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Decomposition of Splitting Invariants in
Split Real Groups

Tasho Kaletha

Abstract. For a maximal torus in a quasi-split semi-simple simply-connected group over a local field

of characteristic 0, Langlands and Shelstad constructed a cohomological invariant called the splitting

invariant, which is an important component of their endoscopic transfer factors. We study this invari-

ant in the case of a split real group and prove a decomposition theorem which expresses this invariant

for a general torus as a product of the corresponding invariants for simple tori. We also show how this

reduction formula allows for the comparison of splitting invariants between different tori in the given

real group.

In applications of harmonic analysis and representation theory of reductive

groups over local fields to questions in number theory, a central role is played by

the theory of endoscopy. This theory associates a given connected reductive group

G over a local field F with a collection of connected reductive groups over F, often

denoted by H, which have smaller dimension (except when H = G), but are usually

not subgroups of G. The geometric side of the theory is then concerned with trans-

ferring functions on G(F) to functions on H(F) in such a way that suitable linear

combinations of their orbital integrals are comparable, while the spectral side is con-

cerned with transferring “packets” of representations on H(F) to “packets” of repre-

sentations on G(F) in such a way that suitable linear combinations of their characters

are comparable. In both cases, the comparison involves certain normalizing factors,

called geometric or spectral transfer factors.

Over the real numbers, the theory of endoscopy was developed by Diana Shelstad

in a series of profound papers [8–11] (but see also [13–15] for a more modern point

of view and additional results), in which she defined geometric and spectral transfer

factors and proved that these factors indeed give a comparison of orbital integrals

and character formulas between G and H. A very subtle and complicated feature

of the transfer factors was the need to assign a ±-sign to each maximal torus in G

in a coherent manner, and Shelstad was able to prove that this is possible. A uni-

form and explicit definition of geometric transfer factors for all local fields was given

in [5]. An explicit construction of spectral transfer factors over the real numbers was

given in [14], while over the p-adic numbers their existence is still conjectural (see

however [3] for a proof of the spectral transfer in a special case). The structure of

transfer factors is quite complex — both the geometric and the real spectral ones

Received by the editors December 10, 2009; revised July 23, 2010.
Published electronically April 25, 2011.
AMS subject classification: 11F70, 22E47, 11S37, 11F72, 17B22.
Keywords: endoscopy, real lie group, splitting invariant, transfer factor.

1083

https://doi.org/10.4153/CJM-2011-024-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-024-5


1084 T. Kaletha

are a product of multiple terms of group-theoretic or Galois-cohomological nature.

There are numerous choices involved in the construction of each individual term, but

the product is independent of most choices. One term that is common to both the

geometric and the real spectral transfer factors is called ∆I . It is regarded as the most

subtle and is the one that makes explicit the choice of coherent collection of signs

in Shelstad’s earlier work. At its heart is a Galois-cohomological object, called the

splitting invariant. The splitting invariant is an element of H1(F, T) associated with

any maximal torus T of a quasi-split semi-simple simply-connected group G, whose

construction occupies the first half of [5, §2]. It depends on the choice of a splitting

(T0, B0, {Xα}α∈∆) of G as well as a-data {aβ}β∈R(T,G).

This paper addresses the following question. If one has two maximal tori in a given

real group which originate from the same endoscopic group, how can one compare

their splitting invariants? While there will in general be no direct relation between

H1(F, T1) and H1(F, T2) for two maximal tori T1 and T2 of G, if both those tori orig-

inate from H, then there are certain natural quotients of their cohomology groups

which are comparable, and it is the image of the splitting invariant in those quo-

tients that is relevant to the construction of ∆I . An example of a situation where

this problem arises is the stabilization of the topological trace formula of Goresky–

MacPherson. One is led to consider characters of virtual representations which occur

as sums indexed over tori in G that originate from the same endoscopic group H, and

each summand carries a ∆I-factor associated with the corresponding torus.

To describe the results of this paper, we take G to be a split simply-connected real

group and (T0, B0, {Xα}α∈∆) to be a fixed splitting. For a set A consisting of roots of

T0 in G which are pairwise strongly orthogonal, let SA denote the element of the Weyl

group of T0 given by the product of the reflections associated with the elements of A

(the order in which the product is taken is irrelevant). We show that associated with

A there is a canonical maximal torus TA of G and a set of isomorphisms of real tori

TSA

0 → TA, where TSA

0 is the twist by SA of T0. Any maximal torus in G is G(R)-con-

jugate to one of the TA, so it is enough to study the tori TA. We give an expression in

purely root-theoretic terms for a certain 1-cocycle in Z1(R, TSA

0 ). This cocycle has the

property that its image in Z1(R, TA) under any of the isomorphisms TSA → TA above

is the same, and the class in H1(R, TA) of that image is the splitting invariant of TA

(associated with a specific choice of a-data). Moreover, we prove a reduction theorem

which shows that this cocycle is a product over α ∈ A of the cocycles associated

with the canonical tori T{α}, thereby reducing the study of the splitting invariant of

TA to those of the various T{α}. This product decomposition takes place inside the

group Z1(R, TSA

0 ), that is, we show that the elements of Z1(R, Tsα
0 ) associated with the

various T{α} with α ∈ A also lie in Z1(R, TSA

0 ) and that their product is the element

associated with TA. Finally we show that if A ′ ⊂ A and the tori TA ′ and TA originate

from the same endoscopic group, then the endoscopic characters on the cohomology

groups H1(R, TA ′) and H1(R, TA) factor through certain explicitly given quotients

of these groups, and the quotient of H1(R, TA ′) is canonically embedded into that of

H1(R, TA). This, together with the reduction theorem, allows for a direct comparison

of the values that the endoscopic characters associate to the splitting invariants for

TA ′ and TA.
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Our techniques rely heavily on the study of sets of strongly orthogonal roots in

root systems and the fact that each element of order 2 in the Weyl group of a root

system is of the form SA for some set A consisting of strongly orthogonal roots. In a

split real group the Galois action on any maximal torus is realized by such an element.

This is the reason why we restrict our attention to such groups. It may be possible to

use our techniques also in the case of non-split quasi-split groups which possess an

anisotropic maximal torus, for then the Galois-action on any maximal torus is of the

form −SA, but we have not pursued this line of thought here.

The paper is organized as follows: Section 1 contains a few basic facts and serves

mainly to fix notation for the rest of the paper. Section 2 contains proofs of general

facts about subsets of strongly orthogonal roots in reduced root systems, which are

needed as a preparation for the reduction theorem mentioned above. The study of

the splitting invariants takes place in Section 3, where first the splitting invariant for

the tori T{α} is computed, and after that the results of Section 2 are used to reduce

the case of TA to that of T{α}. While the statement of the reduction theorem appears

natural and clear, the proof contains some subtle points. First, one has to choose the

Borel B0 in the splitting of G with care according to the strongly orthogonal set A.

As remarked in Section 3, this choice does not affect the splitting invariant, but it

significantly affects its computation. Moreover, the root system G2 exhibits a singu-

lar behaviour among all reduced root systems as far as pairs of strongly-orthogonal

roots are concerned. Section 4 contains explicit computations of the splitting in-

variants of the tori T{α} for all split almost-simple classical groups. In Section 5 we

construct the aforementioned quotients of the cohomology groups and the embed-

ding between them. Moreover we show that the endoscopic character factors through

these quotients and is compatible with the constructed embedding.

1 Notation and Preliminaries

Throughout this paper G will stand for a split semi-simple simply-connected group

over R and (B0, T0, {Xα}) will be a splitting of G. We write R = R(T0, G) for the

set of roots of T0 in G, set α > 0 if α ∈ R(T0, B0), denote by ∆ the set of simple

roots in R(T0, B0) and by Ω the Weyl-group of R, which is identified with N(T0)/T0.

Moreover, we put Γ = Gal(C/R) and denote by σ both the non-trivial element in

that group, as well as its action on T0. The notation g ∈ G will be shorthand for

g ∈ G(C), and Int(g)h = ghg−1.

1.1 sl2-triples

For any α ∈ R(T0, B0) we have the coroot α∨ : Gm → T0 and its differential

dα∨ : Ga → Lie(T0). We put Hα := dα∨(1) ∈ Lie(T0). Given Xα ∈ Lie(G)α non-

zero, there exists a unique X−α ∈ Lie(G)−α so that [Hα, Xα, X−α] is an sl2-triple.

The map

(
1 0

0 −1

)
7→ Hα,

(
0 1

0 0

)
7→ Xα,

(
0 0

1 0

)
7→ X−α
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gives a homomorphism sl2 → Lie(G) which integrates to a homomorphism SL2 → G

and one has

sl2 //

exp

²²

Lie(G)

exp

²²

SL2
// G

The image of
(

a b
c d

)
∈ SL2 under this homomorphism will be called

(
a b
d c

)
Xα

.

Notice that
(

t 0
0 t−1

)
Xα

= α∨(t).

Fact 1.1 Let α, β ∈ R be such that α + β /∈ R and α − β /∈ R. For any non-zero

elements Xα ∈ Lie(G)α and Xβ ∈ Lie(G)β , the homomorphisms ϕXα
, ϕXβ

: SL2 → G

given by Xα and Xβ commute.

Proof Since for any field k, SL2(k) is generated by its two subgroups
{ (

1 u

0 1

) ∣∣∣ u ∈ k

}
,

{(
1 0

u 1

) ∣∣∣ u ∈ k

}
,

it is enough to show that for any u, v ∈ C, each of exp(uXα) and exp(uX−α) com-

mutes with each of exp(vXβ) and exp(vX−β). This follows from [16, 10.1.4] and our

assumption on α, β.

1.2 Chevalley Bases

For α ∈ ∆ let nα = exp(Xα) exp(−X−α) exp(Xα) =
(

0 1
−1 0

)
Xα

. Given µ ∈ Ω we

have the lift n(µ) ∈ N(T0) given by n(µ) = nα1
· · · nαq

, where sα1
· · · sαq

= µ is any

reduced expression (by [16, 11.2.9] this lift is independent of the choice of reduced

expression). Notice n(µ) ∈ N(T0)(R) since T0 is split. Put Xµ|α := Int(n(µ)) · Xα.

Then Xµ|α ∈ Lie(G)µα is a non-zero element.

Lemma 1.2 If α, α ′ ∈ ∆ and µ, µ′ ∈ Ω are such that µα = µ ′α ′, then we have in

Lie(G)µα the equality

Xµ ′|α ′ =

∏

β>0

(µ ′)−1β<0

µ−1β>0

(−1)〈β
∨,µα〉 · Xµ|α.

Proof By [16, 11.2.11] the relation (µ ′)−1 · µα = α ′ implies

Xα ′ = Int
[

n
(

(µ ′)−1 · µ
)]

Xα

The claim now follows from [5, 2.1.A] and the following computation:

Xµ ′|α ′ = Int
(

n(µ ′)
)

Xα ′ = Int
[

n(µ ′)n
(

(µ ′)−1µ
)]

Xα

= Int
[

t
(
µ ′, (µ ′)−1µ

)
· n(µ)

]
Xα = Int

[
t
(
µ ′, (µ′)−1µ

)]
Xµ|α

= (µα)
(

t(µ ′, (µ ′)−1µ)
)
· Xµ|α.

https://doi.org/10.4153/CJM-2011-024-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-024-5


Decomposition of Splitting Invariants in Split Real Groups 1087

We see that while the “absolute value” of Xµ|α only depends on the root µ · α, its

“sign” does depend on both µ and α.

Definition 1.3 For γ ∈ R, µ, µ′ ∈ Ω put

ǫ(µ ′, γ, µ) :=
∏

β>0

(µ ′)−1β<0

µ−1β>0

(−1)〈β
∨,γ〉.

With this definition we can reformulate the above lemma as follows.

Corollary 1.4 If γ ∈ R and µ, µ′ ∈ Ω are such that µ−1γ, (µ ′)−1γ ∈ ∆, then

Xµ ′|(µ ′)−1γ = ǫ(µ ′, γ, µ) · Xµ|µ−1γ .

If for each γ ∈ R we choose µγ ∈ Ω so that µ−1
γ γ ∈ ∆, then {Xµγ |µ−1

γ γ}γ∈R is a

Chevalley system in the sense of [7, exp XXIII §6].

1.3 Cayley-Transforms

Let α ∈ R(T0, B0) and choose Xα ∈ Lie(G)α(R) − {0}. Put

gα := exp
( iπ

4
(Xα + X−α)

)
.

Then

σ(gα) = exp
(
− iπ

4
(Xα + X−α)

)
= g−1

α ,

σ(gα)−1 · gα = g2
α = exp

( iπ

2
(Xα + X−α)

)
.

We have

gα =

[ √
2

2

(
1 i

i 1

)]

Xα

, g2
α =

(
0 i

i 0

)

Xα

, g4
α =

(
−1 0

0 −1

)

Xα

= α∨(−1).

Fact 1.5 The images of T0 under Int(gα) and Int(g−1
α ) are the same. They are a torus

T defined over R and the transports of the Γ-action on T to T0 via Int(g−1
α ) and Int(gα)

both equal sα ⋊ σ.

Proof

Int(gα)T0 = Int(g−1
α ) Int(g2

α)T0 = Int(g−1
α )sαT0 = Int(g−1

α )T0,

σ(Int(gα)T0) = Int(σ(gα))T0 = Int(g−1
α )T0,

Int(σ(gα)−1gα) = Int(g2
α) = sα = Int(g−2

α ) = Int(σ(gα)g−1
α ).
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Different choices of Xα will lead to different (yet conjugate) tori T. However, since

we have fixed a splitting, there is up to a sign a canonical Xα. Changing the sign of Xα

changes gα to g−1
α , hence T does not change. Thus we conclude that the the choice of

a splitting gives for each α ∈ R(T0, B0) the following canonical data:

(i) a pair {X, X ′} ⊆ Lie(G)α(R) − {0} with X ′
= −X,

(ii) a torus Tα on which Γ acts via sα ⋊ σ,

(iii) a pair ϕ,ϕ ′ of isomorphisms Tsα
0 → Tα such that ϕ ′

= ϕ ◦ sα, given by the

Cayley-transforms with respect to X, X ′.

Corollary 1.6 For α ∈ R(T0, B0), let Tα be the canonically given torus as above. For

µ, µ′ ∈ Ω such that µ−1α, (µ ′)−1α ∈ ∆, let ϕ,ϕ ′ : Tsα
0 → Tα be the isomorphisms

given by Int(gXµ|µ−1α
) and Int(gXµ ′|(µ ′)−1α

). Then

ϕ ′
=

{
ϕ, ǫ(µ′, α, µ) = 1,

ϕ ◦ sα, ǫ(µ′, α, µ) = −1.

Proof Clear.

From now on we will write gµ,α instead of gXµ|µ−1α
. This notation will only be

employed in the case that α ∈ R(T0, B0) and µ−1α ∈ ∆.

2 Strongly Orthogonal Subsets of Root Systems

In this section, a few technical facts about strongly orthogonal subsets of root systems

are proved.

Definition 2.1

• α, β ∈ R are called strongly orthogonal if α + β /∈ R and α − β /∈ R.
• A ⊂ R is called a strongly orthogonal subset (SOS) if it consists of pairwise strongly

orthogonal roots.
• A ⊂ R is called a maximal strongly orthogonal subset (MSOS) if it is an SOS and is

not properly contained in an SOS.

A classification of the Weyl group orbits of MSOS in irreducible root systems was

given in [1]. In some cases, there exists more than one orbit. To handle these cases,

we will use the following definition and lemma.

Definition 2.2 Let A1,A2 be SOS in R. Then A2 will be called adapted to A1 if

span(A2) ⊂ span(A1) and for all distinct α, β ∈ A2

{a ∈ A1 : (a, α) 6= 0} ∩ {a ∈ A1 : (a, β) 6= 0} = ∅,

where ( · , · ) is any Ω-invariant scalar product on the real vector space spanned by R.

Note that any A is adapted to itself.
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Lemma 2.3 There exist representatives A1, . . . , Ak of the Weyl group orbits of MSOS

such that A1 has maximal length and A2, . . . , Ak are adapted to A1.

Proof This follows from the explicit classification in [1].

If A is an SOS, then all reflections with respect to elements in A commute. Their

product will be denoted by SA.

Definition 2.4 For a root system R, a choice of positive roots >, and a subset A of

R, let #(R, >, A) be the statement

∀α1, α2 ∈ A, ∀β > 0, α1 6= α2 ∧ sα1
(β) < 0 =⇒ sα2

(β) > 0

and let ##(R, >, A) be the statement

∀A1, A2 ⊂ A, ∀β > 0,

A1 ∩ A2 = ∅ ∧ SA1
(β) < 0 =⇒ SA2

(β) > 0 ∧ SA1
SA2

(β) < 0

We will soon show that these statements are equivalent. Moreover we will show

that for any SOS A ⊂ R we can choose > so that the triple (R, >, A) verifies these

statements. For this it is more convenient to work with #. For the applications how-

ever, we need ##.

Lemma 2.5 Let R be a reduced root system and A ⊂ R an SOS. There exists a choice

of positive roots > such that #(R, >, A ′) holds for any A ′ adapted to A.

Proof Let V denote the real vector space spanned by R, and let ( · , · ) be an Ω-

invariant scalar product on V . The elements of A are orthogonal with respect to

( · , · ). Extend A to an orthogonal basis (a1, . . . , an) of V . Define the following

notion of positivity on R

α > 0 ⇐⇒ (α, ai0
) > 0 for i0 = min{i : (α, ai) 6= 0}.

It is clear from the construction that with this notion #(R, >, A ′) is satisfied for

any A ′ adapted to A. We just need to check that > 0 defines a choice of positive roots,

which we will now do.

It is clear that for each α ∈ R precisely one of α > 0 or −α > 0 is true. We will

construct p ∈ V such that for all α ∈ R, α > 0 ⇐⇒ (α, p) > 0. Let

m = min{|(α, ai)| : α ∈ R, 1 ≤ i ≤ n, (α, ai) 6= 0},
M = max{|(α, ai)| : α ∈ R, 1 ≤ i ≤ n}.

Construct recursively real numbers p1, . . . , pn such that

pn = 1, pi >
M

m

∑

k>i

pk,
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and put p =
∑

piai . If α ∈ R is such that α > 0 and i0 is the smallest i such that

(α, ai) 6= 0, then

(α, p) =

n∑

i=i0

pi(α, ai) > mpi0
− M

∑

k>i0

pk > 0.

Thus α > 0 =⇒ (α, p) > 0. The converse implication follows formally:

¬(α > 0) ⇔ −α > 0 ⇒ (−α, p) > 0 ⇒ ¬((α, p) > 0).

The truth value of the statement #(R, >, A) and the notion of being adapted to A

are unchanged if one replaces elements of A by their negatives. Thus we can always

assume that the elements of A are positive.

It is necessary to choose the set of positive roots based on A in order for #(R, >, A)

to be true. An example that #(R, >, A) may be false is provided by V = R3, R = D3

with positive roots




1

−1

0



 ,




1

0

−1



 ,




0

1

−1



 ,




1

1

0



 ,




1

0

1



 ,




0

1

1



 .

and

A =









1

0

−1



 ,




1

0

1








 , β =




1

−1

0



 .

Fact 2.6 Let R = G2 and > be any choice of positive roots. All MSOS A of R lie in

the same Weyl-orbit and moreover automatically satisfy #(R, >, A). Some of these A

contain simple roots.

Proof This is an immediate observation.

Proposition 2.7 Let A ⊂ R be an SOS and let > be a choice of positive roots. Then

the statements #(R, >, A) and ##(R, >, A) are equivalent.

Proof First, we show that # implies the following statement, to be called #1:

∀α1, α2 ∈ A, ∀β > 0,(#1)

α1 6= α2 ∧ sα1
(β) < 0 =⇒ sα2

(β) > 0 ∧ sα1
sα2

(β) < 0.

Let α1, α2 ∈ A and β > 0 be such that sα1
(β) < 0. Put β ′

= −sα1
(β). Then

β ′ > 0 and sα1
(β ′) = −β < 0. Then # implies that sα2

sα1
(β) = −sα2

(β ′) < 0.

Next we show that #1 implies the following statement, to be called #2:

∀α1 ∈ A, ∀A2 ⊂ A, ∀β > 0,(#2)

α1 /∈ A2 ∧ sα1
(β) < 0 =⇒ SA2

(β) > 0 ∧ sα1
SA2

(β) < 0.
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We do this by induction of the cardinality of A2, the case of A2 singleton being pre-

cisely #1. Now let α1 ∈ A, A2 ⊂ A\{α1}, and β > 0 be such that sα1
(β) < 0. Choose

α2 ∈ A2 and put β ′ := sα2
(β). Then by #1 we have β ′ > 0 and sα1

(β ′) < 0. Apply-

ing the inductive hypothesis, we obtain SA2
(β) = SA2\{α2}(β ′) > 0 and sα1

SA2
(β) =

sα1
SA2\{α2}(β ′) < 0.

Now we show that #2 implies the following statement, to be called ♭:

(♭) If A2 ⊂ A and β > 0 are such that SA2
(β) < 0, then there exists α2 ∈ A2

such that sα2
(β) < 0.

To see this, let A3 ⊂ A2 be a subset of minimal size such that SA3
(β) < 0. Take

α3 ∈ A3 and put β ′
= SA3\{α3}(β). By minimality of A3 we have β ′ > 0, and

moreover sα3
(β ′) = SA3

(β) < 0. Then #2 implies that sα3
(β) = sα3

SA3\{α3}(β ′) < 0.

Finally we show that #2 implies the statement ##. Take A1, A2 ⊂ A such that

A1 ∩ A2 = ∅ and β > 0 such that SA1
(β) < 0. By ♭ there exists α1 ∈ A1 such

that sα1
(β) < 0. Since α1 /∈ A2, we get from #2 that SA2

(β) > 0 and SA1
SA2

(β) =

sα1
SA2

SA1\{α1}(β) < 0.

This shows that # implies ##. The converse implication is trivial.

Proposition 2.8 For an SOS A ⊂ R, and a choice > of positive roots, let

R+
A = {β ∈ R : β > 0 ∧ SAβ < 0}.

Assume that > is chosen so that ##(R, >, A) is true. Then if A ′, A ′ ′ ⊂ A are disjoint, so

are R+
A ′ and R+

A ′ ′ , and R+
A ′∪A ′ ′ = R+

A ′ ∪R+
A ′ ′ . Moreover, the action of SA ′ on R preserves

R+
A ′ ′ .

Proof This follows immediately.

Corollary 2.9 If A is an SOS and > is chosen so that #(R, >, A) is true, then

R+
A =

∐
α∈A

R+
α.

Proof Clear.

Lemma 2.10 Let R be a root system, V the real vector space spanned by it, Q ⊂ V the

root lattice, and ( · , · ) a Weyl-invariant scalar product on V . If v ∈ Q is such that

|v| ≤ min{|α| : α ∈ R},

where |·| is the Euclidean norm arising from ( · , · ), then v ∈ R and the above inequality

is an equality.

Proof Choose a presentation v =
∑

α∈R nαα, nα ∈ Z≥0 such that
∑

α nα is min-

imal. First we claim that if α, β ∈ R contribute to this sum, then (α, β) ≥ 0.

If that were not the case, then by [2, Chapter VI,§1,no.3,Theorem 1] we have that

γ := α + β ∈ R ∪ {0} and we can replace the contribution α + β in the sum by γ,
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contradicting its minimality. Now, if γ ∈ R is any root contributing to the sum, we

get

|v|2 =

∑

α,β∈R

nαnβ(α, β) ≥ n2
γ(γ, γ) ≥ (γ, γ) = |γ|2

with equality precisely when v = γ.

Lemma 2.11 Let R be a reduced root system and α, β ∈ R two strongly orthogonal

roots. If α∨ + β∨ ∈ 2Q∨, then α, β belong to the same copy of G2.

Proof Let V denote the real vector space spanned by R. Choose a Weyl-invariant

scalar product (·, ·) and use it to identify V with its dual and regard R∨ as a root

system in V .

Assume now that α∨ + β∨ ∈ 2Q∨. Note that α∨ and β∨ are orthogonal (but may

not be strongly orthogonal elements of R∨).

First we show that then α, β belong to the same irreducible piece of R. To that end,

assume that R decomposes as R = R1⊔R2 and V decomposes accordingly as V1⊕V2.

If α ∈ R1 and β ∈ R2, then α∨ ∈ V1 and β∨ ∈ V2. Then 1
2
(α∨ + β∨) ∈ Q∨ implies

1
2
α∨ ∈ Q∨

1 , 1
2
β∨ ∈ Q∨

2 (project orthogonally onto V1, resp. V2). This however

contradicts the above lemma, because 1
2
α∨ has length strictly less than the shortest

elements in R∨
1 .

Knowing that α, β lie in the same irreducible piece, we can now assume, without

loss of generality, that R is irreducible. Normalize (·, ·) so that the short roots in R

have length 1. We have the following cases:

• All elements of R have length 1. Then all elements of R∨ have length 2. The length

of 1
2
(α∨ + β∨) is

√
2, which by the above lemma is not a length of an element in

Q∨.
• R contains elements of lengths 1 and

√
2. Then R∨ contains elements of lengths√

2 and 2.

– If both α∨, β∨ have length
√

2, then 1
2
(α∨ + β∨) has length 1, so is not in Q∨.

– If α∨ has length
√

2 and β∨ has length 2, then 1
2
(α∨ + β∨) has length

√
6

2
, so

again is not in Q∨.

– If both α∨, β∨ have length 2, then 1
2
(α∨ + β∨) has length

√
2 and thus could

potentially be in Q∨. If it is, then by the above lemma it is also in R∨, so
1
2
(α∨+β∨)∨ must be an element of R. One immediately computes that [ 1

2
(α∨+

β∨)]∨ = α + β, but the latter is not an element of R because α, β are strongly

orthogonal.

• R has elements of lengths 1 and
√

3. Then R is G2 and R∨ is also G2. As one sees

immediately, up to the action of its Weyl-group, G2 has a unique pair of orthog-

onal roots which are then automatically strongly orthogonal and half their sum is

also a root.

3 Splitting Invariants

Recall that we have fixed a split semi-simple and simply-connected group G over R

and a splitting (T0, B0, {Xα}) of it. Given a maximal torus T, an element h ∈ G such
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that Int(h)T0 = T, and a-data {aβ} for R(T, G), Langlands and Shelstad constructed

[5, 2.3] a certain element of Z1(Γ, T), whose image in H1(Γ, T) they call λ(T), the

“splitting invariant” of T. They show that this image is independent of the choice

of h. The introduction of this invariant was motivated by a (general) calculation in

Langlands’ paper [4], which was the basis for [5, 5.4]. It was also used by Shelstad to

give an explicit formula for regular unipotent germs of p-adic groups [12].

In this section we want to study this splitting invariant in such a way that enables

us to see how it varies when the torus varies. It turns out that a certain type of a-data

is very well suited for this. This a-data is determined by a Borel subgroup B ⊃ T as

follows:

αβ =






i, β > 0 ∧ σT(β) < 0,

−i, β < 0 ∧ σT(β) > 0,

1, β > 0 ∧ σT(β) > 0,

−1, β < 0 ∧ σT(β) < 0,

where σT denotes the Galois-action on X∗(T) and β > 0 means β ∈ R(T, B). We

will call this B-a-data. We would like to alert the reader to a similar, yet inequivalent,

terminology — that of based a-data — which was introduced by Shelstad and is also

specified by a choice of a Borel subgroup. For based a-data the positive imaginary

roots are assigned i, while all other positive roots are assigned 1; for B-a-data, any

positive root whose Galois-conjugate is negative is assigned i. Therefore, a splitting

invariant computed using based a-data will, in general, be different from one com-

puted using B-a-data. The precise difference is given by [5, 2.3.2]. It is, however, more

important to note that according to [5, Lemma 3.2.C], this difference disappears once

the splitting invariant has been paired with an endoscopic character. Thus, as far as

applications to transfer factors are concerned, based a-data and B-a-data give the

same result.

In view of the reduction theorem which we will prove in section 3.2, it will be help-

ful to consider not just the cohomology class, but also the actual cocycle constructed

in [5, 2.3]. We will denote this cocycle by λ(T, B, h) to record its dependence on the

B-a-data and the element h, while the splitting (T0, B0, {Xα}) is not present in the

notation because it is assumed fixed. Since we are working over R, we will identify

a 1-cocycle and its value at σ ∈ Gal(C/R), and hence we will view λ(T, B, h) as an

element of T. Given h, there is an obvious choice for B, namely Int(h)B0. We will

write λ(T, h) for λ(T, Int(h)B0, h). Note that in this notation, T is clearly redundant,

because it equals Int(h)T0. However, we keep it so that the notation is close to that in

[5]. We would like to alert the reader to one potential confusion: while the cohomol-

ogy class of λ(T, B, h) is independent of the choice of h, that of λ(T, h) is not, because

in the latter h influences not only the identification of T0 with T, but also the choice

of B-a-data for T.

3.1 The Splitting Invariant for Tα

Recall from Section 1.3 that for each α ∈ R(T0, B0) there is a canonical maximal

torus Tα and a pair of isomorphisms Tsα
0 → Tα. To fix one of the two, fix µ ∈ Ω such

that µ−1α ∈ ∆. Then Int(gµ,α) is one of the two isomorphisms Tsα
0 → Tα. The goal
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of this section is to compute λ(Tα, B, gµ,α) for a given Borel B ⊃ Tα, and in particular

λ(Tα, gµ,α). We will give a formula for the latter in purely root-theoretic terms.

Lemma 3.1 With g := gµ,α we have

λ(Tα, B, g) = Int(g)
(
α∨(i · aα◦Int(g−1)) · sα(σ(δ))δ−1

)
,

where

δ =

∏

β>0

µ−1β<0

β∨(aβ◦Int(g−1))
−1,

and σ denotes complex conjugation on T0.

Proof Put u = n(µ). We will first compute the cocycle λ(Tα, B, gu). The notation

will be as in [5, 2.3]. The pullback of the Γ-action on Tα to T0 via gu differs from σ
by

ωTα
(σ) := Int((gu)−1σ(gu)) = Int

(
n(µ)−1g−1σ(g)n(µ)

)
= µ−1sαµ

= sµ−1α.

Using that µ−1α is simple, we compute the three factors of Int(gu)−1λ(Tα, B, gu):

x(σ) =

∏

β>0
ωTα (σ)β<0

β∨(aβ◦Int(gu)−1 )

= (µ−1α)∨(aµ−1α◦Int(u−1g−1))

= Int(u−1)(α∨(aα◦Int(g−1)))

n(ωTα
(σ)) =

(
0 1

−1 0

)

Xµ−1α

= Int(u−1)

(
0 1

−1 0

)

Xµ|µ−1α

σ(gu)−1(gu) = Int(u−1)g2
= Int(u−1)

(
0 i

i 0

)

Xµ|µ−1α

Thus, λ(Tα, B, gu) = Int(gu) Int(u−1)(α∨(aα◦Int(g−1))α
∨(i)). From the proofs of [5,

2.3.A] and [5, 2.3.B] one sees that

λ(Tα, B, gu) = Int(g)(δσTα
(δ)−1) · λ(Tα, B, g),

where σTα
is the transport of the action of complex conjugation on Tα to T0 via

g. This action is sα ⋊ σ. Notice that the term λ−1σT(λ) appearing in the proof

of [5, 2.3.A] is trivial, since for us u = n(µ) and hence λ = 1. The claim now

follows.

Before we turn to the computation of sα(σ(δ))δ−1 we will need to take a closer

look at the following set.
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Definition 3.2 For α > 0 put R+
α = {β ∈ R | β > 0 ∧ sα(β) < 0}.

Lemma 3.3 Let α > 0 and µ ∈ Ω be such that µ−1α ∈ ∆. Then the sets

{β ∈ R | β > 0 ∧ sα(β) < 0 ∧ µ−1β < 0},

{β ∈ R | β > 0 ∧ sα(β) < 0 ∧ µ−1β > 0 ∧ β 6= α},

are disjoint and their union is R+
α − {α}. The map β 7→ −sα(β) is an involution on

R+
α − {α} which interchanges the above two sets.

Proof Every β in the first set satisfies β 6= α because µ−1α is positive. Hence the

first set lies in R+
α − {α} and clearly the second does also. The fact that the two are

disjoint and cover R+
α −{α} is obvious. Now to the bijection. Let β be an element in

the first set, and consider β̃ = −sα(β). We have

β 6= α ⇒ β̃ 6= α, sα(β) < 0 ⇒ β̃ > 0, β > 0 ⇒ sαβ̃ = −β < 0,

µ−1β < 0 ⇒ µ−1β̃ = µ−1sα(−β) = sµ−1α(−µ−1β) > 0,

where the last inequality holds because µ−1α is simple and

β > 0 ⇒ β 6= −α ⇒ −µ−1β 6= µ−1α

A similar observation appears in [6, §4.3].

Lemma 3.4 We have

sα(σ(δ))δ−1
=

∏

β∈R+
α

µ−1β<0

[
β∨(

aβ◦Int(g−1)

)
sαβ∨(

asαβ◦Int(g−1)

)−1
]
.

Proof According to the proof of [5, 2.3.B part (a)], the contributions to δsα(σ(δ))−1

are as follows:

D1 ={β | β > 0 ∧ µ−1β < 0 ∧ sαβ < 0} : β∨(aβ◦Int(g−1))
−1,

D2 ={β | β < 0 ∧ µ−1β < 0 ∧ µ−1sαβ < 0 ∧ sαβ > 0} : β∨(aβ◦Int(g−1)),

D3 ={β | β > 0 ∧ µ−1β < 0 ∧ sαβ > 0 ∧ µ−1sαβ > 0} : β∨(aβ◦Int(g−1))
−1,

D4 ={β | µ−1β > 0 ∧ sαβ > 0 ∧ µ−1sαβ < 0} : β∨(aβ◦Int(g−1)).

We will use µ−1sα(β) = sµ−1α(µ−1β) and the fact that µ−1α is simple to show that

the last two sets are empty. In set D3, the conditions µ−1β < 0 and µ−1sαβ > 0

imply µ−1β = −µ−1α, i.e., β = −α, which contradicts β > 0. In set D4, the

conditions µ−1β > 0 and µ−1sαβ < 0 imply β = α. Since α > 0, this contradicts

sαβ > 0.

Next we claim D2 = sα(D1). We have

µ−1β < 0 ∧ µ−1sαβ < 0 ⇔ µ−1β < 0 ∧ µ−1β 6= −µ−1α

from which we get

D2 = {−β| β > 0 ∧ sαβ < 0 ∧ µ−1β > 0 ∧ β 6= α}
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Now D2 = sα(D1) follows from Lemma 3.3.

From these considerations it follows that

δsα(σ(δ))−1
=

∏

β∈D1

β∨(aβ◦Int(g−1))
−1

∏

β∈D2

β∨(aβ◦Int(g−1))

=

∏

β∈D1

[β∨(aβ◦Int(g−1))
−1 sαβ∨(asαβ◦Int(g−1))].

Let us recall our notation: α ∈ R is any positive root, µ ∈ Ω is such that µ−1α ∈
∆, and g = gµ,α is the Cayley-transform corresponding to Xµ|µ−1α.

From Lemmas 3.1 and 3.4 we immediately get the following.

Corollary 3.5

λ(Tα, B, g) =

Int(g)
(

α∨(iaα◦Int(g−1)) ·
∏

β∈R+
α

µ−1β<0

[
β∨(

aβ◦Int(g−1)

)
sαβ∨(

asαβ◦Int(g−1)

)−1])
.

In the case B = Int(g)B0 this formula becomes simpler.

Corollary 3.6

λ(Tα, gµ,α) = Int(gµ,α)
(

α∨(−1) ·
∏

β∈R+
α

µ−1β<0

(β∨ · sαβ∨)(i)
)

.

Definition 3.7 Put

ρ(µ, α) := α∨(−1) ·
∏

β∈R+
α

µ−1β<0

(β∨ · sαβ∨)(i) ∈ T0.

By Corollary 3.6 and the work of [5, 2.3] we know that ρ(µ, α) ∈ Z1(Γ, Tsα
0 ) and

Int(gµ,α)ρ(µ, α) = λ(Tα, gµ,α).

Proposition 3.8

(i) ρ(µ, α) =
∏

β∈R+
α

β∨(i)n(sα)g2
µ,α.

(ii) sαρ(µ, α) = ρ(µ, α), σ(ρ(µ, α)) = ρ(µ, α)−1.

(iii) The image of ρ(µ, α) under the two canonical isomorphisms Tsα
0 → Tα is the

same.

(iv) If µ ′ ∈ Ω is another Weyl-element such that (µ′)−1α ∈ ∆, then

ρ(µ ′, α) = α∨(ǫ(µ ′, α, µ))ρ(µ, α).

In particular,

λ(Tα, gµ ′,α) = λ(Tα, gµ,α) · Int(gµ,α)[α∨(ǫ(µ ′, α, µ))].
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Proof The first point follows from Corollary 3.6, because the right-hand side is by

construction Int(gµ,α)λ(Tα, gµ,α). The second point is evident from the structure of

ρ. The third point is now clear because, as remarked in Section 1.3, the two canonical

isomorphisms differ by precomposition with sα.

For the last point, ρ(µ′, α) =
∏

β∈R+
α
β∨(i)n(sα)g2

µ ′,α. If ǫ(µ ′, α, µ) = +1, then

gµ ′,α = gµ,α and the statement is clear. Assume now that ǫ(µ ′, α, µ) = −1. Then

gµ ′,α = g−1
µ,α. We see

ρ(µ ′, α) =
∏

β∈R+
α

β∨(i)n(sα)g2
µ,αg−4

µ,α.

But g−4
µ,α = α∨(−1), hence the claim.

3.2 The Splitting Invariant for TA

Fact 3.9 Let A be an SOS in R. Consider the set of automorphisms of G given by
{

Int(g) | g =
∏

α∈A

gµα,α, µα ∈ Ω, µ−1
α α ∈ ∆

}
.

The image of T0 under any element of that set is the same; call it TA. Then any element

of that set induces an isomorphism of real tori TSA

0 → TA.

Proof Let Int(g1), Int(g2) be elements of the above set, with gi =
∏

α∈A gµi
α,α, and

let A ′ ⊂ A be the subset of those α such that gµ1
α,α 6= gµ2

α,α. For those α we then

have gµ1
α,α = g−1

µ2
α,α, hence Int(g1g−1

2 )|T0
=

∏
α∈A ′ g2

µ1
α,α|T0

= SA ′ which normalizes

T0. This shows that the images of T0 under these two automorphisms are the same.

Moreover, the transport of the Γ-action on TA to T0 via Int(g−1
1 ) differs from σ by

Int(σ(g−1
1 )g1)|T0

= Int(g2
1 )|T0

= SA.

Definition 3.10 For an SOS A ⊂ R, we will call the set
{

Int(g)|T0
| g =

∏
α∈A

gµα,α, µα ∈ Ω, µ−1
α α ∈ ∆

}

the canonical set of isomorphisms TSA

0 → TA. More generally, if A ′ ⊂ A, we will call

the set {
Int(g)|TA ′ | g =

∏
α∈A\A ′

gµα,α, µα ∈ Ω, µ−1
α α ∈ ∆

}

the canonical set of isomorphisms T
SA\A ′

A ′ → TA.

Fact 3.11 Any maximal torus T ⊂ G is G(R)-conjugate to one of the TA.

Proof Choose g ∈ G such that Int(g)T0 = T. The transport of the Γ-action on T

to T0 via Int(g−1) differs from σ by an element of Z1(Γ,Ω) = Hom(Γ,Ω) and this

element sends complex conjugation to an element of Ω of order 2. By [2, Chapter

VI.Ex §1(15)] there exists an SOS A such that this element equals SA. If Int(gA) is

one of the canonical isomorphisms TSA

0 → TA, then Int(gAg−1) : T → TA is an

isomorphism of real tori. By [8, Theorem. 2.1] there exists g ′ ∈ G(R) such that

Int(g ′)T = TA.
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If we conjugate A by Ω to an A ′, then the tori TA and TA ′ are also conjugate by

G(R). Thus we may fix representatives A1, . . . , Ak for the Ω-orbits of MSOS in R

and study the tori TA for A inside one of the Ai . We assume that the fixed splitting

(T0, B0, {Xα}) is compatible with the choice of representatives in the following sense:

• ##(R, >, Ai) holds for all Ai .
• If α, β ∈ Ai lie in the same G2-factor, then one of them is simple

This can always be arranged, as Lemmas 2.3, 2.5, Fact 2.6, and Proposition 2.7 show.

Notice that this condition does not reduce generality; it is only a condition on B0,

but all Borels containing T0 are conjugate under NT0
(R) and thus by [5, 2.3.1] the

splitting invariants are independent of the choice of B0.

Lemma 3.12 If A ′, A ′ ′ are disjoint subsets of some Ai , then

n(SA ′)n(SA ′ ′) = n(SA ′∪A ′ ′).

In particular, n(SA ′) and n(SA ′ ′) commute.

Proof This follows immediately from [5, Lemma 2.1.A], because by ## the set

{β ∈ R : β > 0 ∧ SA ′(β) < 0 ∧ SA ′SA ′ ′(β) > 0}

is empty.

Proposition 3.13 Let α, γ be distinct elements of one of the Ai , and µ ∈ Ω be such

that µ−1α ∈ ∆. Then ρ(µ, α) is fixed by sγ .

Proof We first show that

(3.1) sγρ(µ, α) = ρ(µ, α)α∨(ǫ(sγµ, α, µ)).

We have

sγ(ρ(µ, α)) = sγ

(
α∨(−1)

∏

β∈R+
α

µ−1β<0

β∨(i)sαβ∨(i)
)

.

Now sγ preserves α∨, commutes with sα, and, by Proposition 2.8, also preserves the

set R+
α. Hence the last expression equals

α∨(−1)
∏

β∈R+
α

µ−1β<0

sγβ
∨(i)sαsγβ

∨(i) = α∨(−1)
∏

sγβ∈R+
α

µ−1sγβ<0

β∨(i)sαβ∨(i)

= α∨(−1)
∏

β∈R+
α

µ−1sγβ<0

β∨(i)sαβ∨(i)

= ρ(sγµ, α)

= ρ(µ, α) · α∨(ǫ(sγµ, α, µ)),
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the last equality coming from Proposition 3.8. This establishes equation (3.1).

We want to show α∨(ǫ(sγµ, α, µ)) = 1. Choose ν ∈ Ω such that ν−1γ ∈ ∆. We

will derive and compare two expressions for

(3.2)
∏

β∈R+
{α,γ}

β∨(i)n(sαsγ)g2
µ,αg2

ν,γ .

By Corollary 2.9 we have
∏

β∈R+
{α,γ}

β∨(i) =
∏

β∈R+
α

β∨(i)
∏

β∈R+
γ

β∨(i).

By Proposition 2.8 sα is a permutation of the set R+
γ . Hence

n(sα)
∏

β∈R+
γ

β∨(i)n(sα)−1
=

∏
β∈R+

γ

β∨(i).

By Lemma 3.12, the elements n(sα) and n(sγ) of N(T0) commute. Moreover, by

Fact 1.1 the elements g2
µ,α and g2

ν,γ commute. Thus we get on the one hand

(3.2) =
∏

β∈R+
γ

β∨(i)n(sγ)
∏

β∈R+
α

β∨(i)n(sα)g2
µ,αg2

ν,γ

= ρ(ν, γ) Int(g−2
ν,γ )[ρ(µ, α)]

= ρ(ν, γ)ρ(µ, α)α∨(ǫ(sγµ, α, µ)),

where the last equality follows from (3.1). Analogously, we obtain on the other hand

(3.2) =
∏

β∈R+
α

β∨(i)n(sα)
∏

β∈R+
γ

β∨(i)n(sγ)g2
ν,γg2

µ,α

= ρ(µ, α) Int(g−2
µ,α)[ρ(ν, γ)]

= ρ(µ, α)ρ(ν, γ)γ∨(ǫ(sαν, γ, ν)).

We conclude that α∨(ǫ(sγµ, α, µ)) = γ∨(ǫ(sαν, γ, ν)). We claim that both sides

of this equality are trivial. Assume by way of contradiction that this is not the case.

Then we have

α∨(−1) = γ∨(−1) ⇔ 1 = (−1)(α∨−γ∨)
= (−1)α∨+γ∨ ∈ C

× ⊗ X∗(T0) = C
× ⊗ Q∨

⇔ α∨ + γ∨ ∈ 2Q∨,

where Q∨ is the coroot-lattice of T0, which coincides with X∗(T0) since G is simply-

connected. By Lemma 2.11 α, γ must lie in the same G2-factor of R. In this case

{α, γ} is an MSOS for that G2-factor and, by our assumption from the beginning

of this section, one of α, γ must be simple. Say, without loss of generality, that α is

simple. By Proposition 3.8

ρ(µ, α) = α∨(ǫ(µ, α, 1))ρ(1, α) = α∨(−ǫ(µ, α, 1)),

which is clearly fixed by sγ . Thus we see

1 = sγ(ρ(µ, α))ρ(µ, α)−1
= α∨(ǫ(sγµ, α, µ)) = γ∨(ǫ(sαν, γ, ν)).
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Corollary 3.14 Let A be a subset of some Ai , α ∈ A and µ ∈ Ω such that µ−1α ∈ ∆.

Then ρ(µ, α) ∈ Z1(Γ, TSA

0 ) and its image in TA under any canonical isomorphism

TSA

0 → TA is the same.

Proof By Propositions 3.8 and 3.13 ρ = ρ(µ, α) is fixed by sγ for any γ ∈ A. The

first statement now follows from ρSAσ(ρ) = ρσ(ρ) = 1 showing ρ ∈ Z1(Γ, TSA

0 ).

The second holds because any two canonical isomorphisms TSA

0 → TA differ by pre-

composition with SA ′ for some A ′ ⊂ A.

Corollary 3.15 Let A be a subset of some Ai . Choose, for each α ∈ A, µα ∈ Ω such

that µ−1
α α ∈ ∆. Put ρ({µα}α∈A, A) =

∏
α∈A ρ(µα, α). Then

(i) ρ({µα}α∈A, A) is fixed by sγ for all γ ∈ A (even all γ ∈ Ai).

(ii) The image of ρ({µα}α∈A, A) under any of the canonical isomorphisms TSA

0 → TA

is the same.

Proof Clear by the preceding Corollary.

Proposition 3.16 Let A be a subset of some Ai . For each α ∈ A choose µα ∈ Ω such

that µ−1
α α ∈ ∆ and put gA =

∏
α∈A gµα,α. Then λ(TA, gA) is the common image of

ρ({µα}α∈A, A) under the canonical isomorphisms TSA

0 → TA. In particular,

λ(TA, gA) =
∏

α∈A

Int(gA−{α})λ(Tα, gµα,α)

is a decomposition of λ(TA, gA) as a product of elements of Z1(Γ, TA).

Proof The factors of the cocycle Int(g−1
A )λ(TA, gA) ∈ Z1(Γ, TSA

0 ) associated with

these choices are as follows:

x(σT) =
∏

β∈R+
A

β∨(i) =
∏

α∈A

∏
β∈R+

α

β∨(i),

where the second equality is due to Corollary 2.9,

n(ωT(σ)) = n(SA) =
∏

α∈A

n(sα),

where the second equality is due to Lemma 3.12, and

σ(gA)−1gA =
∏

α∈A

σ(gα)−1gα =
∏

α∈A

g2
α.

Their product, which equals Int(g−1
A )λ(TA, gA), is thus

x(σT)n(ωT(σ))σ(gA)−1gA =
∏

α∈A

∏
β∈R+

α

β∨(i)
∏

α∈A

n(sα)
∏

α∈A

g2
α.

Just as in the proof of Proposition 3.13 we can rewrite this product as

∏
α∈A

[ ∏
β∈R+

α

β∨(i)n(sα)
] ∏

α∈A

g2
α.
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Now we induct on the size of A, with |A| = 1 being clear. Choose α1 ∈ A. Then

∏
α∈A

[ ∏
β∈R+

α

β∨(i)n(sα)
] ∏

α∈A

g2
α

=
∏

α∈A\{α1}

[ ∏
β∈R+

α

β∨(i)n(sα)
]{ ∏

β∈R+
α1

β∨(i)n(sα1
)g2

α1

} ∏
α∈A\{α1}

g2
α

=
∏

α∈A\{α1}

[ ∏
β∈R+

α

β∨(i)n(sα)
]
ρ(µα1

, α1)
∏

α∈A\{α1}
g2
α

=
∏

α∈A\{α1}

[ ∏
β∈R+

α

β∨(i)n(sα)
] ∏

α∈A\{α1}
g2
α ·

( k∏
α∈A\{α1}

sα

)
(ρ(µα1

, α1))

=
∏

α∈A\{α1}
ρ(µα, α) · ρ(µα1

, α1),

where the last equality follows from Proposition 3.13 and the inductive hypothesis.

This shows that Int(gA)ρ({µα}α∈A, A) = λ(TA, gA) and the result follows.

4 Explicit Computations

In this section we are going to use the classification of MSOS given in [1] to explic-

itly compute λ(TA, gA) for the split simply-connected semi-simple groups associated

with the classical irreducible root systems. By Propositions 3.8 and 3.16 it is enough

to compute the cocycles ρ(µ, α) for each α ∈ Ai , and some µ ∈ Ω with µ−1α ∈ ∆,

where A1, . . . , Ak is a set of representatives for the Ω-classes of MSOS. We will use

the notation from [1], which is also the notation used in the Plates of [2, Chapter

VI]. There is only one cosmetic difference: in [2] the standard basis of Rk is denoted

by (ǫi), in [1] by (λi), and we are using (ei). The dual basis will be denoted by (e∗i ).

One checks easily in each case that the choices of positive roots given in the Plates of

[2, Chapter VI] and the MSOS given in [1] satisfy condition # of Section 2.

4.1 Case An

There is only one Ω-equivalence class of MSOS, and the representative given in [1] is

A1 = {e2i−1 − e2i | 1 ≤ i ≤ [(n + 1)/2]}. All elements of this MSOS are simple roots

and for each of them we can choose µ = 1. Then for any α ∈ A1 we have

ρ(1, α) = α∨(−1).

4.2 Case Bn

If n = 2k + 1, then there is a unique equivalence class of MSOS, represented by

A1 = {e2i−1 ± e2i | 1 ≤ i ≤ k} ∪ {en}.
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If n = 2k, then there are two equivalence classes of MSOS, represented by

A1 = {e2i−1 ± e2i | 1 ≤ i ≤ k − 1} ∪ {en},
A2 = {e2i−1 ± e2i | 1 ≤ i ≤ k}.

If α = e2i−1 − e2i or α = en, then α is simple; we can choose µ = 1 and have

ρ(1, α) = α∨(−1).

If α = e2i−1 + e2i , then we take µ = se2i
and have µ−1α = e2i−1 − e2i ∈ ∆. To

compute ρ(µ, α), we first observe

{β ∈ R | β > 0 ∧ µ−1β < 0 ∧ sαβ < 0} = {β ∈ R | β > 0 ∧ µ−1β < 0}
= {e2i} ∪ {e2i ± e j | 2i < j}.

Hence

∑

β∈R+
α

µ−1β<0

(β∨ + sαβ∨)

= 2e∗2i + sα(2e∗2i) +

n∑

j=2i+1

(e∗2i − e∗j + sα(e∗2i − e∗j ) + e∗2i + e∗j + sα(e∗2i + e∗j ))

= −2(e∗2i−1 − e∗2i) − 2(e∗2i−1 − e∗2i)(n − 2i)

= −2(n + 1 − 2i)(e∗2i−1 − e∗2i)

= −2(n + 1 − 2i)α∨.

We get

ρ(µ, α) = α∨(
(−1)n

)
.

4.3 Case Cn

The root system family Cn is the only family for which the number of equivalence

classes of MSOS grows when n grows. Representatives for the equivalence classes of

MSOS are given by

As = {e2i−1 − e2i | 1 ≤ i ≤ s} ∪ {2ei | 2s + 1 ≤ i ≤ n} 0 ≤ s ≤ [n/2].

If α = e2i−1 − e2i , then α is simple and ρ(1, α) = α∨(−1).

If α = 2ei and we take µ = sei−en
, we have µ−1α = 2en ∈ ∆. Again we first

observe

{β ∈ R | β > 0 ∧ µ−1β < 0 ∧ sαβ < 0} = {β ∈ R | β > 0 ∧ µ−1β < 0}
= {ei − e j | i < j}.
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Hence

∑

β∈R+
α

µ−1β<0

(β∨ + sαβ∨) =

n∑

j=i+1

(e∗i − e∗j ) + (−e∗i − e∗j ) = −2

n∑

j=i+1

e∗j .

We get

ρ(µ, α) =

n∏

j=i

e∗i (−1).

4.4 Case Dn

There is a unique equivalence class of MSOS represented by

A1 = {e2i−1 ± e2i | 1 ≤ i ≤ [n/2]}.

If α = e2i−1 − e2i or α = en−1 + en, then α is simple and ρ(1, α) = α∨(−1).

If α = e2i−1 + e2i with 2i 6= n, then we take µ = se2i−1−en−1
◦ se2i−en

and have

µ−1α = en−1 − en ∈ ∆. Then

{β ∈ R | β > 0 ∧ µ−1β < 0 ∧ sαβ < 0}

= {β ∈ R | β > 0 ∧ µ−1β < 0}
= {e2i−1 − e j | 2i < j} ∪ {e2i − e j | 2i < j}.

Hence

∑

β∈R+
α

µ−1β<0

(β∨ + sαβ∨) = −2

n∑

j=2i+1

2e∗j ∈
{

4Q∨, 2|n,

4Q∨ + 4e∗n , 2|n + 1.

Notice that 2e∗n ∈ Q∨, while e∗n /∈ Q∨. We get

ρ(µ, α) = α∨(−1) · 2e∗n
(

(−1)n
)
.

5 Comparison of Splitting Invariants

Now we would like to employ the results from the previous sections to compare split-

ting invariants of different tori. To describe our goal more precisely, let us recall

briefly a few notions from the theory of endoscopy. An endoscopic triple (H, s, η)

for G consists of a quasi-split real group H, an embedding η : Ĥ → Ĝ of the com-

plex dual group of H to that of G, and an element s ∈ Z(Ĥ)Γ. On this triple one

imposes the conditions that η identifies Ĥ with the connected centralizer of η(s) in Ĝ

and that the Ĝ-conjugacy class of η is fixed by Γ. This is part of the definition given

in [13, §5], and for our purposes we will not need the finer structure brought by the
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object H discussed there. The conditions on η imply that it induces (by duality) an

isomorphism η0 of complex tori from the most split maximal torus in H to the most

split maximal torus in G (the latter is in our case completely split). An isomorphism

from some maximal torus in H to some maximal torus in G is then called admissible

if it is of the form Ad(g) ◦ η0 ◦ Ad(h) for some g ∈ G, h ∈ H. If TH → T is such

an isomorphism defined over R, then we say that T originates from H, and, using its

dual isomorphism and the canonical embedding Z(Ĥ) → T̂H , we obtain from s an

element of T̂Γ, which by Tate–Nakayama-duality defines a character on H1(Γ, T).

Now we can state our goal. Given two maximal tori T1, T2 of G that originate

from H, we would like to compare the results of pairing the endoscopic datum s

against the splitting invariants for T1 and T2. In order for this to make sense, we need

to compare the groups in which these invariants live. To that end, we will show that

the endoscopic characters on H1(Γ, T1) and H1(Γ, T2) arising from s factor through

certain quotients of these groups and that those quotients can be related.

For a maximal torus T in G put

X∗(T)−1 = {λ ∈ X∗(T) | σT(λ) = −λ},
IX∗(T) = {λ − σT(λ) | λ ∈ X∗(T)},

where σT is the action of σ on T. Recall the Tate–Nakayama isomorphism

X∗(T)−1

IX∗(T)
= H−1

T (Γ, X∗(T)) → H1(Γ, T),

given by taking cup-product with the canonical class in H2(Γ, C×). Via this isomor-

phism, the canonical pairing T̂ × X∗(T) → C× induces a pairing

T̂ × H1(Γ, T) → C
×.

The splitting invariant enters into the construction of the Langlands–Shelstad trans-

fer factors via this pairing.

Lemma 5.1 Let A ′ ⊂ A be SOS in R. Then each element in the canonical set of

isomorphisms T
SA\A ′

A ′ → TA (Definition 3.10) induces the same embedding

iA ′,A : X∗(TA ′)−1 →֒ X∗(TA)−1.

Proof For an element ω ∈ Ω put X∗(T0)ω=−1 = {λ ∈ X∗(T0) | ω(λ) = −λ}.

For any SOS B, X∗(T0)SB=−1 = span
Q

(B) ∩ X∗(T0) and any canonical isomorphism

TSB

0 → TB identifies X∗(T0)SB=−1 with X∗(TB)−1 (this identification will of course

depend on the chosen isomorphism).

Fix one canonical isomorphism T
SA\A ′

A ′ → TA. It is the composition of canonical

isomorphisms

T
SA\A ′

A ′

ϕ−1

−→ TSA

0

ψ→ TA
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and hence induces an inclusion as claimed, because X∗(T0)SA ′=−1 ⊂ X∗(T0)SA=−1.

Moreover, any other canonical isomorphism T
SA\A ′

A ′ → TA is given by

T
SA\A ′

A ′

ϕ−1

−→ TSA

0

SA ′ ′

−→ TSA

0

ψ→ TA

for A ′ ′ ⊂ A \ A ′ and clearly SA ′ ′ acts trivially on X∗(T0)SA ′=−1.

The embedding iA ′,A induces an embedding

īA ′,A :
X∗(TA ′)−1

IX∗(TA ′) + i−1
A ′,A(IX∗(TA))

→֒ X∗(TA)−1

iA ′,A(IX∗(TA ′)) + IX∗(TA)
,

and via the Tate–Nakayama isomorphism these quotients correspond to quotients

of H1(Γ, TA ′) and H1(Γ, TA), respectively. We will argue that if the tori TA ′ and TA

originate in an endoscopic group H, then the endoscopic character factors through

these quotients. This provides a means of comparing the values of the endoscopic

character on the cohomology of both tori.

Proposition 5.2 Let (H, s, η) be an endoscopic triple for G and assume that TA ′ and

TA (A ′ ⊂ A) originate from H, that is, there exist tori T1, T2 ⊂ H and admissible

isomorphisms T1 → TA ′ and T2 → TA. Write sTA ′ ∈ T̂A ′ and sTA
∈ T̂A for the

images of s under the duals of these isomorphisms. Assume that there exists a canonical

isomorphism j : T
SA\A ′

A ′ → TA such that ĵ(sTA
) = sTA ′ (this can always be arranged).

Then the characters sTA ′ and sTA
on H1(Γ, TA ′), resp. H1(Γ, TA), factor through the

above quotients, and the pull-back of the character sTA
via īA ′,A equals sTA ′ .

Proof We identify H1(Γ,−) with H−1
T (Γ, X∗(−)) via the Tate–Nakayama isomor-

phism. Because the element sTA
∈ X∗(TA) ⊗ C× is Γ-invariant, its action on X∗(TA)

annihilates the submodule IX∗(TA). Thus, the action of j∗(sTA
) ∈ X∗(TA ′) ⊗ C×

on X∗(TA ′) annihilates the submodule j−1
∗ (IX∗(TA)). But we have arranged things

so that j∗(sTA
) = sTA ′ and we see that the action of sTA ′ on X∗(TA ′) via the standard

pairing annihilates the submodule IX∗(TA ′) + j−1
∗ (IX∗(TA)). By the same argument,

the action of sTA
on X∗(TA) annihilates the submodule IX∗(TA) + j∗(IX∗(TA ′)). Fi-

nally notice that by Lemma 5.1 the restriction of j∗ to X∗(TA ′)−1 coincides with

iA ′,A.
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