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MENGER AND CONSONANT SETS IN THE SACKS MODEL

VALENTIN HABERL , PIOTR SZEWCZAK , AND LYUBOMYR ZDOMSKYY

Abstract. Using iterated Sacks forcing and topological games, we prove that the existence of a totally
imperfect Menger set in the Cantor cube with cardinality continuum is independent from ZFC. We also
analyze the structure of Hurewicz and consonant subsets of the Cantor cube in the Sacks model.

§1. Introduction. By space we mean an infinite topological Tychonoff space. A
space X is Menger if for any sequence U0,U1, ... of open covers of X, there are
finite families F0 ⊆ U0,F1 ⊆ U1, ... such that the family

⋃
n∈� Fn covers X. Every

�-compact space is Menger and every Menger space is Lindelöf. The Menger
conjecture asserts that every subset of the real line with the Menger property is �-
compact. By a result of Fremlin and Miller [11, Theorem 4], this conjecture is false
in ZFC. This opened a wide stream of investigations in the realm of special subsets
of the real line. The Menger property is a subject of research in the combinatorial
covering properties theory but also appears in other branches of mathematics as
local properties of function spaces [14], forcing theory [8, 9] or additive Ramsey
theory in algebra [23, 26].

The Menger property is closely related to infinite combinatorics. Let a, b ∈ �� .
We write a ≤∗ b if the set { n : a(n) > b(n) } is finite. In such a case we say that the
function a is dominated by the function b. A setD ⊆ �� is dominating if any function
in �� is dominated by some function from D. Let d be the minimal cardinality of
a dominating subset of �� . The Menger property can be characterized in terms of
continuous images, as follows: a set X ⊆ 2� is Menger if and only if no continuous
image of X into �� is dominating. This characterization was proved by Hurewicz
[12, Section 5] and then much later but independently by Recław [18, Proposition 3],
so we call it the Hurewicz–Recław characterization of the Menger property. It follows
that any subset of 2� with cardinality smaller than d is Menger and there is a
non-Menger set of cardinality d.

The above mentioned result of Fremlin and Miller is dichotomic, i.e., it splits ZFC
into two cases using undecidable statements. Bartoszyński and Tsaban provided in
[1] a uniform ZFC counterexample to the Menger conjecture. By set with a given
topological property we mean a space homeomorphic with a subspace of 2� . A set
is totally imperfect if it does not contain a homeomorphic copy of 2� .

Received June 6, 2024.
2020 Mathematics Subject Classification. Primary 54A35, Secondary 03E35.
Key words and phrases. Menger property, totally imperfect, perfectly meager, sacks forcing, Hurewicz

property, consonant.

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/jsl.2025.21

1

https://doi.org/10.1017/jsl.2025.21 Published online by Cambridge University Press

https://orcid.org/0009-0007-8237-7811
https://orcid.org/0000-0001-7961-7748
https://orcid.org/0000-0002-7450-2420
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2025.21
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2025.21&domain=pdf
https://doi.org/10.1017/jsl.2025.21


2 VALENTIN HABERL, PIOTR SZEWCZAK, AND LYUBOMYR ZDOMSKYY

Theorem 1.1 (Bartoszyński, Tsaban [1, Theorem 16]). There is a totally imperfect
Menger set of cardinality d.

In the first part of the paper we consider the following problem.

Problem 1.2. Is there a totally imperfect Menger set of cardinality c?

By Theorem 1.1, it suffices to consider the case d < c. In Section 2, we introduce
a game characterization of the Menger property, which is one of the main tools
needed in Section 3. We show that adding iteratively �2 Sacks reals to a ground
model satisfying CH, we get a model where d < c and the answer to Problem 1.2 is
negative. In Section 7 we also prove that d < c is consistent with the existence of a
totally imperfect Menger set of cardinality c.

In the second part of the paper we analyze the structure of Hurewicz and consonant
subsets of 2� . Recall that a space X is Hurewicz if for any sequence U0,U1, ...
of open covers of X, there are finite families F0 ⊆ U0,F1 ⊆ U1, ... such that the
family {

⋃
Fn : n ∈ �} is a �-cover of X, i.e., the sets { n : x ∈

⋃
Fn } are cofinite

for all x ∈ X . Obviously, every �-compact space is Hurewicz and every Hurewicz
space is Menger. Similarly to the Menger property, the Hurewicz property can be
characterized in terms of continuous images, as follows. A set A ⊆ �� is bounded
if there is a function b ∈ �� such that a ≤∗ b for all a ∈ A. A set X ⊆ 2� is
Hurewicz if and only if every continuous image of X into �� is bounded. This
characterization was proved independently by Hurewicz [12, Section 5] and Recław
[18, Proposition 1], so we again call it the Hurewicz–Recław characterization of the
Hurewicz property.

Consonant spaces were introduced by Dolecki, Greco, and Lechicki [10] and
characterized by Jordan [13, Corollary 11] in the following way. Let X ⊆ 2� . A
cover of X is a k-cover if any compact subset of X is contained in some set from the
cover. A game G1(K,O) played on X is a game for two players, Alice and Bob. For
a natural number n, in round n: Alice picks an open k-cover Un of X and Bob picks
a set Un ∈ Un. Bob wins the game if the family {Un : n ∈ � } is a cover of X, and
Alice wins otherwise. A setY ⊆ 2� is consonant if and only if Alice has no winning
strategy in the game G1(K,O) played on 2� \ Y . We treat here this characterization
as a definition of consonant sets.

Consonant spaces have close connections to combinatorial covering properties.
Let Y ⊆ 2� . It follows from the game characterization of the Menger property
given below that if the set Y is consonant, then the set 2� \ Y is Menger. A space
X is Rothberger if for any sequence U0,U1, ... of open covers of X, there are sets
U0 ∈ U0, U1 ∈ U1, ... such that the family {Un : n ∈ � } is a cover of X. Using
a game characterization of the Rothberger property given by Pawlikowski [16],
if the set 2� \ Y is totally imperfect, then Y is consonant if and only if the set
2� \ Y is Rothberger. Indeed, if 2� \ Y is Rothberger, then Alice does not even
have a winning strategy in the game G1(O,O) on 2� \ Y , hence Y is consonant.
Assuming now that Y is consonant and 2� \ Y is totally imperfect, we shall show
that 2� \ Y is Rothberger. LetUn,m be an open cover of 2� \ Y for all 〈n,m〉 ∈ � × �.
Set Wn = {

⋃
m∈� Un,m : Un,m ∈ Un,m for all m ∈ �}. Since each compact subset of

2� \ Y is countable, each Wn is a k-cover of 2� \ Y . Since Alice has no winning
strategy in the game G1(K,O) on 2� \ Y , we conclude that 2� \ Y is S1(K,O),
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and hence there areWn ∈ Wn, n ∈ �, such that
⋃
n∈� Wn = 2� \ Y . For each n,m

let Un,m ∈ Un,m be such thatWn =
⋃
m∈� Un,m. Then 2� \ Y =

⋃
n,m∈� Un,m, which

shows that 2� \ Y is Rothberger.1

In Section 5 we introduce a topological game which allows us to analyze the
structure of Hurewicz and consonant spaces in 2� . We show that in the Sacks model,
mentioned above, each consonant (Hurewicz) set X ⊆ 2� and its complement 2� \
X are unions of �1 compact sets. This approach allows us also to capture a result
of Miller [15, Section 5] that in this model, every perfectly meager subset of 2� , i.e.,
a set which is meager in any perfect subset of 2� , has size at most �1.

The main tools used in our investigations are game characterizations of the
considered properties. Let X be a space. The Menger game played on X is a game
for two players, Alice and Bob. For a natural number n, in round n: Alice picks
an open cover Un of X and Bob picks a finite family Fn ⊆ Un. Bob wins the game
if the family

⋃
n∈� Fn covers X, and Alice wins otherwise. For more details about

this game, we refer to the works of Scheepers [21, Theorem 13] or Tsaban and the
second named author [24]. Similarly to the Menger property, the Hurewicz property
can also be characterized using a topological game. The Hurewicz game played on
X is a game for two players, Alice and Bob. For a natural number n, in round n:
Alice picks an open cover Un of X and Bob picks a finite family Fn ⊆ Un. Bob wins
the game if the family {

⋃
Fn : n ∈ � } is a �-cover of X, and Alice wins otherwise.

Remark 1.3. In the definition of the Menger and Hurewicz games we could
assume, in addition, that none of the Un’s contains a finite subcover, and get an
equivalent definition. Indeed, if X is compact, then Alice has no legal moves, and
we standardly adopt the convention that the player having no moves loses. Thus,
Bob has a “trivial” winning strategy. On the other hand, if X is not compact, then it
has a cover U∗ without finite subcovers, and there is no loss of generality in assuming
that Alice always plays refinements of U∗. Similar comments apply to the definitions
of the Menger and Hurewicz properties.

Theorem 1.4 (Hurewicz). A set X ⊆ 2� is Menger if and only if Alice has no
winning strategy in the Menger game played on X.

Theorem 1.5 (Scheepers [21, Theorem 27]). A setX ⊆ 2� is Hurewicz if and only
if Alice has no winning strategy in the Hurewicz game played on X.

§2. Menger game and perfect sets. Now we shall address some specific instances
of perfect spaces and families of their clopen subsets. Suppose that 〈Fn : n ∈ � 〉
is a non-decreasing sequence of finite subsets of some well-ordered set 〈S,<〉 such
that S =

⋃
n∈� Fn, and 〈 kn : n ∈ � 〉 is a strictly increasing sequence of natural

numbers. For each n ∈ � let Σn ⊆ (2kn )Fn . Fix natural numbers n,m with n < m.
For � ∈ Σn and � ∈ Σm, we write � ≺ � if � is extended by �, i.e., �(�) � kn = �(�)
for all � ∈ Fn. Let C ⊆ Σn. A map e : C → Σm such that � ≺ e(�) for all � ∈ C ,
is coherent, if for any �, � ′ ∈ C , letting � ∈ Fn be the minimal element of Fn with
�(�) 	= � ′(�), we have e(�) � (Fm ∩ �) = e(� ′) � (Fm ∩ �). In what follows we shall
assume that

1We have learned this argument from Paul Gartside.
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4 VALENTIN HABERL, PIOTR SZEWCZAK, AND LYUBOMYR ZDOMSKYY

(ef ) For every C ⊂ Σn, coherent e0 : C → Σm, and � ∈ Σn \ C , there exist two
different coherent maps e, e′ : (C ∪ {�}) → Σm such that e �C = e′ �C = e0.

Note that (ef) applied to C = ∅ yields that for every � ∈ Σn there exists at least two
� ∈ Σm such that � ≺ �. Moreover, using (ef) iteratively for all natural numbers
n,m with n < m, set C ⊆ Σn, elements � ∈ C and � ∈ Σm with � ≺ �, there is a
coherent map e : C → Σm with e(�) = �.

The objects defined above give rise to the perfect subset K ⊆ (2�)S consisting of
those x such that for every n there exists � ∈ Σn such that x ∈ [�], where

[�] := {x ∈ (2�)S : x(�) � kn = �(�) for all � ∈ Fn }.

For every � ≤ S, let pr� : K → (2�)� be the projection map. For a set C ⊆ Σn, a
map E : C → K is a coherent selection if for every � ∈ C we have E(�) ∈ [�] and for
every �, � ′ ∈ C and � ∈ Fn, which is the minimal element in Fn with �(�) 	= � ′(�),
we have pr�(E(�)) = pr�(E(� ′)).

Lemma 2.1. In the notation above, if a set X ⊆ K is totally imperfect, then for
every n there exists a coherent selection E : Σn → K such that E[Σn] ⊆ K \ X .

Proof. Fix n and enumerate Σn injectively as {�0, ... , �N}. Since [�0] ∩K is perfect
by (ef), we can pick E0(�0) ∈ ([�0] ∩K) \ X . Fix a number k < N and put C :=
{�i : i ≤ k}. Assume that we have already defined a coherent mapEk : C → K \ X .
Then for every m > n and �i ∈ C , there is em0 (�i) ∈ Σm such that Ek(�i) ∈ [em0 (�i)].
In that way we define a map em0 : C → Σm. It is clear that this map is coherent. By
(ef) there are �〈0〉 	= �〈1〉 ∈ Σn+1 such that both en+1

〈0〉 = en+1
0 ∪ {〈�k+1, �〈0〉〉} and

en+1
〈1〉 = en+1

0 ∪ {〈�k+1, �〈1〉〉} are coherent as maps from C ∪ {�k+1} to Σn+1.
Suppose that for somem > nwe have defined mutually different {�s : s ∈ 2m–n} ⊆

Σm \ em0 [C ] such that ems = em0 ∪ {〈�k+1, �s〉} is coherent as a map from C ∪ {�k+1}
to Σm for all s ∈ 2m–n. By (ef) for every s ∈ 2m–n there are �s ˆ 0 	= �s ˆ 1 ∈ Σm+1 such
that

{〈em0 (�i), em+1
0 (�i)〉 : i ≤ k} ∪ {〈�s , �s ˆ j〉}

is coherent as a map from Σm to Σm+1 for all j ∈ 2. It follows that

em+1
s ˆ j := em+1

0 ∪ {〈�k+1, �s ˆ j〉}

is coherent as a map from C ∪ {�k+1} → Σm+1 for all s ∈ 2m–n and j ∈ s , which
completes our construction of the maps ems and elements �s as above for all m > n
and s ∈ 2m–n.

For every t ∈ 2� let zt ∈ K be the unique element in
⋂
m>n[�t�(m–n)] and note

that zt 	= zt′ for any t 	= t′ in 2� . Since the set { zt : t ∈ 2� } is perfect, there exists t
with zt 	∈ X . It suffices to observe that Ek+1 := Ek ∪ {〈�k+1, zt〉} is a coherent map
whose range is disjoint from X, which allows us to complete our proof by induction
on k < N . �

Lemma 2.2. In the notation used above, let X ⊆ K be a totally imperfect Menger
set. Then there exists a sequence 〈 〈in, jn, Cn〉 : n ∈ � 〉 such that

(1) 〈 in : n ∈ � 〉 is a strictly increasing sequence of natural numbers;
(2) Cn ⊆ Σin ;

https://doi.org/10.1017/jsl.2025.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.21


MENGER AND CONSONANT SETS IN THE SACKS MODEL 5

(3) for every n ∈ �, we have jn ∈ [in, in+1), and for every � ∈ Cn there exists
en(�) ∈ Σjn extending �, such that

Cn+1 =
⋃
�∈Cn

{� ∈ Σin+1 : � � en(�)};

(4) the maps en : Cn → Σjn are coherent; and
(5)

⋂
n∈�

⋃
�∈Cn [�] ∩ X = ∅.

Proof. We shall describe a strategy § for Alice in the Menger game played on X
such that each play lost by Alice gives rise to the objects whose existence we need to
establish. For every n ∈ �, letEn : Σn → K be a coherent selection from Lemma 2.1.
Put

i0 := 0, C0 := Σi0 , Z0 := Ei0 [Σi0 ] ⊆ K \ X.
For every j ≥ i0 and � ∈ Σi0 , let �0,j(�) be the unique element of Σj such that
Ei0(�) ∈ [�0,j(�)]. Then,

{ ⋃
�∈Σi0

[�0,j(�)] : j ≥ i0
}

is a decreasing family of clopen sets in (2�)S , whose intersection is equal to the
set Z0. Since Z0 ⊆ K \ X , the family U0 of all sets

U 0
j := K \

⋃
�∈Σi0

[�0,j(�)],

where j ≥ i0, is an increasing open cover of X. Now, § instructs Alice to start the
play with U0.

Suppose that Bob chooses U 0
j0

for some j0 ≥ i0. For each � ∈ Σi0 , let e0(�) :=
�0,j0(�), an element of Σj0 . Since Ei0 is a coherent selection, the map e0 : C0 → Σj0
is coherent.

Then we put

i1 := j0 + 1, C1 :=
⋃
�∈C0

{ � ∈ Σi1 : � � e0(�) }.

Suppose that a natural number in and a setCn ⊆ Σin have already been defined for
some n > 0. LetZn := Ein [Cn] ⊆ K \ X . For every j ≥ in and � ∈ Cn, let �n,j(�) be
the unique element of Σj such that Ein (�) ∈ [�n,j(�)]. Then,

{ ⋃
�∈Cn

[�n,j(�)] : j ≥ in
}

is a decreasing family of clopen sets in (2�)S , whose intersection is equal to the
set Zn. Since Zn ⊆ K \ X , the family U0 of all sets

Unj := K \
⋃
�∈Cn

[�n,j(�)],

where j ≥ in, is an increasing open cover of X. Now, § instructs Alice to play the
family Un.
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6 VALENTIN HABERL, PIOTR SZEWCZAK, AND LYUBOMYR ZDOMSKYY

Suppose that Bob choosesUnjn for some jn ≥ in. Since Ein is a coherent selection,
the map en : Cn → Σjn is coherent. Then we put

in+1 := jn + 1, Cn+1 :=
⋃
�∈Cn

{ � ∈ Σin+1 : � � en(�) }.

This completes our definition of the strategy § for Alice such that each infinite
play in the Menger game on X in which Alice uses § gives rise to a sequence

〈 〈in, jn, Cn, en,Un〉 : n ∈ � 〉

as described above. In particular, conditions (1)–(4) are satisfied by the construction.
By Theorem 1.4, there is a play, where Alice uses the strategy § and the play is won
by Bob. Then X ⊆

⋃
n∈� U

n
jn

, i.e.,

∅ = X ∩
⋂
n∈�

⋃
�∈Cn

[�n,jn (�)].

For each n, we have
⋃
�∈Cn

[�n,jn (�)] =
⋃
�∈Cn

[en(�)] =
⋃
�∈Cn

⋃
{ [�] : � ∈ Σin+1 , � � en(�) } =

⋃
�∈Cn+1

[�],

and thus

∅ = X ∩
⋂
n∈�

⋃
�∈Cn

[�n,jn (�)] = X ∩
⋂
n∈�

⋃
�∈Cn+1

[�].

It follows that condition (5) is also satisfied. �

§3. Combinatorics of conditions in the iterated Sacks forcing. Here we deal with
countable support iterations of the forcing notion introduced by Sacks [19]. We do
not prove any essentially new results about these iterations in this section, but rather
“tailor” several results established in [3, 15] and perhaps somewhere else for the
purposes we have in Sections 4 and 6. We try to follow notations used in [3].

Let 2<� :=
⋃
n∈� 2n. For elements s, t ∈ 2<� , we write s ⊆ t if the sequence s is

an initial segment of the sequence t, i.e., s(i) = t(i) for all i ∈ dom(s). A Sacks
tree is a set p ⊆ 2<� such that for every s ∈ p and a natural number n, we have
s � n ∈ p and there are elements t, u ∈ p with s ⊆ t, s ⊆ u, t 	⊆ u and t 	⊆ u. For
Sacks trees p and q, a condition q is stronger than p which we write q ≥ p if q ⊆ p.
The Sacks poset S is the set of all Sacks trees ordered by ≥. For p, q ∈ S and natural
numbers m > n, we write (q,m) ≥ (p, n) if q ⊆ p and for every s ∈ p ∩ 2n, there
are different elements t, u ∈ q ∩ 2m such that s ⊆ t and s ⊆ u. For p ∈ S and s ∈ p,
let ps := { t ∈ p : t ⊆ s or s ⊆ t }.

Let α be an ordinal number and Sα be an iterated forcing of length α with
countable support, where each iterand is a Sacks poset. For p, q ∈ Sα , let q ≥ p if
supp(q) ⊇ supp(p) and for every � ∈ supp(p), we have q � � �� q(�) ≥ p(�).

Let p ∈ Sα , F ⊆ α be a finite set, n a natural number and � : F → 2n a map.
If F = ∅, then the map � is consistent with p and p|� := p. Assume that � is the
greatest element in F, the map � � � is consistent with p and the condition p|(� � �)
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has already been defined. If
(
p|(� � �)

)
� � �� �(�) ∈ p(�),

then the map � is consistent with p and we define p|�(�) to be the following
S� -name 	:

• p|(� � �)(�), if � < � ;
• If � = � , then

(
p|(� � �)

)
� � �� 	 = p(�)�(�) and r �� 	 = p(�) for r ∈ S�

incompatible with
(
p|(� � �)

)
� � ; and

• p(�), otherwise.

The following fact can be established by induction on |F | in a rather straightfor-
ward way.

Observation 3.1. In the notation above, if � is consistent with p, then � � � is
consistent with both p � � and p, and

(
p|(� � �)

)
� � = (p � �)|(� � �).

A condition p ∈ Sα is (F, n)-determined, where F ⊆ α and n ∈ �, if every
map � : F → 2n is either consistent with p, or there is � ∈ F such that � � � is
consistent with p and (p � �)|(� � �) �� �(�) /∈ p(�). For q ∈ Sα and a natural
number m > n, we write (q,m) ≥F (p, n) if q ≥ p and for every � ∈ F , we have
q � � �� (q(�), m) ≥ (p(�), n).

Let p be an (F, n)-determined condition. We write (q, n) ≥F (p, n) if q ≥ p and
every map � : F → 2n consistent with p, is also consistent with q. Next, we collect
rather straightforward facts about the notions introduced above, these are used
in nearly all works investigating iterations of the Sacks forcing or similar posets
consisting of trees.

Observation 3.2. Let p ∈ Sα be an (F, n)-determined condition, Σ the set of all
maps � : F → 2n consistent with p and � < α. Then the following assertions hold.

(1) If (q, n) ≥F (p, n), then q is also (F, n)-determined;
(2) If � ∈ Σ, then p|(� � �) is (F \ �, n)-determined, and � ∈ (2n)F\� is consistent

with p|(� � �) iff (� � �) ∪ � ∈ Σ;
(3) The set {p|� : � ∈ Σ } is a maximal antichain above p;
(4) p is (F ∩ �, n)-determined and {� � (F ∩ �) : � ∈ Σ} is the family of all

functions from F ∩ � to 2n consistent with p;
(5) If � ∈ Σ and r ≥ p|�, then there exists q ∈ Sα with (q, n) ≥F (p, n) and
q|� = r;

(6) IfD ⊆ Sα is open and dense, then there exists q ∈ Sα with (q, n) ≥F (p, n) and
q|� ∈ D for all � ∈ Σ; and

(7) If 	 is an Sα-name for a real, then for each natural number l there is a condition
q ∈ Sα and a family {y� : � ∈ Σ} ⊆ 2l such that (q, n) ≥F (p, n) and q|� � 	 �
l = y� for all � ∈ Σ.

The last three items of Observation 3.2 imply the following easy fact.

Lemma 3.3 (Miller [15, Lemma 2]). Let p ∈ Sα be an (F, n)-determined condition
and 	 an Sα-name for a real such that p � 	 ∈ 2� \ V . Then for each finite set
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8 VALENTIN HABERL, PIOTR SZEWCZAK, AND LYUBOMYR ZDOMSKYY

Y ⊆ 2� ∩ V , there is a finite set X ⊆ 2� ∩ V disjoint from Y such that |X | ≤ 2n·|F |,
and for each natural number l, there is a condition q ∈ Sα such that (q, n) ≥F (p, n)
and

q �
(
∃x ∈ X

)(
	 � l = x � l

)
.

Let Ġα be an Sα-name for a Sα-generic filter, and for � < α let S�,α be an S� -name
for the iteration from (including) � to α, so that Sα is forcing equivalent to S� ∗ S�,α .
Whenever we work in the forcing extension V [G� ] for some S� -generic filter G� , we

denote by Ġ�,α a S
G�
�,α-name for a S

G�
�,α-generic filter over V [G� ]. We shall need the

following easy observation, we use the notation from the above.

Observation 3.4. Suppose that p is (F, n)-determined, � ≤ α, and p � � ∈ G� .

Then in V [G� ], p � [�, α)G� ∈ S
G�
�,α is (F \ �, n)-determined.

Moreover, if � ∈ (2n)F is consistent with p and (p|(� � �)) � � ∈ G� , then � �
(F \ �) is consistent with p � [�, α)G� in V [G� ]; and if (p|(� � �)) � � ∈ G� and � ∈
(2n)F\� is consistent withp � [�, α)G� inV [G� ], then (� � �) ∪ � ∈ (2n)F is consistent
with p.

Lemma 3.5 (Miller [15, Lemma 5]). Let p ∈ Sα be an (F, n)-determined condition
and 	 be an Sα-name for a real such that

p � 	 ∈
(
2� ∩ V [Ġα]

)
\

⋃
�<α

(
2� ∩ V [Ġ� ]

)
.

Then for any k ∈ � there exist a condition q ∈ Sα , a natural number l > k, and
elements y� ∈ 2l , for all maps � : F → 2n consistent with p, with the following
properties:

(1) (q, n) ≥F (p, n),
(2) q|� � 	 � l = y� ,
(3) the maps y� are pairwise different.

Proof. Let 
 = min(F ) and note that the fact that p is (F, n)-determined yields
N ≤ 2n and {si : i < N} ⊆ 2n such that p � 
 forces p(
) ∩ 2n = {si : i < N}. For
every i < N let �i be the map {〈
, si〉} and note that �i is consistent with p.

By induction on i < N , using Lemma 3.3 and Observation 3.2(2), we can find
mutually disjoint finite sets Xi ⊆ 2� ∩ V , i < N , such that |Xi | ≤ 2n·(|F |–1), and
for each natural number l there is a condition uli ∈ Sα with ulj � 
 ≥ uli � 
 for all
i < j ≤ N , ul0 � 
 ≥ p � 
, (uli , n) ≥F\{
} (p|�i , n) and

uli �
(
∃x ∈ Xi

)(
	 � l = x � l

)
.

Pick a natural number l∗ > k such that x � l∗ 	= x′ � l∗ for any distinct x, x′ in⋃
i<N Xi . As a result, the elements of the family {Xi � l∗ : i < N } are mutually

disjoint.
Now we proceed by induction on the cardinality of F. IfF = {
}, then |Xi | = 1 for

all i < N (because 2n·(|F |–1) = 1), i.e.,Xi = {xi} for some xi ∈ 2� . Put y�i := xi � l∗
for all i < N and let r ∈ Sα be a condition such that r � 
 = ul∗N–1 � 
, r � 
 forces
r(
) to be

⋃
{ ul∗i (
) : i < N }, and (r|�i) � � forces r(�) = ul∗i (�) for all � > 
.
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It follows from the above that r|�i ≥ ul∗i and hence r|�i forces 	 � l∗ = xi � l∗ = y�i ,
hence q := r and l := l∗ are as required.

Now assume that |F | > 1 and the statement holds for each set of cardinality
smaller than |F |. Let 
, l∗, r be as above and note that by the construction we have

(r|�i , n) ≥F\{
} (ul∗i , n) ≥F\{
} (p|�i , n)

for all i < N , and hence (r, n) ≥F (p, n). Fix i < N and let G be an S
+1-generic
filter containing (r|�i) � (
 + 1). Work in V [G ]. Then

r′i :=
(
(r|�i) � [
 + 1, α)

)G ∈ S
G

+1,α

is (F \ {
}, n)-determined by Observation 3.2(1) because

(r′i , n) ≥F\{
}
((
ul∗i � [
 + 1, α)

)G
, n

)

by the construction, and
(
ul∗i � [
 + 1, α)

)G
is (F \ {
}, n)-determined by Observa-

tion 3.4. Note that

r′i � 	 ∈ (2� ∩ V [Ġ
+1,α]) \
⋃

<�<α

(2� ∩ V [Ġ
+1,� ]).

because r′i ≥ p � [
 + 1, α)G and p � (
 + 1) ∈ G . By the inductive assumption,
there exist a condition r′′i ∈ S

G

+1,α , a natural number li > l∗ and pairwise different

elements t�′ ∈ 2li for all maps �′ : F \ {
} → 2n consistent with r′′i , such that
(r′′i , n) ≥F\{
} (r′i , n) and r′′i |�′ � 	 � li = t�′ . Let Σ′

i be the set of all maps
�′ : F \ {
} → 2n consistent with r′′i .

Now we work in V. Let Σ be the set of all maps � : F → 2n consistent with p. Let

˜r
′′
i , ˜Σ

′
i , ˜li and ˜t�′ be S
+1-names for the condition r′′i , the set Σ′

i , natural number li
and finite sequences t�′ , respectively. Note that

(r|�i) � (
 + 1) � ˜Σ
′
i = { � � F \ {
} : � ∈ Σ and �(
) = si }

by the second part of Observation 3.4. By induction on i < N pick a condition
ri ∈ S
+1 stronger than (r|�i) � (
 + 1) and such that rj � 
 ≥ ri � 
 for all i < j <
N , r0 � 
 ≥ r � 
, and which forces all the above properties, and also decides all
the names mentioned in the previous sentences. More precisely, there exist li > l∗,
ti� ∈ 2li for all � ∈ Σ with �(
) = si , and r′′i ∈ S
+1,α such that ri forces that ˜r

′′
i = r′′i ,

˜li = li and ˜t��F\{
} = ti� for all maps � ∈ Σ with �(
) = si . Thus the elements ti� are
pairwise different for all maps � ∈ Σ with �(
) = si .

Let w ∈ Sα be a condition such that w � 
 = rN–1 � 
,

w(
) =
⋃

{ ri(
) : i < N },

and for every ordinal number � with 
 < � < α and natural number i < N , we have

(w|�i) � � � w(�) = r′′i (�).

It follows that

w|� � 	 � li = ti�
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for all � ∈ Σ with �(
) = si because

w|� ≥ ri ∪ r′′i |
(
� � (F \ {
})

)
.

Let �, � ∈ Σ be different maps. Assume that �(
) 	= �(
). Then there are different
natural numbers i, j such that �(
) = si and �(
) = sj . Sincew|� ≥ w|�i ≥ ul∗i and
w|� ≥ w|�j ≥ ul∗j , we have

w|� � 	 � li = ti� , 	 � l∗ ∈ {x � l∗ : x ∈ Xi }

and

w|� � 	 � lj = tj� 	 � l∗ ∈ {x � l∗ : x ∈ Xj }.

The sets {x � l∗ : x ∈ Xi } and {x � l∗ : x ∈ Xj } are disjoint, and thus ti� � l∗ 	= tj� �
l∗. Now assume that there is a natural number i such that �(
) = �(
) = si . Then
� � F \ {
} 	= � � F \ {
} and the condition (w|�i) � (
 + 1) forces that ˜t��F\{
} =
ti� and ˜t��F\{0} = ti� because (w|�i) � (
 + 1) ≥ ri , while ti� 	= ti� . Summarizing, if
�(
) = �(
) = si , then ti� 	= ti� , and if �(
) = sj 	= si = �(
), then ti� � l∗ 	= tj� � l∗.

Finally, applying Observation 3.2(7) to l = maxi<N li and w which is (F, n)-
determined (because (w, n) ≥F (p, n) by the construction), we get a condition
q such that (q, n) ≥F (w, n), and for every � ∈ Σ a sequence y� ∈ 2l such that
q|� � 	 � l = y� . Since q|� ≥ w|�,we have y� � li = ti� for all � ∈ Σ with �(
) = si .
It follows from the above that the y� ’s are mutually different: if �(
) = �(
) = si ,
then y� � li = ti� 	= ti� = y� � li ; and if �(
) = sj 	= si = �(
), then y� � l∗ = ti� �
l∗ 	= tj� � l∗ = y� � l∗. �

The following fact is reminiscent of [3, Lemma 2.3(i)], and we use a rather similar
approach to the proof, which we present for the sake of completeness.

Lemma 3.6. Let α be an ordinal, p ∈ Sα , n ∈ � and F ⊆ α a nonempty finite set.
Then there are a natural number k > n and an (F, k)-determined condition q ∈ Sα

such that (q, k) ≥F (p, n).

Proof. We proceed by induction on |F |. Suppose that F = {�} for some � < α
and pick r ∈ S� , r ≥ p � � which decides k > n and p(�) ∩ 2k (and hence also
decides p(�) ∩ 2n), so that each element s ∈ p(�) ∩ 2n has at least 2 extensions in
p(�) ∩ 2k . Then q := r ∪ p � [�, α) is as required.

Now assume that |F | > 1 and let � = max(F ). By the inductive assumption there
exists r ∈ S� and k0 > n such that r is (F ∩ �, k0)-determined and (r, k0) ≥F∩� (p �
�, n). Let Σ be the family of all � : F ∩ � → 2k0 consistent with r. Let N = |Σ| and
write Σ in the form {�i : i < N}. By induction on i < N let us construct a sequence

(r0N–1, k0) ≥F∩� ··· ≥F∩� (r00 , k0) ≥F∩� (r0–1, k0),

where r0–1 = r and r0i ∈ S� for all i < N , as follows: Given r0i–1 for some i < N , let
S� � u0

i ≥ r0i–1|�i be a condition such that there exists T 0
i ⊆ 2li for some li ≥ k0

such that u0
i forces p(�) ∩ 2li = T 0

i , and for every s ∈ T 0
i � n there exists at least

two t ∈ T 0
i extending s. Now, let r0i ∈ S� be such that (r0i , k0) ≥F∩� (r0i–1, k0) and

r0i |�i = u0
i , by Observation 3.2(5).
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Let k = maxi<N li and set r1–1 = r0N–1. By induction on i < N let us construct a
sequence

(r1n–1, k0) ≥F∩� ··· ≥F∩� (r10 , k0) ≥F∩� (r1–1, k0),

where r1i ∈ S� for all i < N , as follows: Given r1i–1 for some i < N , let S� � u1
i ≥

r1i–1|�i be a condition such that there exists T 1
i ⊆ 2k for which u1

i forces p(�) ∩ 2k =
T 1
i . Now, let r1i ∈ S� be such that (r1i , k0) ≥F∩� (r1i–1, k0) and r1i |�i = u1

i . Note that
T 0
i = {t � li : t ∈ T 1

i }.
Set r2–1 = r1N–1. By induction on i < N let us construct a sequence

(r2n–1, k0) ≥F∩� ··· ≥F∩� (r20 , k0) ≥F∩� (r2–1, k0),

where r2i ∈ S� for all i < N , as follows: Given r2i–1 for some i < N , let S� � u2
i ≥

r2i–1|�i be a condition such that for every � ∈ F ∩ � there exists �i(�) ∈ 2k such that
�i(�) = �i(�) � k0 and u2

i � � forces that �i(�) is an initial segment of the stem of
u2
i (�). Such an u2

i can be constructed recursively over � ∈ F ∩ � , moving from the
bigger to smaller elements. Now, let r2i ∈ S� be such that (r2i , k0) ≥F∩� (r2i–1, k0) and
r1i |�i = u2

i .
We claim that q = r2N–1 ∪ p � [�, α) and k are as required. Indeed, we have

that (q � �, k) ≥F∩� (p � �, n) because q � � = r2N–1, k ≥ k0, and (r2N–1, k0) ≥F∩�
(r, k0) ≥F∩� (p � �, n). Moreover, since r2N–1|�i ≥ u0

i , we have that r2N–1|�i decides
p(�) ∩ 2k as T 1

i , which has the property that any s ∈ T 1
i � n has at least two

extensions in T 1
i (because T 0

i = T 1
i � li has this property). It follows that r2N–1|�i

forces q(�) = p(�) and (p(�), k) ≥ (p(�), n). Since {r2N–1|�i : i < N} is dense
above r2N–1, we conclude that r2N–1 = q � � forces (q(�), k) ≥ (p(�), n), and therefore
(q, k) ≥ (p, n).

Finally, by the construction of r2N–1 we have that q is (F, k)-determined, with
{
�i ∪ {〈�, t〉} : i < N, t ∈ T 1

i

}

being the family of those � : F → 2k which are consistent with q. �
Lemma 3.7 (Miller [15, Lemma 6]). Let α be an ordinal number, p0 ∈ Sα , and 	

an Sα-name for a real such that

p0 � 	 ∈
(
2� ∩ V [Ġα]

)
\

⋃
�<α

(
2� ∩ V [Ġ� ]

)
.

Then there exist a condition p ≥ p0, an increasing sequence 〈Fn : n ∈ � 〉 of finite
subsets of α, increasing sequences of natural numbers 〈 kn : n ∈ � 〉, 〈 ln : n ∈ � 〉,
and elements y� ∈ 2ln for all maps � : Fn → 2kn consistent with p, with the following
properties:

(1)
⋃
n∈� Fn = supp(p),

(2) p is (Fn, kn)-determined,
(3) (p, kn+1) ≥Fn (p, kn),
(4) p|� � 	 � ln = y� for all � ∈ (2kn )Fn consistent with p, and
(5) the maps y� , where � is as above, are mutually different.

Proof. The choice of the Fn’s is standard and thus will not be specified, except
that we set F0 = {0}. Set also k0 = 0. Trivially, p0 is (F0, k0)-determined since the
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unique map {〈0, ∅〉} in (2k0 )F0 is consistent with p0. By Lemma 3.5, there are a
condition q0 ∈ Sα , a natural number l0 and pairwise different elements y� ∈ 2l0
for all maps2 � : F0 → 2k0 consistent with p0 such that (q0, k0) ≥F0 (p0, k0) and
q0|� � 	 � l0 = y� .

Let k1 > k0 be a natural number and p1 ∈ Sα a condition from Lemma 3.6,
applied to the set F1 and the condition q0. Then p1 is (F1, k1)-determined and
(p1, k1) ≥F0 (p0, k0).

Fix a natural number n ≥ 1 and assume that a set Fn, natural number kn, and an
(Fn, kn)-determined condition pn ∈ Sα with (pn, kn) ≥Fn–1 (qn–1, kn–1) have already
been defined. By Lemma 3.5, there are a condition qn ∈ Sα , a natural number
ln > ln–1 and pairwise different elementsy� ∈ 2ln for all maps� : Fn → 2kn consistent
with pn such that (qn, kn) ≥Fn (pn, kn) and qn|� � 	 � ln = y� .

Let p be the fusion of the sequence 〈 (pn, kn, Fn) : n ∈ � 〉 [3, Lemma 1.2] and
note that it is as required. �

Let F be a subset of H, n ≤ m be natural numbers, and � : F → 2n, � : H → 2m

be maps. Following our convention at the beginning of Section 2, the map � is an
extension of � (we denote this by � ≺ �) if �(�) = �(�) � n for all � ∈ F . The next
fact is standard.

Observation 3.8. In the notation above, if F,H ⊆ α, p ∈ Sα , �, � are consistent
with p and � ≺ �, then p|� ≥ p|�.

Lemma 3.9. Let p ∈ Sα be an (F, n)-determined condition and Σn be the set of all
maps � : F → 2n consistent with p. Then for every G ⊆ F and k ≤ n, if p is (G, k)-
determined and � : G → 2k is consistent with p, then there exists � ∈ Σn extending �.

Moreover, if H ⊆ α is a finite set with F ⊆ H , � ∈ F , m > n is a natural number,
p is also (H,m)-determined, Σm is the set of all maps � : H → 2m consistent with p,
and (p,m) ≥F (p, n), then the following assertions hold.

(1) For every � ∈ Σn and � ∈ Σm such that � � (H ∩ �) extends � � (F ∩ �), there
are �1, �2 ∈ Σm extending � with �1 � (H ∩ �) = �2 � (H ∩ �) = � � (H ∩ �),
and such that �1(�), �2(�) are distinct extensions of �(�).

(2) For every � ∈ Σn and � : H ∩ � → 2m consistent with p, if � extends � � (F ∩
�), then there are �1, �2 ∈ Σm extending � with �1 � (H ∩ �) = �2 � (H ∩ �) =
� and such that �1(�), �2(�) are distinct extensions of �(�).

(3) For every C ⊂ Σn, coherent e0 : C → Σm, and �∗ ∈ Σn \ C , there exist two
different coherent maps e, e′ : (C ∪ {�∗}) → Σm such that e � C = e′ � C = e0.

Proof. We start with proving the first part. Proceed by induction on |G |. IfG = ∅,
then there is nothing to prove. Let � := maxG and assume that the statement holds
for G ′ := G \ {�}. Fix a map � : G → 2k consistent with p and let �′ := � � G ′.
By Observation 3.2(4), p is both (F ∩ �, n)- and (G ∩ �, k)-determined, and hence
there exists � ′ : (F ∩ �) → 2n consistent with p such that � ′ � �′. Since (p � �)|�′ �
�(�) ∈ p(�), the condition (p � �)|� ′ also forces this because (p � �)|� ′ ≥ (p � �)|�′
by Observation 3.8. Strengthening the latter condition to some r if necessary, we may
find t ∈ 2n extending �(�) such that r � t ∈ p(�). Since p is (F, n)-determined, we

2As we noted above, there is just one map like that.
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conclude that (p � �)|� ′ � t ∈ p(�). It follows that � ′ ∪ {(�, t)} ∈ (2n)F is consistent
with p and extends �.

The second part of the lemma is rather straightforward. Item (2) is an equivalent
reformulation of (1), by Observation 3.2(2). We shall present the proof of (3),
because we find it the least obvious one.

Proceed by induction on |F |. Assume that F = {�}. Let � ∈ C and � := e0(�).
Choose some distinct �, �′ ∈ Σm such that �, �′ � �∗ and � � (H ∩ �) = � � (H ∩
�) = �′ � (H ∩ �), which is possible by (1). Then the maps e = e0 ∪ {〈�∗, �〉} and
e′ = e0 ∪ {〈�∗, �′〉} are easily seen to be as required.

Now assume that |F | > 1 and (3) holds for any finite subset of the support of p
of cardinality smaller than |F |. Set � = maxF , C – = {� � (F ∩ �) : � ∈ C}, e–

0 (� �
(F ∩ �)) = e0(�) � (H ∩ �) for all � ∈ C , and �–

∗ = �∗ � (F ∩ �). Let also Σ–
m be the

family of all maps � : H ∩ � → 2m consistent with p. By the inductive assumption
applied to the objects defined above we can get a coherent e– : C – ∪ {�–

∗} → Σ–
m such

that e– � C – = e–
0 . (Actually, we could get even two different such e– if �–

∗ 	∈ C –, but
thus irrelevant here.)

By (2) applied to �∗ and � = e–(�–
∗) we can find distinct �, �′ ∈ Σm such that

� � (H ∩ �) = � = �′ � (H ∩ �).

It suffices to show that e = e0 ∪ {〈�∗, �〉} and e′ = e0 ∪ {〈�∗, �′〉} are both coherent.
We shall check this for e, the case of e′ is analogous. Pick � ∈ C and let � ∈ F be the
minimal element with �(�) 	= �∗(�). Such an ordinal � must exist because � 	= �∗ as
� ∈ C 	� �∗. Fix � ≥ �. In the assertions from the cases below we use the fact that

e–(�∗ � (F ∩ �)) = e–(�–
∗) = � = � � (H ∩ �)

and e(�∗) = �.
If � < � , then

e(�) � (H ∩ �) =
(
e(�) � (H ∩ �)

)
� (H ∩ �) =

(
e–(� � (F ∩ �)

)
� (H ∩ �)

=
(
e–(�∗ � (F ∩ �)

)
� (H ∩ �) =

(
e(�∗) � (H ∩ �)

)
� (H ∩ �)

= e(�∗) � (H ∩ �).

If � = � , then

e(�) � (H ∩ �) = e–(� � (F ∩ �)) = e–(�∗ � (F ∩ �)) = e(�∗) � (H ∩ �).

�

Lemma 3.10. We use notation from the formulation of Lemma 3.7. Set
S = supp(p), Σn = {� ∈ (2kn )Fn : � is consistent with p}, and suppose that
〈 〈in, jn, Cn〉 : n ∈ � 〉 is a sequence such that items (1)–(4) of Lemma 2.2 are
satisfied. Then there exists q ≥ p such that {p|� : � ∈ Cn} is predense above q for all
n ∈ �.

Proof. For each natural number n, let qn ≥ p be such that for every � < α and
� ∈ Cn we have

(qn � �)|(� � (Fin ∩ �)) �� qn(�)

=
⋃ {

(p|� ′)(�) : � ′ ∈ Cn, � ′ � (Fin ∩ �) = � � (Fin ∩ �)
}
.
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The correctness of this definition formally requires to prove by recursion over � ≤ α,
along with defining qn, that each � � (Fin ∩ �) is consistent with qn � � , where � ∈ Cn,
and the set

{
(qn � �)|(� � (Fin ∩ �)) : � ∈ Cn

}

is a maximal antichain above qn � � , but this is rather easy and standard. As a result,
the set { qn|� : � ∈ Cn } is a maximal antichain above qn.

It remains to show that

(qn+1, kin+1 ) ≥Fin (qn, kin )

for all n ∈ �, and then let q be the fusion of the qn’s. Suppose that for some � ∈ Fin
we have already shown that

(qn+1 � �, kin+1 ) ≥Fin∩� (qn � �, kin ),

and we will prove that

qn+1 � � � (qn+1(�), kin+1 ) ≥ (qn(�), kin ).

This boils down to proving that for every � ∈ Cn+1, if �(�) := �(�) � kn for all
� ∈ Fin , then

(qn+1 � �)|(� � (Fin+1 ∩ �)) ��( ⋃ {
(p|�′)(�) : �′ ∈ Cn+1, �

′ � (Fin+1 ∩ �) = � � (Fin+1 ∩ �)
}
, kn+1

)

≥
( ⋃ {

(p|� ′)(�) : � ′ ∈ Cn, � ′ � (Fin ∩ �) = � � (Fin ∩ �)
}
, kn

)
.

Fix s ∈ 2kn such that there exists � ′ ∈ Cn with � ′(�) = s and � ′ � (Fin ∩ �) =
� � (Fin ∩ �). By Lemma 2.2(4), we have e(�) � (Fjn ∩ �) = e(� ′) � (Fjn ∩ �). By
Lemma 3.9(1), there are �1, �2 ∈ Σin+1 , both extending e(� ′) (and hence �1, �2 ∈
Cn+1) such that �1(�) 	= �2(�) and

�1 � (Fin+1 ∩ �) = �2 � (Fin+1 ∩ �) = � � (Fin+1 ∩ �).

It follows that

(qn+1 � �)|(� � (Fin+1 ∩ �)) �� �1(�), �2(�) ∈ qn+1(�) ∩ 2kin+1

and �1(�), �2(�) are distinct extensions of e(� ′)(�), which in its turn extends
� ′(�) = s . �

§4. Totally imperfect Menger sets and Sacks forcing. By V we mean a ground
model of ZFC and G�2 is an S�2 -generic filter over V.

Theorem 4.1. In V [G�2 ], every totally imperfect Menger set X ⊆ 2� has size at
most �1.

For the proof of Theorem 4.1, we need the following auxiliary result, whose proof
is rather standard (see, e.g., [5, Lemma 5.10] for a similar argument) and is left to
the reader.
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Lemma 4.2. InV [G�2 ], letX ⊆ 2� . Then there exists α < �2 of cofinality�1 such
that

(1) X ∩ V [Gα] ∈ V [Gα] and if K,K ′ ⊆ 2� are closed crowded sets and coded in
V [Gα], and K ′ ⊆ K \ (X ∩ V [Gα]), then K ′ ⊆ K \ X .

Moreover, if X is a totally imperfect Menger set in V [G�2 ], then

(2) X ∩ V [Gα] is a totally imperfect Menger set in V [Gα].

In what follows we use the same notation for a Borel (typically closed) subset of
2� in the ground model as well as for its reinterpretation in the forcing extensions
we consider, it will be always clear in which set-theoretic universe we work.

Proof of Theorem 4.1. Let α be such as in Lemma 4.2. Working in V [G�2 ], we
claim that X ⊆ V [Gα]. Since in V [Gα] the remainder Sα,�2 is order-isomorphic to
S�2 , there is no loss of generality in assuming that α = 0, i.e., that V = V [Gα].

Let us pick z ∈ X \ V and let � be the minimal ordinal with z ∈ V [G� ]. Next, we
work in V. Let p0 ∈ G� and 	 ∈ V S� be such that 	G� = z and

p0 �� 	 ∈ (2� ∩ V [Ġ� ]) \
⋃
�<�

V [Ġ� ].

We shall find q ≥ p0, q ∈ S� such that q ��2 	 	∈ X . This would accomplish the
proof: The genericity of G� implies that there is q as above which lies in G� ⊆ G�2 ,
which would yield z = 	G� = 	G�2 	∈ X .

Take p and Fn, kn, ln, y�n from Lemma 3.7, applied to p0 and 	. Note also
that Lemma 3.9(3) ensures that S = supp(p) and the sequences 〈 kn : n ∈ � 〉,
〈Fn : n ∈ � 〉, 〈Σn : n ∈ � 〉 satisfy (ef) from the first paragraph of Section 2. Let
K and [�] for � ∈

⋃
n∈� Σn be defined in the same way as in the first paragraph of

Section 2.
Fix an element x ∈ K and let �n ∈ Σn be such that {x} =

⋂
n∈�[�n]. Fix a natural

number n. We have �n(�) ⊆ �n+1(�) for all � ∈ Fn, i.e., �n ≺ �n+1. Then p|�n+1 ≥
p|�n and it follows from Lemma 3.7(4) that

p|�n+1 � 	 � ln = y�n and p|�n+1 � 	 � ln+1 = y�n+1 ,

which gives y�n ⊆ y�n+1 . Thus, the map h : K → 2� such that

h(x) :=
⋃
n∈�
y�n ,

for all x ∈ K , is well defined. By Lemma 3.7(5), the map h is a continuous injection.
Consequently, the map h : K → h[K ] is a homeomorphism, and hence h[K ] is
perfect.

Fix a natural number n. By Lemma 3.7(2) and Observation 3.2(3), the set {p|� :
� ∈ Σn } is a maximal antichain above p. Applying Lemma 3.7(4), we have that

p � 	 � ln ∈ { y� : � ∈ Σn }.

It follows from the above and from the definition of the function h thatp � 	 ∈ h[K ].
By our assumption on α = 0, the set h[K ] ∩ X ∩ V is an element of V and it is

totally imperfect and Menger in V. Let 〈 〈in, jn, Cn〉 : n ∈ � 〉 be a sequence from
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16 VALENTIN HABERL, PIOTR SZEWCZAK, AND LYUBOMYR ZDOMSKYY

Lemma 2.2, applied to S := supp(p) and h–1[X ∩ V ] ⊆ K . Lemma 2.2(5) yields

K ′ :=
⋂
n∈�

⋃
�∈Cn

[�] ⊆ K \ h–1[X ∩ V ],

and therefore, h[K ′] ⊆ h[K ] \ (X ∩ V ). Since K,K ′, h are all coded in V, we
conclude that h[K ′] ⊆ h[K ] \ X holds in V [G�2 ] by Lemma 4.2(2).

Let q ≥ p be a condition given by Lemma 3.10. Since the sets {p|� : � ∈ Cn}
are predense above q for all n ∈ �, we have q � 	 � lin ∈ { y� : � ∈ Cn }, and thus
q � 	 ∈ h[K ′]. We conclude that q � 	 	∈ X . �

§5. A modification of the Menger game and consonant spaces. Let X ⊆ 2� . We
introduce a modification of the Menger game played on X, which we call grouped
Menger game played on X.

Round 0: Alice selects a natural number l0 > 0, and then the players play the
usual Menger game l0 subrounds, thus constructing a partial play

(l0,U0,F0, ... ,Ul0–1,Fl0–1),

where Fi is a finite subfamily of Ui for all natural numbers i < l0.
Round 1: Alice selects a natural number l1 > 0, and then the players play the

usual Menger game additional l1 subrounds, thus constructing a partial play

(l0,U0, ... ,Ul0–1,Fl0–1; l1,Ul0 ,Fl0 , ... ,Ul0+l1–1,Fl0+l1–1),

where Fi is a finite subfamily of Ui for all natural numbers i < l0 + l1.
Fix a natural number n > 0 and assume that natural numbers l0, ... , ln–1 > 0 and

n – 1 rounds of the game have been defined.
Round n: Alice selects a natural number ln > 0, and then the players play the

usual Menger game additional ln subrounds, thus constructing a partial play

(l0,U0,F0, ... ,Ul0–1,Fl0–1; l1,Ul0 ,Fl0 , ... ,Ul0+l1–1,Fl0+l1–1; ... ;

ln,Ul0+l1+···+ln–1 ,Fl0+l1+···+ln–1 , ... ,Ul0+l1+···+ln–1,Fl0+l1+···+ln–1),

where Fi is a finite subfamily of Ui for all natural numbers i < l0 + ··· + ln.
Let L0 := 0 and Ln+1 := l0 + l1 + ··· + ln for all natural numbers n. Bob wins the

game if

X =
⋃
n∈�

⋂
i∈[Ln,Ln+1)

⋃
Fn,

and Alice wins otherwise.

Remark 5.1. In the grouped Menger game played on a set X ⊆ 2� , there is no
loss of generality if we assume that covers given by Alice in each step are countable
and increasing and the families Fn chosen by Bob are singletons.

We are interested in sets X ⊆ 2� for which Alice has no winning strategy in
the grouped Menger game played on X. They include two important classes of
subspaces of the Cantor space: Hurewicz spaces and those ones whose complement
is consonant.

The following observation is an immediate consequence of Theorem 1.5.
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Observation 5.2. If X ⊆ 2� is Hurewicz, then Alice has no winning strategy in
the grouped Menger game played on X.

Proposition 5.3. If Y ⊆ 2� is consonant, then Alice has no winning strategy in
the grouped Menger game played on 2� \ Y .

Proof. Let � be a strategy for Alice in the grouped Menger game played on
X := 2� \ Y . By Remark 5.1, we may assume that each family given by Alice

according to the strategy � is countable and increasing and Bob chooses one set
from the families given by Alice. We shall define a strategy § for Alice in the game
G1(K,O) played on X such that each play in G1(K,O) played according to § and
lost by Alice, gives rise to a play in the grouped Menger game on X in which Alice

uses � and loses.
Suppose that � instructs Alice to start round 0 by selecting a natural number

l0 > 0. Let L0 := 0 and L1 := l0. Then § instructs Alice to play the family of all sets
⋂

i∈[L0,L1)

Ui ,

where

(l0,U0, U0, ... ,Ul0–1, Ul0–1)

is a play, where Alice uses the strategy �. Note that the family of all the intersections
as above is indeed an open k-cover of X. Suppose that Bob replies in G1(K,O)
by selecting

⋂
i∈[L0,L1)Ui for some sequence (U0, U0, ... ,Ul0–1, Ul0–1) as above. The

strategy � instructs Alice to proceed in round 1 by selecting a natural number l1 > 0.
Let L2 := l0 + l1. Then § instructs Alice to play the family of all sets

⋂
i∈[L1,L2)

Ui ,

where

(l0,U0, U0, ... ,Ul0–1, Ul0–1; l1,Ul0 , Ul0 , ... ,Ul0+l1–1, Ul0+l1–1)

is a play in which Alice uses �, an open k-cover of X. Suppose that Bob replies
in G1(K,O) by selecting

⋂
i∈[L1,L2)Ui for some sequence (U0,F0, ... ,Ul0–1, Ul0–1;

Ul0 , Ul0 , ... ,Ul0+l1–1, Ul0+l1–1) as above.
In general, let � instruct Alice to start round n by selecting a natural number

ln > 0. Let Ln+1 := l0 + l1 + ··· + ln. Then the next move of Alice in G1(K,O)
according to § is, by the definition, the family of all sets

⋂
i∈[Ln,Ln+1)

Ui ,

where

(l0,U0, U0, ... ,Ul0–1, Ul0–1; l1,Ul0 , Ul0 , ... ,Ul0+l1–1, Ul0+l1–1; ... ;

ln,Ul0+l1+···+ln–1 , Ul0+l1+···+ln–1 , ... ,Ul0+l1+···+ln–1+ln–1, Ul0+l1+···+ln–1+ln–1)

is a play in which Alice uses �, an open k-cover of X.
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Since the strategy § is not winning, there is a play in G1(K,O) in which Alice uses
§ and loses, which gives rise to an infinite play

(l0,U0, U0, ... ,Ul0–1, Ul0–1; l1,Ul0 , Ul0 , ... ,Ul0+l1–1, Ul0+l1–1; ... ;

ln,Ul0+l1+···+ln–1 , Ul0+l1+···+ln–1 , ... ,Ul0+l1+···+ln–1+ln–1, Ul0+l1+···+ln–1+ln–1; ln+1, ...)

in which Alice uses � and

X =
⋃
n∈�

⋂
i∈[Ln,Ln+1)

Ui .

This means that the strategy � is not winning as well. �

5.1. Menger game versus the grouped Menger game. Let GM be the class of
all subspaces X of 2� such that Alice has no winning strategy in the grouped
Menger game played on X. Obviously, GM is contained in the class of all Menger
subspaces of 2� . As we established in Section 5, GM includes Hurewicz subspaces
and subspaces with consonant complement, and hence also all Rothberger subspaces
of 2� (see the discussion at the end of Section 1 in the work of Jordan [13]). Our
next result gives a consistent example of a Menger space which does not belong to
GM.

Proposition 5.4. The class GM contains no ultrafilters.

Proof. Given an ultrafilter X on �, we shall describe a winning strategy � for
Alice in the grouped Menger game played on X. For natural numbers n < k, let

U[n,k) := { a ⊆ � : a ∩ [n, k) 	= ∅ }.

Then the families Un := {U[n,k) : k > n } are increasing open covers of X for all
n ∈ �. Playing according to the strategy �, Alice chooses ln = 2 for all n ∈ �. The
strategy � instructs Alice to play some cover Um. Then if the set chosen by Bob is
of the form U[m,k), then Alice plays the family Uk . Each play where Alice uses �
has the following form

(2,Ui0 , U[i0,i1),Ui1 , U[i1,i2); 2,Ui2 , U[i2,i3),Ui3 , U[i3,i4); ... ),

where 〈 in : i ∈ � 〉 is an increasing sequence of natural numbers with i0 = 0. Since
the sets

a :=
⋃
k∈�

[i2k, i2k+1), b :=
⋃
k∈�

[i2k+1, i2k+2)

are disjoint and a ∪ b = �, exactly one of them is a member of X. Assume that
a ∈ X . Since a /∈

⋃
k∈� U[i2k+1,i2k+2), we have

X 	⊆
⋃
k∈�

(U[i2k ,i2k+1) ∩U[i2k+1,i2k+2)).

�

Combining [9, Theorem 1.1] and [6, Theorem 10], we conclude that d = c implies
the existence of a Menger ultrafilter.
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Corollary 5.5. Assume that d = c. There exists a Menger subspace X of 2� such
that Alice has a winning strategy in the grouped Menger game on X, i.e., X 	∈ GM.

Let us note that there are models of ZFC without Menger ultrafilters. Indeed,
every Menger ultrafilter is a P-point, see, e.g., [4, Observation 3.4]. According to a
result of Shelah published in [27] (see also [7]), consistently there are no P-points.

Next, we introduce a variation of the grouped Menger game which is “harder”
for Alice since her choices are more restricted, i.e., are not arbitrary open covers
of the space in question. Let K ⊆ 2� be a perfect set. For y ∈ K , let Uy be a
countable increasing family of clopen sets in K such that

⋃
Uy = K \ {y}. Let

X ⊆ K be a set such that K \ X is dense in K. The weak grouped Menger game
played on X in K (wgM(K,X ) in short) is played as follows: In round 0 Alice

selects a natural number l0 > 0, and Bob selects a closed nowhere dense subset K0

of K. Let L0 := 0 and L1 := l0. Then the players play the usual Menger game l0
subrounds, with the following restrictions. In each subround i ∈ [L0, L1), Alice

chooses yi ∈ K \ (X ∪K0) and plays the family Ui := Uyi . Then Bob replies by
choosing a set Ui ∈ Ui with K0 ⊆ Ui .

Afterwards, in round 1 Alice selects a natural number l1 > 0, and Bob selects
a closed nowhere dense set K1 ⊆ K . Let L2 := l0 + l1. Then the players play the
Menger game further l1 subrounds with the restriction given above, i.e., in each
subround i ∈ [L1, L2) Alice chooses yi ∈ K \ (X ∪K1) and plays the family Ui :=
Uyi . Then Bob replies by choosing a set Ui ∈ Ui with K1 ⊆ Ui .

In round n Alice selects a natural number ln > 0, and Bob selects a closed nowhere
dense set Kn ⊆ K . Let Ln+1 := l0 + l1 + ··· + ln. Then the players play the Menger
game further ln subrounds such that in each subround i ∈ [Ln,Ln+1) Alice chooses
yi ∈ K \ (X ∪Kn) and plays the family Ui := Uyi . Then Bob replies by choosing a
set Ui ∈ Ui with Kn ⊆ Ui .

Bob wins the game if

X =
⋃
n∈�

⋂
i∈[Ln,Ln+1)

Ui ,

and Alice wins otherwise.

Remark 5.8. Let X be a subset of a perfect set K ⊆ 2� such that K \ X is dense
in K. If Alice has a winning strategy in the weak grouped Menger game played
on X in K, then Alice has a winning strategy in the grouped Menger game played
on X.

A set X ⊆ 2� is perfectly meager if for any perfect set K ⊆ 2� , the intersection
X ∩K is meager in K.

Proposition 5.9. Let K ⊆ 2� be a perfect set and X ⊆ 2� be a perfectly meager
set. Then Bob has a winning strategy in the weak grouped Menger game played on
X ∩K in K.

Proof. For each natural number n let Kn ⊆ K be a closed nowhere dense subset
of K such that X ∩K ⊆

⋃
n∈� Kn ⊆ K . Then any strategy for Bob in the weak

grouped Menger game played on X ∩K in K, where in each round n, Bob plays the
set Kn, is a winning strategy. �
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LetK ⊆ 2� be a perfect set andX ⊆ 2� . The diagram below presents the relations
between the considered properties. By A 	↑ wgM(K,X ∩K) we mean that Alice has
no winning strategy and by B ↑ wgM(K,X ∩K) we mean that Bob has a winning
strategy in the game wgM(K,X ∩K). Note that co-consonant spaces are preserved
by closed subspaces.

B ↑ wgM(K,X ∩K) A �↑ wgM(K,X ∩K)

X is perfectly meager 2� \X is consonant X is Hurewicz

X is Rothberger X is Menger

The next fact is similar to Lemma 2.2.

Lemma 5.10. We use the notation and objects described in Section 2. Suppose that
X is a subset of the perfect set K ⊆ (2�)S such that K \ X is dense in K and Alice

has no winning strategy in wgM(K,X ).
Then there exists a sequence 〈 〈in, jn, Cn〉 : n ∈ � 〉 such that
(1) 〈 in : n ∈ � 〉 is a strictly increasing sequence of natural numbers;
(2) Cn ⊆ Σin ;
(3) for every n ∈ �, we have jn ∈ [in, in+1), and for every � ∈ Cn there exists
en(�) ∈ Σjn extending �, such that

Cn+1 =
⋃
�∈Cn

{� ∈ Σin+1 : � � en(�)};

(4) the maps en : Cn → Σjn are coherent; and
(5)

⋂
n∈�

⋃
�∈Cn [�] ∩ X = ∅.

Proof. We shall describe a strategy § for Alice in the weak grouped Menger
game played on X in K such that each play lost Alice gives rise to the objects whose
existence we need to establish.

Round 0. Let C0 := Σ0 and i0 := 0. Alice declares that the 0th group will have
length l0 := |C0|. Let {�j : j < l0} ⊆ Σ0 be an enumeration of C0. Suppose that Bob

plays a closed nowhere dense K0 ⊆ K .
Subround 〈0, 0〉. By density of K \ X , Alice picks y〈0,0〉 ∈ [�0] \ (X ∪K0) and

she plays the family U〈0,0〉 := Uy〈0,0〉 . Suppose that Bob replies by choosing U〈0,0〉 ∈
U〈0,0〉 with K0 ⊆ U〈0,0〉. Take j〈0,0〉 > i0 and �〈0,0〉 ∈ Σj〈0,0〉 with �〈0,0〉 � �0 such that
y〈0,0〉 ∈ [�〈0,0〉] and [�〈0,0〉] ∩U〈0,0〉 = ∅. Let e〈0,0〉 : C0 → Σj〈0,0〉 be a coherent map
such that e〈0,0〉(�0) = �〈0,0〉. Fix a natural number a with 0 < a < l0 and assume that
the players have already defined the following sequences:

• 〈 y〈0,b〉 : 0 ≤ b < a 〉 of elements y〈0,b〉 ∈ K \ (X ∪K0),
• 〈 U〈0,b〉 : 0 ≤ b < a 〉 of covers of X by clopen subsets of K such that U〈0,b〉 =
Uy〈0,b〉 ,

• 〈U〈0,b〉 : 0 ≤ b < a 〉 of sets U〈0,b〉 ∈ U〈0,b〉 with K0 ⊆ U〈0,b〉,
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• 〈 j〈0,b〉 : 0 ≤ b < a 〉 ∈ �↑a with i0 < j〈0,0〉,
• 〈 �〈0,b〉 : 0 ≤ b < a 〉 of maps �〈0,b〉 ∈ Σj〈0,b〉 such that y〈0,b〉 ∈ [�〈0,b〉], �b ≺
�〈0,b〉 and [�〈0,b〉] ∩U〈0,b〉 = ∅,

• 〈 e〈0,b〉 : 0 ≤ b < a 〉 of coherent maps e〈0,b〉 : C0 → Σj〈0,b〉 with e〈0,b〉(�b) =
�〈0,b〉 and for every 0 ≤ b0 < b1 < a and j < l0 we have e〈0,b0〉(�j) ≺ e〈0,b1〉(�j).

Subround 〈0, a〉: Alice picks y〈0,a〉 ∈ [e〈0,a–1〉(�a)] \ (X ∪K0) and she plays the
family U〈0,a〉 := Uy〈0,a〉 . Suppose that Bob replies by choosing U〈0,a〉 ∈ U〈0,a〉 with
K0 ⊆ U〈0,a〉. Take j〈0,a〉 > j〈0,a–1〉 and �〈0,a〉 ∈ Σj〈0,a〉 with �〈0,a〉 � e〈0,a–1〉(�a) such
that y〈0,a〉 ∈ [�〈0,a〉] and [�〈0,a〉] ∩U〈0,a〉 = ∅. Let e′〈0,a〉 : e〈0,a–1〉[C0] → Σj〈0,a〉 be a
coherent map such that e′〈0,a〉(e〈0,a–1〉(�a)) = �〈0,a〉. Put e〈0,a〉 := e′〈0,a〉 ◦ e〈0,a–1〉.

After subround 〈0, l0 – 1〉, the last subround of round 0, we set

j0 := j〈0,l0–1〉, i1 := j0 + 1, e0 := e〈0,l0–1〉, C1 :=
⋃
�∈C0

{ � ∈ Σi1 : e0(�) ≺ � }.

Fix a natural number n > 0 and assume that the elements of the sequence

〈i0, C0, j0, e0; ... ; in–1, Cn–1, jn–1, en–1; in, Cn〉
satisfy all relevant instances of (1)–(4).

Round n. Alice declares that the nth group will have length ln := |Cn|. Let {�j :
j < ln} ⊆ Σin be an enumeration3 of Cn. Suppose that Bob plays a closed nowhere
dense subset Kn ⊆ K .

Subround 〈n, 0〉: Alice picks y〈n,0〉 ∈ [�0] \ (X ∪Kn) and she plays the family
U〈n,0〉 := Uy〈n,0〉 . Suppose that Bob replies by choosing U〈n,0〉 ∈ U〈n,0〉 with Kn ⊆
U〈n,0〉. Take j〈n,0〉 > in and �〈n,0〉 ∈ Σj〈n,0〉 with �〈n,0〉 � �0 such that y〈n,0〉 ∈ [�〈n,0〉]
and [�〈n,0〉] ∩U〈n,0〉 = ∅. Let e〈n,0〉 : Cn → Σj〈n,0〉 be a coherent map such that
e〈n,0〉(�0) = �〈n,0〉.

Fix a natural number a with 0 < a < ln and assume that the players have already
defined the following sequences:

• 〈 y〈n,b〉 : 0 ≤ b < a 〉 of elements y〈n,b〉 ∈ K \ (X ∪Kn);
• 〈 U〈n,b〉 : 0 ≤ b < a 〉 of covers of X by clopen subsets of K such that U〈n,b〉 =
Uy〈n,b〉 ;

• 〈U〈n,b〉 : 0 ≤ b < a 〉 of sets U〈n,b〉 ∈ U〈n,b〉 with Kn ⊆ U〈n,b〉;
• 〈 j〈n,b〉 : 0 ≤ b < a 〉 which is an increasing sequence with j〈n,0〉 > in;
• 〈 �〈n,b〉 : 0 ≤ b < a 〉 of maps �〈n,b〉 ∈ Σj〈n,b〉 such that y〈n,b〉 ∈ [�〈n,b〉], �b ≺
�〈n,b〉 and [�〈n,b〉] ∩U〈n,b〉 = ∅;

• 〈 e〈n,b〉 : 0 ≤ b < a 〉 of coherent maps e〈n,b〉 : Cn → Σj〈n,b〉 with e〈n,b〉(�b) =
�〈n,b〉 and for every 0 ≤ b0 < b1 < a and j < ln we have e〈n,b0〉(�j) ≺ e〈n,b1〉(�j).

Subround 〈n, a〉: Alice picks y〈n,a〉 ∈ [e〈n,a–1〉(�a)] \ (X ∪Kn) and she plays the
family U〈n,a〉 := Uy〈n,a〉 . Suppose that Bob replies by choosing U〈n,a〉 ∈ U〈n,a〉 such
that Kn ⊆ U〈n,a〉. Take j〈n,a〉 > j〈n,a–1〉 and �〈n,a〉 ∈ Σj〈n,a〉 with �〈n,a〉 � e〈n,a–1〉(�a)

3Formally, we should have written { �nj : j < ln } instead of { �j : j < ln }, but we omit extra indices
in order to shorten our notation.
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such that y〈n,a〉 ∈ [�〈n,a〉] and [�〈n,a〉] ∩U〈n,a〉 = ∅. Let e′〈n,a〉 : e〈n,a–1〉[Cn] → Σj〈n,a〉
be a coherent map such that e′〈n,a〉(e〈n,a–1〉(�a)) = �〈n,a〉. Put e〈n,a〉 := e′〈n,a〉 ◦ e〈n,a–1〉.

After subround 〈n, ln – 1〉, the last subround of round n, we set

jn := j〈n,ln–1〉, in+1 := jn + 1, en := e〈n,ln–1〉,

Cn+1 :=
⋃
�∈Cn

{� ∈ Σin+1 : en(�) ≺ �}.

This completes the definition of the strategy § in the weak grouped Menger game
played on X. It remains to notice that any play in this game in which Alice uses §
gives a sequence of objects we require in our lemma, such that conditions (1)–(4) are
satisfied, and if Alice loses (and such a play exists because § cannot be winning),
then also (5) is satisfied. �

§6. The weak grouped Menger game and Sacks forcing. Again, by V we mean a
ground model of ZFC and G�2 is an S�2 -generic filter over V.

Theorem 6.1. Assume that V satisfies CH. In V [G�2 ], suppose that X ⊆ 2� and
for any perfect setK ⊆ 2� such thatK \ X is dense in K Alice has no winning strategy
in the weak grouped Menger game played on X ∩K in K. Then both X and 2� \ X
are unions of �1 compact sets.

For the proof of Theorem 6.1, we need the following auxiliary result. Similarly to
Lemma 4.2, it can be proved in the same way as [5, Lemma 5.10], a rather standard
argument is left to the reader.

Lemma 6.2. In V [G�2 ], let X ⊆ 2� . Then there exists a limit ordinal α < �2 of
cofinality �1 such that

(1) X ∩ V [Gα] ∈ V [Gα], and if K,K ′ ⊆ 2� are closed crowded sets and coded in
V [Gα], and K ′ ⊆ K \ (X ∩ V [Gα]), then K ′ ⊆ K \ X ;

(2) There is a function in V [Gα] which assigns to every perfect set K ⊆ 2� , coded
in V [Gα], such that K \ X is not dense in K, a nonempty clopen subset O of 2�

with4 ∅ 	= K ∩O ⊆ K ∩ X .
Moreover, if for each perfect set K ⊆ 2� such that K \ X is dense in K, Alice has no
winning strategy in the weak grouped Menger game played on X ∩K in K, then we
can in addition assume that

(3) in V [Gα], for each perfect set K ⊆ 2� such that K \ (X ∩ V [Gα]) is dense in
K, Alice has no winning strategy in the weak grouped Menger game played on
X ∩K ∩ V [Gα] in K.

Proof of Theorem 6.1. Let α be such as in Lemma 6.2. Working in V [G�2 ], we
claim that

X =
⋃ {
L ⊆ 2� : L ⊆ X,L is compact, and L is coded in V [Gα]

}
and (6.2.1)

2� \ X =
⋃ {
L ⊆ 2� : L ⊆ 2� \ X,L is compact, and L is coded in V [Gα]

}
.

(6.2.2)

4This function assigns to each code in V [Gα ] for a perfect set a code in V [Gα ] for a basic open set
with the given properties.
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Since in V [Gα] the remainder Sα,�2 is order-isomorphic to S�2 , there is no loss of
generality in assuming that α = 0, i.e., that V = V [Gα].

First we prove (6.2.1). Let us pick z ∈ X and let � be the minimal ordinal with
z ∈ V [G� ]. From now on, whenever we do not specify that we work in some other
model, we work in V. Let r ∈ G�2 and 	 ∈ V S� be such that 	G� = z and r � 	 ∈ X .
Let p0 ≥ r � � be such that p0 ∈ G� and

p0 �� 	 ∈ (2� ∩ V [Ġ� ]) \
⋃
�<�

V [Ġ� ].

We shall find q ≥ p0, q ∈ S� and a compact set L ⊆ X coded in V such that q ��2

	 ∈ L. This would accomplish the proof: The genericity of G� implies that there is a
condition q as above which lies in G� ⊆ G�2 . Then z = 	G� = 	G�2 ∈ L.

Take p and Fn, kn, ln, y�n from Lemma 3.7, applied to p0 and 	. Let Σn be the
set of all maps � : Fn → 2kn consistent with p, where n ∈ �. By Lemma 3.9(1),
for each map � ∈ Σn, there are maps �′ 	= �′′ ∈ Σn+1 extending �, which implies
[�′] ∩ [�′′] = ∅. For S := supp(p), define a perfect set K, exactly in the same way as
before Lemma 2.1, i.e.,

K :=
⋂
n∈�

⋃
{ [�] : � ∈ Σn }.

Then the family of all sets [�], where � ∈
⋃
n∈� Σn, is a basis for K. Note also that

Lemma 3.9(3) ensures that S and the sequence 〈 kn, Fn,Σn : n ∈ � 〉 satisfy (ef)
stated at the beginning of Section 2.

Let h : K → 2� be defined in the same way as in the proof of Theorem 4.1.
Thus h : K → h[K ] is a homeomorphism, and hence h[K ] is perfect. Fix a natural
number n. By Lemma 3.7(2) and Observation 3.2(3), the set {p|�n : �n ∈ Σn } is a
maximal antichain above p. Applying Lemma 3.7(4), we have that

p � 	 � ln ∈ { y�n : �n ∈ Σn }.

It follows from the above and from the definition of the function h thatp � 	 ∈ h[K ].
Assume that in V [G�2 ], the set h[K ] \ X is dense in h[K ]. We shall show that this

is impossible. By the assumption, Alice has no winning strategy in wgM(h[K ], X ∩
h[K ]). We proceed in V. By Lemma 6.2(3) we have that Alice has no winning
strategy in wgM(h[K ], h[K ] ∩ X ∩ V ). Since h is a homeomorphism and h–1[X ∩
V ] = h–1[X ] ∩ V = h–1[X ] ∩ V ∩K (because h is defined in V and its domain is
K), Alice has no winning strategy in wgM(K, h–1[X ] ∩ V ). Applying Lemma 5.10
to S = supp(p) and h–1[X ] ∩ V ⊆ K , we can get a sequence 〈 〈in, jn, Cn〉 : n ∈ � 〉
satisfying the conclusion of Lemma 5.10. Lemma 5.10(5) yields

K ′ :=
⋂
n∈�

⋃
{ [�] : � ∈ Cn } ⊆ K \ (h–1[X ] ∩ V ),

and therefore h[K ′] ⊆ h[K ] \ (X ∩ V ), both of these inclusions holding in V.
Applying Lemma 6.2(1) we conclude that h[K ′] ⊆ h[K ] \ X holds in V [G�2 ].

Let q ≥ p be a condition given by Lemma 3.10. Note that q � 	 � lin ∈ { y� :
� ∈ Cn } because {p|� : � ∈ Cn} is predense above q, for all n ∈ �, which implies
q � 	 ∈ h[K ′]. It follows from the above that q � 	 	∈ X , which is impossible since
q�r � [�, �2) � 	 ∈ X .
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Now assume that in V [G�2 ], we have Inth[K ](h[K ] ∩ X ) 	= ∅. Since h[K ] is coded
in V, there is a clopen set O (namely the one assigned to h[K ] by the function given
by Lemma 6.2(2)) such that ∅ 	= h[K ] ∩O ⊆ X . It follows from the definition of h
that there exist n ∈ � and � ∈ Σn with h[[�] ∩K ] ⊆ O, and hence h[[�] ∩K ] ⊆ X .
Let q := p|�. Since q � 	 ∈ h[[�] ∩K ], the setL := h[[�] ∩K ] is a perfect set coded
in V which is a subset of X and q � 	 ∈ L. This completes the proof of Equation
6.2.1.

Next, we prove (6.2.2). The argument is very similar to that of (6.2.1), but we
anyway give it for the sake of completeness. As above, let r ∈ G�2 , p0 ≥ r � �,
p0 ∈ G� and 	 ∈ V S� be such that r � 	 ∈ 2� \ X and

p0 �� 	 ∈ (2� ∩ V [Ġ� ]) \
⋃
�<�

V [Ġ� ].

We shall find q ≥ p0, q ∈ S� and a compact set L ⊆ 2� \ X coded in V such that
q ��2 	 ∈ L. As in the case of (6.2.1), this would accomplish the proof.

Again, take p and Fn, kn, ln, y�n from Lemma 3.7, applied to p0 and 	. Let Σn, [�]
for � ∈ Σn, K, and h : K → 2� be defined in the same way as in the proof of (6.2.1).
We have p � 	 ∈ h[K ].

Assume that in V [G�2 ], we have Inth[K ](h[K ] ∩ X ) 	= ∅. We shall show that this
case is impossible. Since h[K ] is coded in V, there is a clopen set O such that
∅ 	= h[K ] ∩O ⊆ X . It follows from the above that there exist n ∈ � and � ∈ Σn with
h[[�] ∩K ] ⊆ O, and hence h[[�] ∩K ] ⊆ X . Let q := p|�. Since q � 	 ∈ h[[�] ∩K ],
the set L := h[[�] ∩K ] is a perfect set coded in V which is a subset of X and
q � 	 ∈ L. Consequently, q � 	 ∈ X , a contradiction to r � 	 ∈ 2� \ X .

Now assume that in V [G�2 ], the set h[K ] \ X is dense in h[K ]. In V, we have that
h[K ] \ (X ∩ V ) is dense in h[K ]: If there were a clopen K ′ ⊆ 2� with

∅ 	= K ′ ∩ h[K ] ⊆ h[K ] \ (X ∩ V ),

then we would get K ′ ∩ h[K ] ⊆ h[K ] \ X holding in V [G�2 ] by Lemma 6.2(1).
By the assumption, Alice has no winning strategy in the game wgM(h[K ], X ∩

h[K ]). By Lemma 6.2(3), in V, Alice has no winning strategy in wgM(h[K ], X ∩
h[K ] ∩ V ). Since h is a homeomorphism, Alice has no winning strategy in
wgM(K, h–1[X ] ∩K ∩ V ). Now let 〈 〈in, jn, Cn〉 : n ∈ � 〉, K ′ and q be the same
as in the proof of (6.2.1). Again, since K ′ ⊆ K \ (h–1[X ] ∩ V ) holds in V, we have
K ′ ⊆ K \ h–1[X ] in V [G�2 ] by Lemma 6.2(1), or equivalently h[K ′] ⊆ h[K ] \ X .
Repeating our previous arguments we get

q � 	 ∈ h[K ′] ⊆ 2� \ X.

It follows from the above that the set L := h[K ′] is a perfect subset of 2� \ X and
q � 	 ∈ L, which completes the proof of (6.2.2). �

Combining Theorem 6.1 with Proposition 5.3, Remark 5.8, and Proposition 5.9,
we get the following result.

Corollary 6.3. Assume that V satisfies GCH. InV [G�2 ], the following assertions
hold.
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(1) Each consonant (Hurewicz) subset of 2� as well as its complement are unions
of d = �1 many compact subspaces. In particular, there are c = �2 consonant
(Hurewicz) subspaces of 2� .

(2) Each perfectly meager subset of 2� has cardinality at most d = �1, and its
complement is a union of �1 compact sets.

The first half of Corollary 6.3(2), namely that all perfectly meager subsets of
2� have cardinality at most �1 in the Sacks model, was established by Miller [15,
Section 5].

Remark 6.4. In V [G�2 ], considered in the above corollary, there is a Luzin
subset of 2� , i.e., an uncountable set whose intersection with any meager set is at
most countable, which is totally imperfect and Menger [12], but it is not (perfectly)
meager. There is also a perfectly meager set that is not Menger: Since d = �1 in
V [G�2 ], there is a dominating set X = {xα : α < �1 } in [�]� , where x� ≤∗ xα for
all ordinal numbers � < α < �1. This set is not Menger. The setX ∪ Fin satisfies the
Hurewicz covering property [1, Theorem 10], and any totally imperfect set with this
property is perfectly meager [14, Theorem 5.5]. Thus, the set X is perfectly meager,
too. Alternatively, we could use here the main result of [17], which implies directly
that X is perfectly meager since ≤∗ is a Borel subset of �� × �� .

Theorems 4.1 and 6.1 motivate the following problem.

Problem 6.5. In the Sacks model:

(1) Is every Menger space X ⊆ 2� a union of �1-many of its compact subspaces?
(2) Is the complement 2� \ X of a Menger set X ⊆ 2� a union of �1-many of its

compact subspaces?
(3) Are there only �2-many Menger subsets of 2�?
(4) Is the complement 2� \ X of a totally imperfect Menger set X ⊆ 2� a union of
�1-many of its compact subspaces?

Regarding the last item of Problem 5.6, we do not know the answer even to the
following question.

Problem 6.6. In the Sacks model, is the complement 2� \ X of any setX ⊆ 2� with
|X | = �1 a union of�1-many of its compact subspaces? In particular, is 2� \ (2� ∩ V )
a union of �1-many of its compact subspaces?

§7. Menger sets and Hechler forcing. The results from the previous section lead
to the question, whether d < c implies that any totally imperfect Menger subset of
2� has cardinality at most d. We address this problem, showing that this is not the
case. We also provide a consistent result that the size of the family of all Hurewicz
subsets of 2� can be equal 2c even if d < c. Let P be a definable ccc forcing notion
of size c which adds dominating reals over a ground model (e.g., the poset defined
in [2, p. 95], nowadays commonly named Hechler forcing) and P�1 be an iterated
forcing of length �1 with finite support, where each iterand is equal to P. In this
section, by G�1 we mean a P�1 -generic filter over a ground model V of ZFC.

Proposition 7.1. In V [G�1 ], each subset of 2� ∩ V is Hurewicz.
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Proof. Let X ⊆ 2� ∩ V and φ : X → [�]� be a continuous function. The
function φ can be extended to a continuous function Φ defined on a G�-set A,
containing X. Then there is an ordinal number α < �1 such that the function Φ and
the set A are coded in V [Gα]. It follows that Φ[X ] ⊆ V [Gα]. Since there exists a
function gα , added in step α, which dominates any real from V [Gα], the set Φ[X ]
is bounded in V [G�1 ]. By the Hurewicz–Recław characterization of the Hurewicz
property [18, Proposition 1], the set X is Hurewicz5 in V [G�1 ]. �

Theorem 7.2. Assume that V satisfies ¬CH. In V [G�1 ], we have d < c and the
following assertions hold.

(1) There is a totally imperfect Hurewicz and Rothberger (and thus Menger) subset
of 2� with cardinality c.

(2) There are 2c-many Hurewicz and Rothberger (and thus consonant) subsets of
2� .

Proof. Since P�1 adds �1 dominating reals to the ground model, we have d =
�1 < c in V [G�1 ]. Since the forcing P is ccc, the forcing P�1 is ccc, too. Since P�1

adds reals to the ground model, any subset of 2� ∩ V is totally imperfect in V [G�1 ].
By Proposition 7.1, any subset of 2� ∩ V is Hurewicz in V [G�1 ].

Since Cohen reals are added by any tail of the considered iteration, any subset
of 2� ∩ V is also Rothberger in V [G�1 ], by virtue of an argument similar to that
in the proof of Proposition 7.1, more details could be found in the proof of [22,
Theorem 11]. �

§8. Comments and open problems. Let P(�) be the power set of �, the set of
natural numbers. We identify each element of P(�) with its characteristic function,
an element of 2� . In that way we introduce a topology on P(�). Let [�]� be the
family of all infinite sets in P(�). Each set in [�]� we identify with an increasing
enumeration of its elements, a function in the Baire space �� . We have [�]� ⊆ ��
and topologies in [�]� induced from P(�) and�� are the same. Let Fin be the family
of all finite sets in P(�). A totally imperfect Menger set constructed by Bartoszyński
and Tsaban, mentioned in Theorem 1.1 is a set the form X ∪ Fin ⊆ P(�) of size d,
such that for any function d ∈ [�]� , we have |{x ∈ X : x ≤∗ d }| < d. In fact, any
set with these properties is totally imperfect and Menger [1, Remark 18]. It has also
a stronger covering property S1(Γ,O), described in details in Section 8.2.

Proposition 8.1. There are at least 2d-many totally imperfect Menger subsets
of 2� .

Proof. Let X ⊆ [�]� be a set of size d such that all coordinates of elements in
X are even numbers and for any function d ∈ [�]� , we have |{x ∈ X : x ≤∗ d }| <
d. Let {xα : α < d } be a bijective enumeration of elements in X. Fix a function
y : d → 2� . For each ordinal number α < d, let xα + yα be the function such that
(xα + yα)(n) := xα(n) + yα(n) for all n. Then xα + yα ∈ [�]� and xα ≤∗ xα + yα
for all ordinal numbers α < d. Thus, for any function d ∈ [�]� , we have {α :
xα + yα ≤∗ d } ⊆ {α : xα ≤∗ d }, and the latter set has size smaller than d. Then

5As noted by the referee, a similar argument actually gives that φ[X ] is bounded for any Borel function
f : X → �� .
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the set {xα + yα : α < d } ∪ Fin is totally imperfect and Menger. It follows that for
different functions y : d → 2� , we get different totally imperfect Menger sets. �

8.1. Menger versus property S1(Γ,O). A cover of a space is a �-cover if it is
infinite and any point of the space belongs to all but finitely many sets in the
cover. A space satisfies property S1(Γ,O) if for any sequence U0,U1, ... of open
�-covers of the space there are sets U0 ∈ U0, U1 ∈ U1, ... such that the family {Un :
n ∈ � } covers the space. This property implies the Menger property. By the result
of Just, Miller, Scheepers, and Szeptycki [14, Theorem 2.3] (see also the work of
Sakai [20, Lemma 2.1]), any subset of 2� satisfying S1(Γ,O) is totally imperfect.
The following questions are one of the major open problems in the combinatorial
covering properties theory.

Problem 8.2.

(1) Is there a ZFC example of a totally imperfect Menger subset of 2� which does
not satisfy S1(Γ,O)?

(2) Is there a subset of 2� whose continuous images into 2� are totally imperfect
and Menger, which does not satisfy S1(Γ,O)?

In the first item of the problem above we ask about ZFC examples because under
CH there exists even a Hurewicz totally imperfect subspace of 2� which can be
mapped continuously onto 2� , see [25]. The second item of Problem 8.2 is motivated
by the fact that the property S1(Γ,O) is preserved by continuous functions. By the
results from Section 2, we can put this problem in a more specific context.

Problem 8.3. Let G�2 ba an S�2-generic filter over a ground model V. In V [G�2 ],
does any Menger set of cardinality �1 satisfy S1(Γ,O)?

8.2. Other problems. The following problem is motivated by Remark 6.4.

Problem 8.4. Is any perfectly meager subset of 2� contained in a Menger totally
imperfect set?

We do not know whether the conclusion of Corollary 5.5 holds in ZFC.

Problem 8.5. Is it consistent that GM coincides with the family of all Menger
subspaces of 2�? In other words, is it consistent that for every Menger X ⊆ 2� Alice

has no winning strategy in the grouped Menger game on X?

Funding. The research of the first and the third authors was funded in whole by the
Austrian Science Fund (FWF) [10.55776/I5930 and 10.55776/PAT5730424]. The
research of the second author was funded by the National Science Center, Poland
Weave-UNISONO call in the Weave programme Project: Set-theoretic aspects of
topological selections 2021/03/Y/ST1/00122.

REFERENCES
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UNIVERSITY IN WARSAW
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