Short-chain fatty acid formation in the hindgut of rats fed native and fermented oat fibre concentrates

Adele M. Lambo-Fodje*, Rickard Öste and Margareta E. G.-L. Nyman

Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-221 00, Lund, Sweden

(Received 21 September 2005 – Revised 1 March 2006 – Accepted 1 March 2006)

The formation of SCFA in rats fed fermented oat fibre concentrates was compared with that of rats fed native oat fibre concentrate. The cultures used were lactic acid bacteria consisting of *Lactobacillus bulgaricus* and *Streptococcus thermophilus* (V2), the exopolysaccharide-producing strain *Pediococcus damnosus* 2.6 (Pd) and *L. reuteri* (Lr). The materials were incorporated into test diets yielding a concentration of indigestible carbohydrates of 80 g/kg (dry weight). Rats fed the V2-fermented fibre-concentrate diet yielded higher caecal and distal concentrations of acetic acid (P<0.01) than rats fed the native fibre concentrate. All the fermented fibre concentrates resulted in a higher propionic acid concentration in the distal hindgut (P<0.05), while rats fed Pd-fermented fibre concentrate resulted in lower concentration of butyric acid (P<0.05; P<0.01) in all parts of the hindgut as compared with rats fed the native fibre concentrates. Butyrate concentrations ranged between 5–11 μmol/g (distal colon) and 6–8 μmol/g (13 d faeces). Higher proportions of acetic acid (P<0.05; P<0.01) were observed in the caecum of rats fed the fermented fibre concentrates. Rats fed Pd- and Lr-fermented fibre concentrates produced higher proportions of propionic acid (P<0.05; P<0.01) in the caecum. Changes in SCFA formation in the caecum, distal colon and faeces of rats fed the fermented samples compared with the native sample indicate that these microbes probably survive in the hindgut and that modification of the microflora composition with fermented foods is possible. This may be important for the gastrointestimal flora balance in relation to colonic diseases.

Short-chain fatty acids: Fermented oat fibre concentrate: Lactic acid bacteria: Rat hindgut

The colon is one of the least understood and most metabolically active organs (Eastwood, 1991). It is a tubular contractile reservoir that retains water, electrolytes, and ions and has a complex assemblage of micro-organisms that are responsible for the colon’s degradative abilities. The main carbon and energy sources for colonic microflora are certain types of carbohydrates usually referred to as indigestible carbohydrates. The type and amount of endproducts formed by colonic bacteria depend on the chemical structure, composition and amounts of the available substrate, as well as the biochemical characteristics and catabolite regulatory mechanisms of the bacteria involved (Macfarlane & Macfarlane, 1997). The main endproducts from microbial degradation in the hindgut of dietary carbohydrates that escape digestion are SCFA, mainly acetic, propionic and butyric acid (Ruppin *et al.* 1980). Gases such as CO₂, H₂ and CH₄ are also produced. There is increasing evidence that some SCFA have specific physiological effects. Acetic and propionic acid are quickly absorbed through the colonic mucosa, stimulating salt and water uptake (Ruppin *et al.* 1980). A high production of SCFA may also lower colonic pH, resulting in an increased mineral solubility and reduced formation of secondary bile acids (Nagengast *et al.* 1988; Delzenne *et al.* 1995). Further, the proliferation of unwanted pathogens may decrease as a result of lower colonic pH. Butyric acid and to some extent propionic acid are important energy substrates for the colonicocytes (Roediger, 1982), and butyric acid especially has been suggested to play a part in the prevention and treatment of ulcerative colitis (Cummings, 1997) and cancer (Scheppach *et al.* 1995). Studies *in vitro* have also shown that butyric acid may inhibit the growth of human cancer cells (Whitehead *et al.* 1986; Gamet *et al.* 1992) and can induce apoptosis (Hague *et al.* 1995) in colonic tumour cell lines. Propionic acid may lower plasma cholesterol concentrations by inhibiting cholesterol synthesis from acetic acid in the liver (Wolever *et al.* 1991) and also enhances colonic muscular contraction, relieving constipation and contributing to laxation (Yajima, 1985). Acetic acid promotes the relaxation of resistance vessels in the colonic vasculature, thus helping in the maintenance of blood flow to the liver and colon (Mortensen *et al.* 1990).

The amount and pattern of SCFA formed in the colon are highly dependent on the type of carbohydrate available. Some types of resistant starch, barley β-glucans, raffinose and oligofructose appear to promote butyric acid production *both in vitro* (Casterline *et al.* 1997; Karppinen *et al.* 2000) and in rats (Berggren *et al.* 1993; Mathers *et al.* 1997; Nilsson & Nyman, 2005). Arabinogalactans and guar gum result in

Abbreviations: EPS, exopolysaccharides; Lr, *Lactobacillus reuteri*; Pd, *Pediococcus damnosus* 2.6; V2, *Lactobacillus bulgaricus* and *Streptococcus thermophilus*.

* Corresponding author: Dr Adele M. Lambo-Fodje, fax +46 46 222 45 32, email adele.lambo@inl.lth.se
high yields of propionic acid (Berggren et al. 1993; Edwards, 1993) in rats. Oat dietary fibre has been shown to result in a higher amount of butyric acid (1-44 mmol/g) by in vitro fermentation with human faecal inocula as compared with one-autoclaved cycle-resistant starch (0-94 mmol/g) (Casterline et al. 1997). The formation of SCFA is dependent on physico-chemical characteristics of the carbohydrate reaching the colon, such as monomeric composition, glycosidic linkages, molecular weight and solubility (Henningsson et al. 2001; Nilsson & Nyman, 2005), which in turn can be affected by heat treatment (Goodlad & Mathers, 1992) and fermentation.

Oat-based media could be suitable for the growth of lactic acid bacteria and also for the formation of microbial or exopolysaccharides (EPS) (Mårtensson et al. 2002). A straight-chain β-(1→3) glucan polymer with β-(1→2) glucose monomers linked to the interior chain has also been isolated from Pediococcus damnosus 2.6 (Pd) (Dueñas-Chasco et al. 1997). This EPS can be produced in an oat-based medium after incubation with Pd (Mårtensson et al. 2002a,b). The production of EPS with α-(1→3) glucan and α-(2→6) fructan structures has also been observed in Lacto-

bacillus reuteri (Lr) LB 121 growing on sucrose (van Geel-Schutten et al. 1999). However, there is yet no evidence that Lr ATCC 55 730 used in the present study produces EPS in an oat-based medium. EPS are capable of improving the texture and viscosity of the final product (Ricciardi et al. 1994) and may also improve the sensory and nutritional properties. The dairy industry uses some cultures that have been described as promoters of ropiness or mouthfeel because of their texture-enhancing properties (Sutherland, 1998; Folkenberg et al. 2005). Further, Nakajima et al. (1992) reported that there was a reduction in serum lipids in rats fed a rosy milk product containing a phospho-polysaccharide. The physiological effects of lactic acid bacteria-produced EPS may depend on their ability to resist degradation by gastrointestinal enzymes, and thus behave like a type of dietary fibre.

The objective of the present study was to evaluate the formation of SCFA along the hindgut of rats fed a β-glucan-enriched oat fibre concentrate fermented with different lactic acid bacteria. Commercial yoghurt strains consisting of a mixture of (a) L. delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus (V2), (b) Lr ATCC 55 730 and (c) the EPS-producing bacteria Pd were used in the fermentations of the oat fibre concentrate. The effects of the diets on food intake and weight gain, weight of the caecum contents, bulking effect and SCFA production were investigated.

Materials and methods

Bacterial strains

The probiotic culture Lr, the EPS-producing culture Pd and the commercial yoghurt strain, V2, were used. Lr was obtained from Biogaia Biologics (Stockholm, Sweden). Pd was received from the collection at the University of San Sebastian (Universidad del País Vasco, Spain). Pd and Lr strains were stored at −80°C in De Man–Rogosa–Sharpe broth (De Man et al. 1960) containing 25 % (v/v) glycerol. The commercial yoghurt culture V2 was a 1:1 mixture of L. delbrueckii subsp. bulgaricus and S. salivarius subsp. thermophilus (Visby Tønder A/S, Tønder, Denmark); V2 was stored at −80°C according to the recommendation of the manufacturer. V2 was chosen because it is the starter culture commonly used in Sweden and improves aroma and acidity in the final product.

Preparation of the oat fibre concentrates

Oat fibre concentrate in powder form was obtained from Cebo Foods AB (Lund, Sweden). The powder was reconstituted to a DM of 10 %, with aqueous distilled water. Glucose (2 %, w/v) was added to the concentrate as an additional substrate for microbial growth and the mixture was sterilised at 80°C for 20 min. The concentrate was then cooled to fermentation temperature (28°C for Pd and 37°C for V2 and Lr) and inoculated. The fermentations were performed over a period of between 16 and 20 h (due to the different growth rate of the various lactic acid bacteria) under anaerobic conditions. The amount of V2 culture used as inoculum was 0.02 % (w/v). Inoculates for Pd and Lr (5 %, v/v) were taken from a fresh (20 h incubation) pre-inoculum in De Man–Rogosa–Sharpe broth (Merck, Darmstadt, Germany) and the cells were collected and washed with 0.9 % (w/v) NaCl solution. The final pH of the fermented fibre concentrates was 4.2 ± 0.5. All samples were lyophilised using a Labconco lyphlock 12 freeze-dry system (Ninolab AB, Växby, Sweden) and milled to a particle size less than 0.3 mm in a Cyclotec mill (Tecator AB, Högmanäs, Sweden). The chemical composition of the oat fibre concentrates is shown in Table 1.

Animals and experimental design

Male Wistar rats with an average weight of 91.0 (SEM 3) g were purchased from B&K Universal (Stockholm, Sweden). The rats were randomly divided into groups of seven in order to obtain

<table>
<thead>
<tr>
<th>Table 1. Composition of oat fibre concentrates (g/100 g dry weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Protein</td>
</tr>
<tr>
<td>Lipids</td>
</tr>
<tr>
<td>Starch</td>
</tr>
<tr>
<td>Dietary fibre</td>
</tr>
<tr>
<td>Ash</td>
</tr>
<tr>
<td>NA*</td>
</tr>
</tbody>
</table>

V2, Lactobacillus bulgaricus and Streptococcus thermophilus; Pd, Pediococcus damnosus 2.6; Lr, L. reuteri.

*Likely to be low-molecular-weight carbohydrates.
a similar average weight between the different test groups (91.0 (SEM 2.0), 90.5 (SEM 3.0), 92.1 (SEM 3.0) g for rats fed the native, V2-fermented, Pd- and Lr-fermented fibre concentrates respectively). The rats were housed individually in metabolism cages, with free access to water (Berggren et al. 1993). The feed intake was restricted to 12 g dry weight per d. After 7 d of adaptation to the diets, a 5 d experimental period followed when faeces were collected daily for the determination of faecal dry and wet weights, fermentability and bulking effect. Faeces were kept at −20°C and then freeze-dried and milled before analysis of total fermentability. Fresh faeces were collected on dry ice on day 6, to determine the faecal excretion of proteins, lipids, starch and ash (Table 1). The monomeric composition of the dietary fibre in the isolated fibre residues and in faeces was analysed by GLC on a DB-225 column (J&W Scientific, Folsom, CA, USA) for the neutral sugars as their alditol acetates and spectrophotometrically for the uronic acids (Theander et al. 1995).

Crude protein, lipids, starch and minerals. The N was assayed by the Kjeldahl procedure (Kjeltec System 1003; Tecator AB, Höganäs, Sweden) according to the manual. Crude protein was calculated as N × 6.25.

Total lipid content was determined gravimetrically by extraction in diethyl ether and petroleum ether (boiling point 40–60°C; 1:1) after hydrolysis with 7.7 m-HCl at 70–80°C for 60 min (Association of Official Analytical Chemists, 1980).

Total starch in the fibre residues and faeces from the rats was quantified as described by Björck & Siljeström (1992). No starch could be detected in the faeces.

Ash content was determined by incineration at 550°C for at least 5 h, cooling in a desiccator and then weighing.

Determination of short-chain fatty acids. The amount of SCFA (acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, caproic, and heptanoic acid), lactic acid and succinic acid in the caecum, colon and 13 d faeces were analysed by GLC (Richardson et al. 1989). The intestinal content was homogenised (Polytron®; Kinematica AG, Lucerne, Switzerland) with 2-ethylbutyric acid as internal standard. Hydrochloric acid was added to protonise the SCFA, which were then extracted with diethyl ether and silylated with n-(tert-butyldimethylsilyl)-n-methyltrifluoroacetamide (Sigma Chemical Company, MO, USA). The samples were allowed to stand for 24–48 h in order for complete derivatisation to occur and then they were analysed using an HP-5 column (Hewlett-Packard, Wilmington, DE, USA), and integrated by Chem Station software (Hewlett-Packard).

Table 2. Components of test diets (g/kg dry weight)

<table>
<thead>
<tr>
<th>Component</th>
<th>Native</th>
<th>Fermented with V2</th>
<th>Fermented with Pd</th>
<th>Fermented with Lr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary fibre source</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Casein</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Maize oil</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>dl-Methionine†</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mineral mixture†</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Vitamin mixture†</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wheat starch</td>
<td>431</td>
<td>431</td>
<td>431</td>
<td>431</td>
</tr>
</tbody>
</table>

V2, Lactobacillus bulgaricus and Streptococcus thermophilus; Pd, Pediococcus damnosus; Lr, L. reuteri.

*Contains (g/kg): CuSO4·5H2O, 0.37; ZnSO4·7H2O, 1.4; KH2PO4, 332.1; NaH2PO4·2H2O, 171.8; CaCO3, 324.4; KI, 0.068; MgSO4·7H2O, 57.2; FeSO4·7H2O, 7.7; MnSO4·H2O, 3.4; CoCl2·6H2O, 0.020; NaCl, 101.7.
† Contains (g/kg): menadione, 0.62; thiamine hydrochloride, 2.5; riboflavin, 2.5; pyridoxine hydrochloride, 1.25; calcium pantothenate, 6.25; nicotinic acid, 6.25; folic acid, 0.25; niacin, 12.5; p-aminobenzoic acid, 1.25; biotin, 0.05; cyanocobalamin, 0.00375; retinol, 0.187; vitamin D, 0.000613; vitamin E, 25; maize starch, 841.25.

Analytical methods

Indigestible carbohydrates. The content of indigestible carbohydrates (dietary fibre) in the oat fibre concentrates was isolated in duplicate using the centrifugation–dialysis method (as described before in Lambo et al. 2005), in which molecules with a molecular weight ≥1000 Da will be recovered. The fibre values were corrected for remaining proteins, lipids, starch and ash (Table 1). The monomeric composition of the dietary fibre in the isolated fibre residues and in faeces was analysed by GLC on a DB-225 column (J&W Scientific, Folsom, CA, USA) for the neutral sugars as their alditol acetates and spectrophotometrically for the uronic acids (Theander et al. 1995).

Calculations and statistical analyses

Bulking capacity of the indigestible carbohydrates was calculated as:

\[
\text{Faecal dry weight}_{\text{test diet}} (g) = \frac{\text{Indigestible carbohydrates ingested}_{\text{test diet}} (g)}{\text{Indigestible carbohydrates ingested}_{\text{control diet}} (g)}
\]
Fermentability (%) of the indigestible carbohydrates was calculated as:

\[\left(1 - \frac{\text{Indigestible carbohydrates in faeces}_{\text{next dist}} (g)}{\text{Indigestible carbohydrates ingested}_{\text{dist}} (g)} \right) \times 100. \]

The molar proportion of SCFA was calculated as a ratio of the total concentration of organic acids analysed to the individual acid concentration and expressed as a percentage.

All statistical analyses were performed with the Minitab® software package version 13 (Minitab Inc., State College, PA, USA). The means and standard deviations were analysed using the two-sided Student’s t test. Significance of difference between the means of the fermented fibre concentrates and the native fibre concentrates was determined \((P<0.05\) and \(P<0.01\)).

Results

Monomeric composition of the indigestible carbohydrate

The monomeric composition of the indigestible carbohydrate in the native and fermented fibre concentrates is shown in Table 3. The main monomer in all materials was glucose. The distribution between the neutral sugars and uronic acids was quite similar in all the concentrates.

Basal data

The feed intake was almost complete and the rats gained weight throughout the experiment (Table 4). Body-weight gain, wet and dry faecal outputs, caecal contents, bulking capacity and fermentability were similar among the different groups and no significant differences could be seen.

Short-chain fatty acid concentrations

Acetic acid was the major metabolite in rats fed the oat fibre concentrates, followed by propionic and butyric acids. Approximately 80% of the organic acids analysed in the caecum of rats could be attributed to these acids. Some lactic acid could also be detected (Table 5).

A significantly higher concentration of acetic acid was observed in the caecum and distal colon of rats fed the V2-fermented fibre concentrate (51 and 29 μmol/g, respectively; \(P<0.01\)) as compared with the native fibre concentrate (39 and 21 μmol/g, respectively) (Fig. 1).

The propionic acid concentrations were similar in rats fed the different fibre concentrates. The exception was in the distal colon of rats fed the fermented fibre concentrates and the 13 d faeces of the rats fed the Pd-fermented fibre concentrate, where significantly higher \((P<0.05)\) concentrations of propionic acid were obtained, as compared with the native fibre concentrate (Fig. 1).

The caecal butyric acid concentrations in rats fed the Pd- (9 μmol/g) and Lr- (15 μmol/g) fermented fibre concentrates were significantly lower \((P<0.05)\) than in those fed the native fibre concentrate (24 μmol/g). In the proximal and distal colon, only the Pd-fermented fibre concentrate yielded a significantly lower \((P<0.05)\) butyric acid concentration as compared with the native fibre concentrate.

Proportions of short-chain fatty acids

Some differences were also observed in the proportions of SCFA among the rats fed the different fibre concentrates (Fig. 2). The rats fed the fermented fibre concentrates yielded significantly higher \((P<0.05; P<0.01)\) proportions of acetic acid in the caecum than the native fibre concentrate. A higher proportion of acetic acid \((P=0.014)\) was formed in the distal colon of rats fed the Pd-fermented fibre concentrate as compared with the rats fed the native fibre concentrate.

Proportions of propionic acid were higher \((P<0.05; P<0.01)\) in the caecum of rats fed the Pd- \((P=0.043)\) and Lr- \((P=0.004)\) fermented fibre concentrates than in the caecum of rats fed the native fibre concentrate. There was also a tendency for rats fed the Pd-fermented fibre concentrate to yield higher proportions of propionic acid in the distal colon and 13 d faeces as compared with the rats fed the native fibre concentrate (Fig. 2).

In the caecum, the rats fed the Pd- and Lr-fermented fibre concentrates produced significantly lower \((P<0.05; P<0.01)\) butyric acid proportions than the rats fed the native fibre concentrate. In the distal colon, only the rats fed the Pd-fermented fibre concentrate had a significantly lower \((P=0.010)\) butyric acid proportion.

Caecal pools and faecal excretions

Caecal pool and faecal excretions of the organic acids are shown in Table 5. The caecal pool of organic acids (SCFA + lactic acid) in rats fed the V2-fermented fibre concentrate was higher \((P=0.026)\) than the caecal pool in rats fed the native fibre concentrate due to higher amounts of acetic \((P=0.008)\) and propionic acids \((P=0.048)\). Rats fed the Pd-fermented fibre concentrate had lower caecal pools of butyric acid \((P=0.007)\) and lactic acid \((P=0.010)\) than those fed native fibre concentrate. However, the faecal excretion of propionic acid was higher \((P=0.017)\) for rats fed the Pd-fermented

Table 3. Monomeric composition (%) of indigestible carbohydrates in the oat fibre concentrates

<table>
<thead>
<tr>
<th></th>
<th>Native</th>
<th>Fermented with V2</th>
<th>Fermented with Pd</th>
<th>Fermented with Lr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabinose</td>
<td>2.5</td>
<td>3.0</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Xylose</td>
<td>2.5</td>
<td>2.5</td>
<td>2.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Glucose</td>
<td>81.0</td>
<td>83.0</td>
<td>82.9</td>
<td>82.2</td>
</tr>
<tr>
<td>Uronic acids</td>
<td>11.4</td>
<td>10.2</td>
<td>9.1</td>
<td>10.2</td>
</tr>
<tr>
<td>Minor components*</td>
<td>2.6</td>
<td>1.3</td>
<td>2.1</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*V2, Lactobacillus bulgaricus and Streptococcus thermophilus; Pd, Pediococcus damnosus 2.6; Lr, L. reuteri.
*Rhamnose, fucose, mannose and galactose.
fibre concentrate as compared with those rats fed the native fibre concentrate.

Faecal excretions were higher for rats fed the Lr-fermented fibre concentrate (116 mmol; \(P = 0.030 \)) as compared with those fed the native fibre concentrate (76 mmol). This could be explained by higher (\(P < 0.05; P < 0.01 \)) excretions of acetic, propionic and lactic acids in rats fed this diet.

Discussion

SCFA, especially propionic and butyric acids, have been reported to have health-promoting properties and the desire to develop functional food products with the ability to improve health or prevent the incidence of certain diseases has become a challenge for the food industry. In the present investigation, oat fibre concentrate was fermented with different lactic acid bacteria and used in a rat experiment, in order to observe the SCFA formation in the hindgut. Oat fibre concentrates were fed to rats for 13 d, which has been reported to be sufficiently long to yield optimal fermentation of dietary fibre components (Nyman & Asp, 1985; Brunsgaard et al. 1995) and a stable SCFA profile (Tulung et al. 1987; Levrat et al. 1991).

The total fermentability of the fibre was similar (about 92–96 %) in the native and fermented oat fibre concentrates, and was in agreement with previous studies, which revealed values of about 90 % for \(\beta \)-glucan-enriched oat fibre (Heningsson et al. 2002) and about 97 % for barley \(\beta \)-glucans (Berggren et al. 1993). Rats fed the V2-fermented fibre concentrate were more prone to form SCFA in the caecum, while those fed the Lr-fermented fibre concentrate resulted in the highest faecal excretion of SCFA, indicating a slower fermentation of the substrate with the presence of Lr (Table 5).

In the caecum and distal colon, the formation of acetic and propionic acids seemed to be favoured by the rats fed the fermented fibre concentrates, while butyric acid formation was comparatively higher in rats fed the native fibre concentrate. V2 and Pd have been observed to be homofermenters in vitro (convert glucose to lactic acid) (Axelsson, 1998; Battock & Azam-Ali, 1998), whereas Lr has been observed to be a heterofermenter (converts glucose to lactic and acetic acid) (Lindgren & Dobrogosz, 1990; Mitsuoka, 1992; Fujisawa et al. 1996). The colonic sugar fermenters Clostridium spp.,

Table 4. Initial weight (g), feed intake (g/d) and body-weight gain (g/d) of rats, and faecal and caecal contents (g/d), fibre intake (g/d), bulking capacity and fermentability (%) in rats fed native and fermented oat fibre concentrates* (Mean values with their standard errors for seven rats per group)

<table>
<thead>
<tr>
<th></th>
<th>Native</th>
<th>Fermented with V2</th>
<th>Fermented with Pd</th>
<th>Fermented with Lr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SEM</td>
<td>Mean SEM</td>
<td>Mean SEM</td>
<td>Mean SEM</td>
</tr>
<tr>
<td>Initial weight</td>
<td>91.0 2.0</td>
<td>90.0 3.0</td>
<td>90.5 3.4</td>
<td>92.8 3.0</td>
</tr>
<tr>
<td>Feed intake</td>
<td>11.4 0.7</td>
<td>11.3 0.8</td>
<td>11.6 0.2</td>
<td>11.6 0.4</td>
</tr>
<tr>
<td>Body-weight gain</td>
<td>3.8 1.0</td>
<td>3.1 1.4</td>
<td>4.0 1.4</td>
<td>3.5 1.0</td>
</tr>
<tr>
<td>Wet faeces</td>
<td>0.87 0.1</td>
<td>0.87 0.2</td>
<td>0.88 0.1</td>
<td>0.80 0.2</td>
</tr>
<tr>
<td>Dry faeces</td>
<td>0.54 0.02</td>
<td>0.60 0.03</td>
<td>0.60 0.06</td>
<td>0.53 0.07</td>
</tr>
<tr>
<td>Caeecal content</td>
<td>2.3 0.1</td>
<td>2.5 0.6</td>
<td>2.0 0.3</td>
<td>2.5 0.5</td>
</tr>
<tr>
<td>Fibre intake</td>
<td>0.91 0.06</td>
<td>0.90 0.07</td>
<td>0.93 0.02</td>
<td>0.93 0.03</td>
</tr>
<tr>
<td>Bulking capacity</td>
<td>0.60 0.02</td>
<td>0.63 0.04</td>
<td>0.62 0.06</td>
<td>0.60 0.07</td>
</tr>
<tr>
<td>Fermentability</td>
<td>94.4 1.4</td>
<td>92.8 1.1</td>
<td>95.4 2.8</td>
<td>96.2 1.4</td>
</tr>
</tbody>
</table>

V2, Lactobacillus bulgaricus and Streptococcus thermophilus; Pd, Pediococcus damnosus 2.6; Lr, L. reuteri.

*No significant differences could be seen between the groups.

Table 5. Caecal pool (\(\mu \)mol) and faecal excretion of organic acids (\(\mu \)mol)† (Mean values with their standard errors for seven rats per group)

<table>
<thead>
<tr>
<th></th>
<th>Acetic acid</th>
<th>Propionic acid</th>
<th>Butyric acid</th>
<th>Lactic acid</th>
<th>Total pool</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SEM</td>
<td>Mean SEM</td>
<td>Mean SEM</td>
<td>Mean SEM</td>
<td>Mean SEM</td>
</tr>
<tr>
<td>Caecum Native</td>
<td>94 4</td>
<td>32 2</td>
<td>61 8</td>
<td>22 2</td>
<td>236 16</td>
</tr>
<tr>
<td>Fermented with V2</td>
<td>142*** 12</td>
<td>54** 9</td>
<td>53 9</td>
<td>17 4</td>
<td>294** 15</td>
</tr>
<tr>
<td>Fermented with Pd</td>
<td>102 14</td>
<td>35 5</td>
<td>24*** 6</td>
<td>11** 2</td>
<td>186 19</td>
</tr>
<tr>
<td>Fermented with Lr</td>
<td>112 22</td>
<td>43 6</td>
<td>36 12</td>
<td>11** 3</td>
<td>217 32</td>
</tr>
<tr>
<td>13 d Faeces Native</td>
<td>41 5</td>
<td>8 0-6</td>
<td>9 1</td>
<td>8 2</td>
<td>76 9</td>
</tr>
<tr>
<td>Fermented with V2</td>
<td>41 4</td>
<td>8 0-2</td>
<td>10 2</td>
<td>10 1</td>
<td>77 5</td>
</tr>
<tr>
<td>Fermented with Pd</td>
<td>53 6</td>
<td>13** 2</td>
<td>7 1</td>
<td>11 2</td>
<td>92 8</td>
</tr>
<tr>
<td>Fermented with Lr</td>
<td>61** 8</td>
<td>13** 2</td>
<td>12 4</td>
<td>20*** 4</td>
<td>116** 18</td>
</tr>
</tbody>
</table>

V2, Lactobacillus bulgaricus and Streptococcus thermophilus; Pd, Pediococcus damnosus 2.6; Lr, L. reuteri.

Mean values were significantly different from the corresponding value of the native fibre concentrate in the same part of the hindgut: ** \(P < 0.05 \); *** \(P < 0.01 \).
Eubacterium spp., **Fusobacterium** spp., **Butyrivibrio** spp. and acid utilisers, such as **Megasphaera elsdenii**, are all butyrate-producers (Holdeman et al. 1977; Tsukahara et al. 2002). Sugar fermenters produce butyric acid as the major endproduct of fermentation, while the acid utilisers convert lactic acid to butyric acid (Tsukahara et al. 2002). **Bifidobacteria**, which are also present in the colon, produce both acetic and lactic acid. **Propionibacterium** sp. and **Veillonella** sp. are acetate and propionate producers (Mitsuoka, 1996; Ozadali et al. 1996). The production of butyric acid generated by acid converters such as **M. elsdenii**, for example, is stimulated by lactic and acetic acids (Tsukahara et al. 2002). This conversion process seems to depend on the rate at which lactic acid is produced. The varied amounts of acetic, propionic, butyric and the other organic acids observed in the present study most probably resulted from the metabolic activities of the microflora in the colon as well as from the ingested microorganisms in the fermented fibre concentrates.

It may also be questioned if the ingested bacteria reach the hindgut of rats in a live state. There has been some controversy as to whether V2 survives passage through the intestinal tract. Bianchi-Salvadori et al. (1978) isolated viable V2 in the faeces of human subjects after yoghurt consumption, whereas Pedrosa et al. (1995) did not come to the same conclusion. In conventional rats, one of the micro-organisms in V2, **L. delbrueckii** spp. **bulgaricus** was not always present, whereas the other micro-organism, **S. salivarius** spp. **thermophilus** did not survive beyond the upper small intestine (Hargrove & Alford, 1978). Lr, on the other hand, inhabits the gastrointestinal tract of mammals and hence survives the passage and reaches the colon (Casas & Dobrogosz, 2000), while there is yet no report about the survival of Pd in vivo. However, in vitro studies have shown that Pd can tolerate exposures to gastrointestinal juices (Immerstrand, 2005). The variations in the
formation of SCFA in the caecum and distal colon of rats fed the different fermented fibre concentrates could also be interpreted as a probable indication that there is survival of these microbes in the upper intestinal tract and that they reach the hindgut. When ingested, these micro-organisms might improve the balance of gastrointestinal flora by increasing the number and activity of endogenous bacteria possessing health-promoting properties.

The significantly higher concentration of propionic acid in the distal colon and the 13 d faeces, the 13 d faecal excretion and the tendency towards higher proportions of propionic acid in the distal colon and 13 d faeces of rats fed Pd-fermented fibre concentrate is evidence of the fact that this substrate persisted to a higher extent beyond the proximal colon as compared with the native fibre concentrate. This observed trend reveals that there was a tendency for propionic acid to be continuously formed to a higher degree in the distal part of the hindgut of rats fed Pd-fermented fibre concentrate than of rats fed the native fibre concentrate, which may be positive towards maintaining colonic health. Propionic acid (like butyric acid) is an important energy substrate for the colonic mucosa and, as most colonic diseases occur in the distal part of the colon, it is important to increase the formation of these acids distally. Furthermore, propionic acid has been suggested to inhibit the synthesis of cholesterol from acetic acid in the liver (Wright et al. 1990; Wolever et al. 1991).

Interestingly, in a clinical study on human subjects, a rye oat-based product (fermented with the strains V2 and Pd 2.6) significantly reduced total cholesterol (4.3 %) and increased faecal Bifidobacterium spp. count compared with a fermented dairy-based product (Mårtenson et al. 2005). It could be speculated that this was due to an increased formation of propionic acid.

In the caecum, the proportion of butyric acid was lower ($P<0.05$; $P<0.01$) for rats fed the fermented (except for V2) products (12–21 %) than for those fed the native fibre concentrate (26 %). The values for the fermented products were, however, in a similar region as those observed from earlier studies (15 %) for a β-glucan-enriched oat bran (20 g fibre) added to the diet of patients with ulcerative colitis for 12 weeks increased the concentration of butyric acid in the faeces by 36 % and also improved the symptoms of the disease (Hallert et al. 2003). Furthermore, Perrin et al. (2001) observed that only those indigestible carbohydrates favouring a high and stable butyric acid production in the rat hindgut decreased the rate of aberrant crypt foci, one of the most reliable intermediate biomarkers of colon cancer (Pretlow et al. 1991, 1992; Konstantakos et al. 1996; Young et al. 1996; Shivapurkar et al. 1997).

Prebiotic products that maintain SCFA formation (even in small concentrations) in the distal colon are recommended. Butyric acid concentrations of 1–5 μmol/g (Scheppach et al. 2001) have been found to effectively suppress cell proliferation in cultured colonocytes, but it is still unclear how these concentrations relate to conditions in vivo. This will probably depend on the extent of butyric acid uptake along the colon and the persistence of an active concentration (Robertson et al. 2001). Butyrate concentrations in the present study ranged between 4 and 9 μmol/g in the proximal colon, 5 and 11 μmol/g in the distal colon and 6 and 8 μmol/g in the 13 d faeces. This implies that butyric acid formation persisted along the hindgut.

In conclusion, the fermented fibre concentrates seemed to favour the formation of acetic and propionic acids, while the native fibre concentrate favoured the formation of butyric acid.

Acknowledgements

Ceba Foods AB (Lund, Sweden) financially supported the present study.

References

Short-chain fatty acids in rats fed oats

