outer factorization of $p(z) \in \mathcal{H}_1$ (cf. [2, 12]), there is a finite Blashke product $q_1 \in \mathcal{H}_1$ such that $q_1M \subset H^2$. Similarly there is a finite Blashke product $q_2 \in \mathcal{H}_2$ such that $q_2M \subset H^2$. Thus

 $\overline{q}_1 H^2 \cap \overline{q}_2 H^2 \supset M.$

While $\bar{q}_1 H^2 \cap \bar{q}_2 H^2 = H^2$ because $\bar{q}_1 H^2 \subset \mathbf{H}_1$ and $\bar{q}_2 H^2 \subset \mathbf{H}_2$. This contradiction implies that $M \ominus H^2$ is infinite dimensional.

The theorem above is interesting because there are many invariant subspaces in H^2 , of finite codimension. We shall study some special invariant subspaces containing H^2 .

LEMMA 1. Suppose M is an invariant subspace which contains H^2 and $K = M \Theta H^2$. If $wK \subset K$ then $K \subset \overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$.

Proof. If there is a function $f \in K$ such that $\hat{f}(j, \ell) \neq 0$ for some $j \ge 0$ and $\ell < 0$, then $\overline{w}^{\ell} f$ is not orthogonal to H^2 . While $\overline{w}^{\ell} f \in K$ because $wK \subset K$ and $-\ell > 0$. This contradiction implies $\hat{f}(j, \ell) = 0$ if $j \ge 0$ and $\ell < 0$, and hence $K \subset \overline{z} \overline{H}_2 = \overline{z} \overline{\mathscr{H}}_1 \otimes \mathscr{L}_2$. Since

$$zK \subset H^2 \oplus K = \mathscr{H}_2 \oplus zH^2 \oplus K$$

and zK is orthogonal to zH^2 , $zK \subset \mathscr{H}_2 \oplus K$. If $f \in K$ then

$$f = \sum_{j=1}^{\infty} u_j \overline{z}^j$$

where $u_i \in \mathscr{L}_2$ because $f \in \overline{z}\overline{\mathbf{H}}_2$. Hence

$$zf = u_1 + \sum_{j=2}^{\infty} u_j \overline{z}^{j-1},$$

 $u_1 \in \mathscr{H}_2$ and $\sum_{j=2}^{\infty} u_j \overline{z}^{j-1}$ belongs to K because $zf \in \mathscr{H}_2 \oplus K$. Proceeding similarly $u_j \in \mathscr{H}_2$ for $j \ge 2$ and hence $K \subset \overline{z} \overline{\mathscr{H}}_2 \otimes \mathscr{H}_2$.

THEOREM 2. Let M be an invariant subspace of L^2 . Suppose $M \supset H^2$ and $K = M \ominus H^2$.

- (1) $wK \subset K$ if and only if $M \subset \mathbf{H}_1$.
- (2) $zK \subset K$ and $wK \subset K$ if and only if $M = H^2$.

Proof. (1) By Lemma 1 if $wK \subset K$ then $M \subset \mathbf{H}_1$. Conversely if $M \subset \mathbf{H}_1$ and $f \in K$ then

$$f = \sum_{j=1}^{\infty} f_j \overline{z}^j$$
 and $f_j \in \mathscr{H}_2$

Since $wf \in \overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$ and $wf \in M$, wf belongs to K. (2) If $zK \subset K$ and $wK \subset K$ then by (1) $M \subset \mathbf{H}_1 \cap \mathbf{H}_2 = H^2$.

3. The dimension of $M \ominus wM$. Let M be an invariant subspace of L^2 . If M = wM then

$$M = \chi_{E_1} F \mathbf{H}_2 + \chi_{E_2} L^2$$

where χ_{E_1} is a characteristic function of Borel set on T^2 in \mathscr{L}_2 and $\chi_{E_1} + \chi_{E_2} \leq 1$ a.e. by [1] and [5, 164-165]. Thus, we are interested in M with $M \ominus wM \neq \{0\}$.

THEOREM 3. Suppose M is an invariant subspace of L^2 such that if $gM \subset M$ then g belongs to H^{∞} . Then $M \ominus wM$ is infinite dimensional.

Proof. Suppose $M \ominus wM$ is finite dimensional. Let P be the orthogonal projection in L^2 with range $M \ominus wM$, and let the operator S_{ϕ} on $M \ominus wM$ be defined by $S_{\phi}f = P(\phi f)$ where $\phi \in H^{\infty}$. As in the proof of Theorem 1, there is a finite Blashke product $q \in \mathscr{H}_1$ such that $qM \subset wM$ because S_z is of finite rank. Thus $q\overline{w}M \subset M$. This contradiction implies that $M \ominus wM$ is infinite dimensional.

1274

PROPOSITION 4. Let M be an invariant subspace. If $M \ominus wM$ is one dimensional then

$$\bigcap_{n\geq 0} w^n M \neq \{0\}.$$

Proof. Suppose

$$\bigcap_{n\geq 0} w^n M = \{0\}$$

Then

$$M = \sum_{j=0}^{\infty} \oplus [f]_2 w^j$$

because $M \ominus wM$ is one dimensional. Hence

$$zf = \sum_{j=0}^{\infty} c_j f w^j$$

and z is in the closure of \mathscr{A}_2 in $L^2(|f|^2 dm)$. This contradiction implies that

$$\bigcap_{n\geq 0} w^n M \neq \{0\}.$$

Set $M = F(q\mathscr{H}_2 \oplus z\mathbf{H}_2)$ where F and q are unimodular functions, and $q \in \mathscr{H}_2$. This is an example of an invariant subspace such that $M \ominus wM$ is one dimensional.

4. Beurling type. Beurling (cf. [2, 8]) showed that any nonzero invariant subspaces in the usual Hardy space $H^2(T)$ on T has the form $FH^2(T)$ for some inner function F, that is, some unimodular function in $H^2(T)$. This was generalized to invariant subspaces M in the usual Lebesgue space $L^2(T)$ on T such that $M \ominus wM \neq \{0\}$ by [3]. We wish to generalize this well known Beurling's theorem to invariant subspaces in $L^2(T^2)$.

THEOREM 5. Let M be an invariant subspace of L^2 and $M \ominus wM = S \neq \{0\}$.

(1) zS = S if and only if

$$M = \chi_{E_1} F \mathbf{H}_1 \oplus \chi_{E_2} L^2$$

where χ_{E_1} is in $\mathscr{L}_1, \chi_{E_1} + \chi_{E_2} \leq 1$ a.e. and F is a unimodular function. (2) $zS \subsetneq S$ if and only if $M = FH^2$ for some unimodular function F.

Proof. (1) The 'if' part is obvious. If zS = S then zM = M. Hence by the remark above Theorem 3, the 'only if' part follows.

(2) The 'if' part is obvious. Suppose $zS \subsetneq S$ and set $S_0 = S \ominus zS$.

Suppose nonzero $f \in S_0$. Since $z^j f \in S$ for any $j \ge 0, z^j f$ is orthogonal to $w^l f$ if $\ell \ge 1$ and $j \ge 0$. Hence

$$\int |f|^2 z^j \overline{w}^\ell dm = 0 \quad \text{if } \ell \ge 1 \text{ and } j \ge 0.$$

Since $z^j w^{\ell} f \in wM$ for any $j \ge 0$ and any $\ell \ge 1$, f is orthogonal to $z^j w^{\ell} f$ if $\ell \ge 1$ and $j \ge 0$. Hence

$$|f|^2 \overline{z}^j \overline{w}^\ell dm = 0$$
 if $\ell \ge 1$ and $j \ge 0$.

Moreover f is orthogonal to $z^{j}f$ if $j \ge 1$ and hence

$$\int |f|^2 \overline{z}^j dm = 0 \quad \text{if } j \ge 1.$$

Thus, for any non zero $f \in S_0$, $|f|^2$ is constant a.e. If $f, g \in S_0$ and |f| = |g| = 1 a.e. then $|1 + \overline{fg}| = 2$ and hence $\arg f = \arg g$. Thus f = g because |f| = |g|, and $S_0 = [F]_2$ for some unimodular function F.

Set

$$M_1 \bigcap_{j=0}^{\infty} w^j M$$
 and $S_1 = \bigcap_{j=0}^{\infty} z^j S$

then

$$M = \left(\sum_{j=0}^{\infty} \oplus Sw^{j}\right) \oplus M_{1}$$
 and $S = \left(\sum_{j=0}^{\infty} \oplus S_{0}z^{j}\right) \oplus S_{1}$.

Since $S_0 = [F]_2$ and |F| = 1, $S = F\mathscr{H} \oplus S_1$ and $zS_1 = S_1$. Hence

$$M = FH^2 \oplus \left(\sum_{j=0}^{\infty} \oplus S_1 w^j\right) \oplus M_1.$$

Since $wM_1 = M_1$,

$$M_1 = \chi_{E_1} F_2 \mathbf{H}_2 \oplus \chi_{E_2} L^2$$

where $\chi_{E_1} \in \mathscr{L}_2$, $\chi_{E_1} + \chi_{E_2} \leq 1$ a.e. and $|F_2| = 1$ a.e. Since $zS_1 = S_1$, by (1)

$$\sum_{j=0}^{\infty} \oplus S_1 w^j = \chi_{G_1} F_1 \mathbf{H}_1$$

where $\chi_{G_1} \in \mathscr{L}_1$ and $|F_1| = 1$ a.e. Hence

$$M = FH^2 \oplus \chi_{G_1}F_1\mathbf{H}_1 \oplus \chi_{E_1}F_2\mathbf{H}_2 \oplus \chi_{E_2}L^2.$$

Since FH^2 is orthogonal to $\chi_{E_2}L^2$, $\chi_{E_2}L^2 = \{0\}$. Thus if we set $K = \chi_{G_1}\overline{F}F_1\mathbf{H}_1 \oplus \chi_{E_1}\overline{F}F_2\mathbf{H}_2$ and $N = H^2 \oplus K$, then M = FN and N is an invariant subspace containing H^2 , $zK \subset K$ and $wK \subset K$. By (2) of Theorem 2 $N = H^2$ and $M = FH^2$.

If M is an invariant proper subspace of H^2 , of finite codimension and $M = FH^2$ then $\overline{F}M$ contains H^2 properly and $\overline{F}M \ominus H^2$ is finite dimensional. This contradicts Theorem 1. Hence we wish to consider invariant subspaces which don't have the form FH^2 .

THEOREM 6. Let M be an invariant subspace of L^2 and $M \ominus wM = S$. (1) There exists f in S such that $z^j f$ belongs to S for any j and |f| > 0 a.e. if and only if $M = F\mathbf{H}_1$ for some unimodular function F.

(2) There exists f in S such that $z^{j}f$ belongs to S for any $j \ge 0$ and $z^{\ell}f$ is not in S for some $\ell < 0$, if and only if M = FN where N is an invariant subspace which contains H^{2} and is contained properly in \mathbf{H}_{1} , and F is a unimodular function.

Proof. Putting
$$M_1 = \bigcap_{j \ge 0} w^j M$$

 $M = \left(\sum_{j \ge 0} \oplus S w^j\right) \oplus M_1.$

Let S' be the largest closed subspace of S with $zS' \subset S'$. If we let

$$S_3 = S \ominus S', \quad S_2 = \bigcap_{j \ge 0} z^j S' \quad \text{and} \quad S_1 = S' \ominus S_2,$$

then

$$M = \left(\sum_{j\geq 0} \oplus S_1 w^j\right) \oplus \left(\sum_{j\geq 0} \oplus S_2 w^j\right) \oplus \left(\sum_{j\geq 0} \oplus S_3 w^j\right) \oplus M_1.$$

(1) Since $\sum_{j\geq 0} \oplus S_2 w^j$ has no reducing subspaces under the multiplication by w and $zS_2 = S_2$, by (1) in Theorem 5

$$\sum_{j\geq 0} \oplus S_2 w^j = \chi_{E_1} F \mathbf{H}_1$$

where $\chi_{E_1} \in \mathscr{L}_1$ and |F| = 1 a.e. If there exists f in S such that $z^j f \in S$ for any j and |f| > 0 a.e., then $f \in S_2$ and so $\chi_{E_1} = 1$ a.e. Thus

$$\overline{F}M \supset \mathbf{H}_1$$
 and $w(\overline{F}M \ominus \mathbf{H}_1) \subset \overline{F}M \ominus \mathbf{H}_1$.

This implies $M = F\mathbf{H}_1$. The converse is obvious.

(2) If there exists $f \in S$ such that $z^j f \in S$ for any $j \ge 0$ and $z^\ell f \notin S$ for some $\ell < 0$ then $S_1 \neq \{0\}$. By (2) in Theorem 5,

$$\sum_{j\geq 0} \oplus S_1 w^j = F H^2$$

for some unimodular function F. Thus

 $\overline{F}M \supset H^2$ and $w(\overline{F}M \ominus H^2) \subset \overline{F}M \ominus H^2$.

By (1) in Theorem 2 $\overline{F}M \subset \mathbf{H}_1$. Set $N = \overline{F}M$ then N is the desired invariant subspace. Conversely if M = FN and $H^2 \subset N \subsetneq \mathbf{H}_1$ then $wK \subset K$ by (1) in Theorem 2, where $K = N \ominus H^2$. Hence

 $M \ominus wM = F\mathscr{H}_1 \oplus F(K \ominus wK).$

This implies that $z^j F \in M \ominus wM$ for any $j \ge 0$. If $z^j F \in M \ominus wM$ for any j then

 $\mathscr{L}_1 \subset \mathscr{H}_1 \oplus (K \ominus wK)$

and hence $\overline{z}\overline{\mathscr{H}}_1 \subset K \ominus wK$. Thus $K = \overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$ and $N = \mathbf{H}_1$. This contradiction implies that $z^{\ell}F \notin M \ominus wM$ for some $\ell < 0$.

COROLLARY 1. Let M be an invariant subspace of H^2 and $M \ominus wM = S$. (1) $zS \subset S$ if and only if $M = FH^2$ for some inner function F.

(2) There exists f in S such that $z^{j}f$ belongs to S for any $j \ge 0$ if and only if M = FN where N is an invariant subspace containing H^{2} and is contained properly in \mathbf{H}_{1} , and F is an inner function.

5. Invariant subspaces between H^2 and H_1 . In Theorems 2 and 6 invariant subspaces between H^2 and H_1 were important. In this section we shall study invariant subspaces N between H^2 and H_1 . Suppose $K = N \ominus H^2$. Let Q be the orthogonal projection from L^2 to $\overline{z}\overline{\mathscr{H}_1} \otimes \mathscr{H}_2$. The operator T_{ϕ} on $\overline{z}\overline{\mathscr{H}_1} \otimes \mathscr{H}_2$ is defined by $T_{\phi}f = Q(\phi f)$ where $\phi \in H^{\infty}$. $H^2 \oplus K$ is an invariant subspace in H_1 if and only if $wK \subset K$ and $T,K \subset K$.

Definition. For a closed subspace K in $\overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$ we say K has the property (*) when $wK \subset K$ and $T_zK \subset K$.

In order to study invariant subspaces between H^2 and \mathbf{H}_1 it is sufficient to study closed subspaces K in $\overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$ that have the property (*).

PROPOSITION 7. Let K be a closed subspace in $\overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$ with the property (*). If T_z has finite rank n on K then $K \ominus wK$ is finite dimensional $\ell \leq n$.

Proof. As in the proof of Theorems 1 and 3 there is a finite Blashke product $q \in \mathcal{H}_1$ of degree $\ell' \leq n$ such that $T_q K = \{0\}$. Hence

$$K \subset \overline{q}(H^2 \ominus qH^2) = \sum_{j=0}^{\infty} \oplus \overline{q}(\mathscr{H}_1 \ominus q\mathscr{H}_1)w^j$$
$$= \sum_{j=0}^{\infty} \oplus (\overline{z}\overline{\mathscr{H}_1} \ominus \overline{z}\overline{q}\overline{\mathscr{H}_1})w^j.$$

By Corollary 1 in [4] $K \ominus wK$ is finite dimensional $\ell \leq \ell'$.

1278

PROPOSITION 8. Let K be a closed subspace in $\overline{z}\overline{\mathscr{H}}_1 \otimes \mathscr{H}_2$ with the property (*). T_z^n is zero on K for some n > 0 if and only if

$$K = [w; f_1, \ldots, f_{n+1}]_2$$

where $[w; f_1, \ldots, f_{n+1}]_2$ is a closed invariant subspace under the multiplication by w that is generated by f_1, \ldots, f_{n+1} . Here f_1, \ldots, f_{n+1} satisfy the following conditions:

(1)
$$f_j = \sum_{\ell=1}^n f_{j\ell} \overline{z}^\ell$$

where $f_{j\ell}$ is in \mathscr{H}_2 and $|f_{j\ell}| \leq 1$ a.e. for $1 \leq \ell \leq n$;

(2)
$$\sum_{\ell=1}^{n} f_{j\ell} \overline{f}_{i\ell} = \delta_{ji};$$

(3)
$$\sum_{\ell=1}^{n} f_{j\ell} \overline{z}^{\ell-t} \text{ is in } K \text{ for any } t \leq n.$$

Proof. Suppose $T_z^n = 0$ on K. By the proof of Proposition 7

$$K \subset \sum_{j=0}^{\infty} \oplus (\overline{z}\overline{\mathscr{H}}_1 \ominus \overline{z}^{n+1}\overline{\mathscr{H}}_1)w^j.$$

By a theorem of Lax (cf. [2, 61-64]), K has the form $[w; f_1, \ldots, f_{n+1}]_2$ that satisfies (1) and (2). (3) follows from $T_z K \subset K$. The converse is obvious.

By Proposition 8, T_z is zero on K if and only if $K = \overline{z} q \mathscr{H}_2$ for some inner function q in \mathscr{H}_2 .

THEOREM 9. Let K be a closed subspace in $\overline{z}\overline{\mathcal{H}}_1 \otimes \mathcal{H}_2$ with the property (*).

(1) T_z is rank one on K if and only if

$$K = \overline{z}(1 - a\overline{z})^{-1}q\mathscr{H}_2$$

where |a| < 1, $a \neq 0$ and q is an inner function in \mathscr{H}_2 . (2) $K \ominus wK$ is one dimensional if and only if

$$K = \sum_{j=0}^{\infty} \oplus [f]_2 w^j$$

where $f = u(1 - v\overline{z})^{-1}$, u is in \mathcal{H}_2 and v is in the closure of \mathcal{A}_2 in $L^2(|f|^2 dm)$.

Proof. (1) If T_z is rank one on K then by the proof of Proposition 7 for some nonzero a with |a| < 1

$$K \subset \sum_{j=0}^{\infty} \oplus \left(\overline{z} \overline{\mathscr{H}}_1 \ominus \overline{z} \frac{1-\overline{a}z}{z-a} \overline{\mathscr{H}}_1 \right) w^j$$

and hence $K \subset \overline{z}(1 - a\overline{z})^{-1}\mathscr{H}_2$. Thus by Beurling's theorem $K = \overline{z}(1 - a\overline{z})^{-1}\mathfrak{g}\mathscr{H}_2$

for some inner function q in \mathcal{H}_2 . For the converse, since

$$T_{z}(\overline{z}(1 - a\overline{z})^{-1}) = a\overline{z}(1 - a\overline{z})^{-1},$$

K has the property (*).

(2) If $K \ominus wK$ is one dimensional then

$$K = \sum_{j=0}^{\infty} \oplus [f]_2 w^j = [f \mathscr{A}_2]_2$$

= $f \times \{$ the closure of \mathscr{A}_2 in $L^2(|f|^2 dm) \}$.

We can write

$$f = \sum_{\ell=1}^{\infty} f_{\ell} \overline{z}^{\ell}$$

where $f_{\ell} \in \mathscr{H}_2$. Then $f = \overline{z}f_1 + \overline{z}fv$ for some v in the closure of \mathscr{A}_2 in $L^2(|f|^2 dm)$ because

$$T_z f = \sum_{\ell=2}^{\infty} f_{\ell} \overline{z}^{\ell-1}$$

is in K. Set $u = f_1$ then

$$f = u(1 - v\overline{z})^{-1}.$$

Conversely if $f = u(1 - v\overline{z})^{-1}$ then

zf = u + vf and $T_z f = vf \in K$.

References

- 1. R. E. Curto, P. S. Muhly, T. Nakazi and T. Yamamoto, On superalgebras of the polydisc algebra, Acta Sci. Math. 51 (1987), 413-421.
- 2. H. Helson, Lectures on invariant subspaces (Academic Press, New York and London, 1964).
- H. Helson and D. Lowdenslager, *Invariant subspaces*, Proc. Int. Symp. Linear Spaces, Jerusalem, 1960 (MacMillan (Pergamon), 1961), 251-262.
- 4. T. Nakazi, Invariant subspaces of unitary operators, J. Math. Soc. Japan 34 (1982), 627-635.
- 5. —— Invariant subspaces of weak-* Dirichlet algebras, Pacific J. Math. 69 (1977), 151-167.

6. W. Rudin, Function theory in polydiscs (Benjamin, New York, 1969).

Hokkaido University, Sapporo, Japan

1280