A RESULT CONCERNING ADDITIVE MAPS
ON THE SET OF QUATERNIONS AND AN APPLICATION

DAMJAN KOBAL AND PETER ŠEMRL

We determine all additive $F, G : H \to R$ and multiplicative $M : H \to R$ satisfying the functional equation $F(x) + M(x)G(x^{-1}) = 0$. As an application we generalise Kurepa's solution of one of Halperin's problem concerning quadratic functionals.

The functional equation (FE) $F(x) + M(x)G(x^{-1}) = 0$, for additive $F, G,$ and multiplicative M, and its special cases have been studied by many authors. Kurepa [5] came across the functional equation (FE) with $M(x) = x^2$ on the reals R. Through this equation he obtained the general form of functionals Q on R-vector spaces satisfying the parallelogram law and the homogeneity $Q(\lambda x) = \lambda^2 Q(x)$, thus answering a question raised by I. Halperin in 1963 in Paris. With this result over R he further solved [6] the problem on vector spaces over the field of complex numbers C or the skew field of quaternions H under the homogeneity $Q(\lambda x) = \lambda^2 Q(x)$. P. Vrbová [10] managed to solve (FE) with $F = G$ and $M(x) = |x|^2$ on C and gave a shorter proof of the result of S. Kurepa on complex spaces. These and further results of many other authors were unified and generalised in the work of Ng [9]. He determined the general solution of (FE) on a commutative field k of characteristic $\neq 2$ in order to generalise the results of various authors concerning the Halperin problem on quadratic functionals. The other motivation for the study of (FE) is its application in information theory [8]. The problem of characterising multiplicative-type recursive measures of information in n dimensions [3] leads to (FE) with $G = F$ and $M, F : \mathbb{R}^n \to \mathbb{R}$ [1]. Working in this area Ebanks [2] extended the result of Ng [9] by solving the (FE) for additive $F, G : k^n \to k$ and multiplicative $M : k^n \to k$, where k is a commutative field of characteristic $\neq 2$. Some functional equations closely related to (FE) have been treated by Vukman on Banach algebras [11].

One can obtain further generalisations of results of Ng and Ebanks by studying all triples $F, G, M : R \to k$ of additive F, G and multiplicative M satisfying (FE) on the subset of all invertible elements $R^* \subset R$, where k is a commutative field with

Received 13 December 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 $A2.00+0.00.
characteristic 0 and R is a commutative ring with identity and regularity property. The regularity property is defined similarly as in [7]: A ring R with identity has regularity property if for any $x \in R$ there exists a positive integer n_x such that for any $m \in \mathbb{N}$, $m \geq n_x$, the element $(m + x)$ is invertible. For example, all Banach algebras with identity have this property. The regularity property implies that there are a lot of invertible elements in R. This seems to be a reason that the general form of $F, G,$ and $M | R^*$ in this more general setting can be described in almost the same way as in the special case treated by Ng [9]. We shall omit the details since the basic ideas are exactly the same as those of Ng.

In our note we shall determine all additive $F, G : \mathbb{H} \rightarrow \mathbb{R}$ and multiplicative $M : \mathbb{H} \rightarrow \mathbb{R}$ satisfying (FE). This result shows us that the solution of (FE) in a noncommutative case can be essentially different from that in the commutative case.

We shall apply this result in the theory of quadratic functionals. Let X be a quaternionic vector space. Let us recall that a mapping $Q : X \rightarrow \mathbb{R}$ is called a quadratic functional if it satisfies the parallelogram law

\[(i)\] $Q(x + y) + Q(x - y) = 2Q(x) + 2Q(y)$

and the homogeneity

\[(ii)\] $Q(\lambda x) = |\lambda|^2 Q(x)$.

A mapping $B : X \times \mathbb{H} \rightarrow \mathbb{H}$ is called a sesquilinear functional if

\[(iii)\] $B(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 B(x_1, y) + \lambda_2 B(x_2, y),$
\[(iv)\] $B(x, \mu_1 y_1 + \mu_2 y_2) = B(x, y_1)\bar{\mu_1} + B(x, y_2)\bar{\mu_2},$

where $\bar{\mu}$ denotes the conjugate of μ. One of the questions posed by I. Halperin can be formulated as follows: Does a quadratic functional Q possess the property that

$$B(x, y) = m(x, y) + im(x, iy) + jm(x, jy) + km(x, ky)$$

where $m(x, y) = (1/4)(Q(x + y) - Q(x - y))$

is a sesquilinear functional. It has been proved by Kurepa [6] that the answer to this problem is in the affirmative. We shall generalise this result by allowing a very general notion of homogeneity on Q. More precisely, we shall replace (ii) by a weaker assumption that Q is functionally homogeneous, that is, for some scalar function $M : \mathbb{H} \rightarrow \mathbb{R}$ the relation $Q(\lambda x) = M(\lambda)Q(x)$ holds for all $\lambda \in \mathbb{H}$ and all $x \in X$.

Let us recall that a derivation D on the reals is an additive mapping satisfying $D(ts) = sD(t) + tD(s)$. For an arbitrary quaternion $\lambda = t_1 + t_2 i + t_3 j + t_4 k$, the notations $\bar{\lambda}$ and $|\lambda|$ are used for usual conjugation and norm on \mathbb{H}. We denote the set of all nonzero quaternions by \mathbb{H}^*.

THEOREM 1. Let additive $F, G : \mathbb{H} \rightarrow \mathbb{R}$ and multiplicative $M : \mathbb{H} \rightarrow \mathbb{R}$ be nonzero maps satisfying the equation $F(\lambda) + M(\lambda)G(\lambda^{-1}) = 0$ on \mathbb{H}^*. Then they are of the form:

\begin{align*}
F(t_1 + t_2 i + t_3 j + t_4 k) &= b_1 t_1 + b_2 t_2 + b_3 t_3 + b_4 t_4, \\
G(t_1 + t_2 i + t_3 j + t_4 k) &= -b_1 t_1 + b_2 t_2 + b_3 t_3 + b_4 t_4,
\end{align*}

and

$M(\lambda) = |\lambda|^2$,

where b_1, b_2, b_3, b_4 are real constants satisfying $(b_1, b_2, b_3, b_4) \neq (0, 0, 0, 0)$. The converse is also true.

PROOF: Comparing the equations

$F(\lambda) + M(\lambda)G(\lambda^{-1}) = 0$ and $F(-\lambda) + M(-\lambda)G(-\lambda^{-1}) = 0$

we obtain $G(\lambda^{-1})(M(\lambda) - M(-\lambda)) = 0$. As G is nonzero we have necessarily $M(\mu) = M(-\mu)$ for at least one $\mu \in \mathbb{H}^*$. Using the multiplicativity of M we get

$M(\lambda) = M(\mu)M(\mu^{-1}\lambda) = M(-\mu)M(\mu^{-1}\lambda) = M(-\lambda)$

for any $\lambda \in \mathbb{H}$. For every $\lambda \in \mathbb{H}$ we can find a quaternion μ such that $\lambda = \mu^2$. Thus, we have $M(\lambda) = M(\mu^2) \geq 0$ for any $\lambda \in \mathbb{H}$.

Since F and G are additive they can be written as

\begin{align*}
F(t_1 + t_2 i + t_3 j + t_4 k) &= \sum_{i=1}^{4} f_i(t_i), \\
G(t_1 + t_2 i + t_3 j + t_4 k) &= \sum_{i=1}^{4} g_i(t_i),
\end{align*}

where $f_i, g_i : \mathbb{R} \rightarrow \mathbb{R}$ are additive functions. Substituting t, t_i, t_j, and t_k in (FE) we get

$f_i(t) + s_i M(t) g_i(t^{-1}) = 0, \quad t \in \mathbb{R}^*$,

where $s_1 = 1$, $s_2 = -M(i)$, $s_3 = -M(j)$, and $s_4 = -M(k)$. The restriction $M|_{\mathbb{R}}$ is not identically zero since otherwise all f_i would be zero functions which would contradict the fact that F is nonzero. The multiplicativity of M implies now that $M(t)$ is a nonzero real number for every nonzero real t. Moreover, we have $M(1) = M(-1) = M(i) = M(j) = M(k) = 1$. It follows that for every i, $i = 1, 2, 3, 4$, additive functions f_i and $s_i g_i$ are either both nonzero or both identically equal to zero. We may now
apply [9, Corollary 4.2] in order to derive from \(f_i(t) + s_i M(t) g_i(t^{-1}) = 0 \) that \(f_i, g_i \), and the restriction of \(M \) to the field of reals are either of the form

\[
f_i(t) = D_i(t) + b_i t, \quad g_i(t) = u_i(D_i(t) - b_i t), \quad M(t) = t^2,
\]

where \(D_i, i = 1, 2, 3, 4 \), are derivations on the field of real numbers, \(b_i, i = 1, 2, 3, 4 \), are real constants, and \(u_1 = 1 \), while \(u_2 = u_3 = u_4 = -1 \); or

\[
f_i(t) = \text{Im}(a_i \phi(t)) + \text{Re}(b_i \phi(t)), \quad g_i(t) = u_i(\text{Im}(a_i \phi(t)) - \text{Re}(b_i \phi(t))), \quad M(t) = |\phi(t)|^2,
\]

where \(\phi : \mathbb{R} \rightarrow \mathbb{C} \) is a nontrivial embedding, \(a_i, b_i, i = 1, 2, 3, 4 \), are real constants, \(u_1 = 1 \), \(u_2 = u_3 = u_4 = -1 \), and \(\text{Im} \phi, \text{Re} \phi \) denote respectively the imaginary part of \(\phi \), the real part of \(\phi \).

Let us first consider the case that \(M(t) = t^2 \) holds for all real numbers \(t \). Let \(\lambda \) be a strictly imaginary quaternion, that is \(\lambda = -\overline{\lambda} \). For such \(\lambda \) we have

\[
|\lambda|^4 = M(|\lambda|^2) = M(\lambda \overline{\lambda}) = M(\lambda)M(-\lambda) = (M(\lambda))^2,
\]

and consequently, \(M(\lambda) = |\lambda|^2 \). For an arbitrary \(\lambda \in \mathbb{H} \) one can always find strictly imaginary quaternions \(\lambda_1 \) and \(\lambda_2 \) such that \(\lambda = \lambda_1 \lambda_2 \). It follows that we have \(M(\lambda) = |\lambda|^2 \) for all \(\lambda \in \mathbb{H} \). We can easily derive from (FE) that for an arbitrary quaternion \(\lambda = t_1 + t_2 i + t_3 j + t_4 k \) with \(|\lambda| = 1 \) the relation

\[
D_1(t_1) + D_2(t_2) + D_3(t_3) + D_4(t_4) = 0
\]

is valid. It follows also that \(D_1(t_1) + D_2(-t_2) + D_3(-t_3) + D_4(-t_4) = 0 \), and consequently, \(D_1(t) = 0 \) for all \(t, 0 \leq t \leq 1 \). From additivity of \(D_1 \) we get that \(D_1 \) is identically equal to zero. Clearly, the same must be true for \(D_i, i = 2, 3, 4 \). One can now easily verify that

\[
F(t_1 + t_2 i + t_3 j + t_4 k) = \sum_{i=1}^{4} b_i t_i,
\]

\[
G(t_1 + t_2 i + t_3 j + t_4 k) = -b_1 t_1 + \sum_{i=2}^{4} b_i t_i,
\]

and

\[
M(\lambda) = |\lambda|^2
\]

satisfy the (FE).

In the case that we have \(M(t) = |\phi(t)|^2 \) for all real numbers we get, in the same way as above, that \(M(\lambda) = |\phi(|\lambda|)|^2 \) holds for all quaternions \(\lambda \). The same method as in the first case gives us

\[
\text{Im}(a_1 \phi(t_1) + \ldots + a_4 \phi(t_4)) = 0,
\]
Additive maps on the set of quaternions

and \(a_1 \text{Im} \phi = \ldots = a_4 \text{Im} \phi = 0 \). Since \(\text{Im} \phi \) cannot be identically zero, we have \(a_1 = \ldots = a_4 = 0 \). Substituting quaternions \(\lambda = 1 + t_3 i + t_4 j + t_4 k \) and \(\bar{\lambda} \) in (FE), and comparing the results so obtained, we get

\[
b_1 \left(1 - \left| \phi(\lambda)^2 \right| \text{Re} \phi \left| \lambda^{-2} \right| \right) = 0.
\]

As \(\phi \) is a nontrivial ring morphism, this implies \(b_1 = 0 \). Similarly, one can verify that \(b_2 = b_3 = b_4 = 0 \). This completes the proof. \(\square \)

The following theorem is an extension of Kurepa’s solution of Halperin’s problem concerning quadratic forms on quaternionic vector space [6, Theorem 2].

Theorem 2. Let \(X \) be a vector space over the skew field of quaternions \(\mathbb{H} \), \(M \) a real function on \(\mathbb{H} \), and \(Q \) a nonzero real functional on \(X \) satisfying the parallelogram law and the homogeneity \(Q(\lambda x) = M(\lambda)Q(x) \). Then \(M(\lambda) = |\lambda|^2 \), the functional \(B : X \times X \rightarrow \mathbb{H} \) given by

\[
B(x,y) = m(x,y) + im(x,iy) + jm(x,jy) + km(x,ky),
\]

where

\[
m(x,y) = (1/4)(Q(x + y) - Q(x - y))
\]

is a sequilinear functional, and

\[
B(x,x) = Q(x)
\]

holds for all \(x \in X \).

Proof: It is well known that the functional \(m(x,y) \) is biadditive [5, Lemma 1]. Obviously, we have \(m(\lambda x, \lambda y) = M(\lambda)m(x,y) \). Assume that \(m(x,y) = 0 \) for all \(x,y \in X \). Then we have \(Q(x + y) = Q(x - y) \). Putting \(x = y = z/2 \) in this equation we get \(Q(z) = 0 \) for all \(z \in X \) which is a contradiction with our assumption that \(Q \) is nonzero. Fix now \(x_0, y_0 \in X \) such that \(m(x_0, y_0) \neq 0 \). Comparing relations

\[
m(\lambda \mu x_0, \lambda \mu y_0) = M(\lambda \mu)m(x_0, y_0)
\]

and

\[
m(\lambda \mu x_0, \lambda \mu y_0) = M(\lambda)m(\mu x_0, \mu y_0) = M(\lambda)M(\mu)m(x_0, y_0)
\]

we see that \(M \) is multiplicative. For any nonzero \(\lambda \in \mathbb{H} \) we have

\[
m(\lambda x_0, y_0) - M(\lambda)m(x_0, \lambda^{-1} y_0) = 0.
\]

Consequently, mappings \(M : \mathbb{H} \rightarrow \mathbb{R} \) and \(F,G : \mathbb{H} \rightarrow \mathbb{R} \) given by

\[
F(\lambda) = m(\lambda x_0, y_0), \quad G(\lambda) = -m(x_0, \lambda y_0),
\]

satisfy the (FE). Obviously, mappings \(F \) and \(G \) are additive and nonzero. According to Theorem 1 the mapping \(M \) is of the form \(M(\lambda) = |\lambda|^2 \). Using [6, Theorem 2] one can complete the proof. \(\square \)
REFERENCES

Department of Mathematics
University of Ljubljana
Jadranska 19
61000 Ljubljana
Yugoslavia

D. Kobal and P. Šemrl