A RESULT CONCERNING ADDITIVE MAPS ON THE SET OF QUATERNIONS AND AN APPLICATION

Damjan Kobal and Peter Šemrl

Abstract

We determine all additive $F, G: \mathbf{H} \longrightarrow \mathbf{R}$ and multiplicative $M: \mathbf{H} \longrightarrow \mathbb{R}$ satisfying the functional equation $F(\lambda)+M(\lambda) G\left(\lambda^{-1}\right)=0$. As an application we generalise Kurepa's solution of one of Halperin's problem concerning quadratic functionals.

The functional equation (FE) $F(x)+M(x) G\left(x^{-1}\right)=0$, for additive F, G, and multiplicative M, and its special cases have been studied by many authors. Kurepa [5] came across the functional equation (FE) with $M(x)=x^{2}$ on the reals \mathbb{R}. Through this equation he obtained the general form of functionals Q on \mathbb{R}-vector spaces satisfying the parallelogram law and the homogeneity $Q(\lambda x)=\lambda^{2} Q(x)$, thus answering a question raised by I. Halperin in 1963 in Paris. With this result over \mathbb{R} he further solved [6] the problem on vector spaces over the field of complex numbers \mathbb{C} or the skew field of quaternions \mathbb{H} under the homogeneity $Q(\lambda x)=|\lambda|^{2} Q(x)$. P. Vrbová [10] managed to solve (FE) with $F=G$ and $M(x)=|x|^{2}$ on \mathbb{C} and gave a shorter proof of the result of S. Kurepa on complex spaces. These and further results of many other authors were unified and generalised in the work of $\mathrm{Ng}[9]$. He determined the general solution of (FE) on a commutative field k of characteristic $\neq 2$ in order to generalise the results of various authors concerning the Halperin problem on quadratic functionals. The other motivation for the study of (FE) is its application in information theory [8]. The problem of characterising multiplicative-type recursive measures of information in n dimensions [3] leads to (FE) with $G=F$ and $M, F: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ [1]. Working in this area Ebanks [2] extended the result of Ng [9] by solving the (FE) for additive $F, G: k^{n} \longrightarrow k$ and multiplicative $M: k^{n} \longrightarrow k$, where k is a commutative field of characteristic $\neq 2$. Some functional equations closely related to (FE) have been treated by Vukman on Banach algebras [11].

One can obtain further generalisations of results of Ng and Ebanks by studying all triples $F, G, M: R \longrightarrow k$ of additive F, G and multiplicative M satisfying (FE) on the subset of all invertible elements $R^{*} \subset R$, where k is a commutative field with

[^0]characteristic 0 and R is a commutative ring with identity and regularity property. The regularity property is defined similarly as in [7]: A ring R with identity has regularity property if for any $x \in R$ there exists a positive integer n_{x} such that for any $m \in \mathbb{N}$, $m \geqslant n_{x}$, the element $(m+x)$ is invertible. For example, all Banach algebras with identity have this property. The regularity property implies that there are a lot of invertible elements in R. This seems to be a reason that the general form of F, G, and $M_{\mid R^{*}}$ in this more general setting can be described in almost the same way as in the special case treated by Ng [9]. We shall omit the details since the basic ideas are exactly the same as those of Ng .

In our note we shall determine all additive $F, G: \mathbb{H} \longrightarrow \mathbb{R}$ and multiplicative $M: \mathbb{H} \longrightarrow \mathbb{R}$ satisfying (FE). This result shows us that the solution of (FE) in a noncommutative case can be essentially different from that in the commutative case.

We shall apply this result in the theory of quadratic functionals. Let X be a quaternionic vector space. Let us recall that a mapping $Q: X \longrightarrow \mathbb{R}$ is called a quadratic functional if it satisfies the parallelogram law

$$
\begin{equation*}
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y) \tag{i}
\end{equation*}
$$

and the homogeneity

$$
\begin{equation*}
Q(\lambda x)=|\lambda|^{2} Q(x) \tag{ii}
\end{equation*}
$$

A mapping $B: X \times X \longrightarrow \mathbb{H}$ is called a sesquilinear functional if

$$
\begin{equation*}
B\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}, y\right)=\lambda_{1} B\left(x_{1}, y\right)+\lambda_{2} B\left(x_{2}, y\right) \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
B\left(x, \mu_{1} y_{1}+\mu_{2} y_{2}\right)=B\left(x, y_{1}\right) \overline{\mu_{1}}+B\left(x, y_{2}\right) \overline{\mu_{2}} \tag{iv}
\end{equation*}
$$

where $\bar{\mu}$ denotes the conjugate of μ. One of the questions posed by I. Halperin can be formulated as follows: Does a quadratic functional Q possess the property that
where

$$
\begin{aligned}
& B(x, y)=m(x, y)+i m(x, i y)+j m(x, j y)+k m(x, k y) \\
& m(x, y)=(1 / 4)(Q(x+y)-Q(x-y))
\end{aligned}
$$

is a sesquilinear functional. It has been proved by Kurepa [6] that the answer to this problem is in the affirmative. We shall generalise this result by allowing a very general notion of homogeneity on Q. More precisely, we shall replace (ii) by a weaker assumption that Q is functionally homogeneous, that is, for some scalar function M : $\mathbb{H} \longrightarrow \mathbb{R}$ the relation $Q(\lambda x)=M(\lambda) Q(x)$ holds for all $\lambda \in \mathbb{H}$ and all $x \in X$.

Let us recall that a derivation D on the reals is an additive mapping satisfying $D(t s)=s D(t)+t D(s)$. For an arbitrary quaternion $\lambda=t_{1}+t_{2} i+t_{3} j+t_{4} k$, the notations $\bar{\lambda}$ and $|\lambda|$ are used for usual conjugation and norm on \mathbb{H}. We denote the set of all nonzero quaternions by \mathbb{H}^{*}.

Theorem 1. Let additive $F, G: \mathbb{H} \longrightarrow \mathbb{R}$ and multiplicative $M: \mathbb{H} \longrightarrow \mathbb{R}$ be nonzero maps satisfying the equation $F(\lambda)+M(\lambda) G\left(\lambda^{-1}\right)=0$ on \mathbf{H}^{*}. Then they are of the form:

$$
\begin{aligned}
F\left(t_{1}+t_{2} i+t_{3} j+t_{4} k\right) & =b_{1} t_{1}+b_{2} t_{2}+b_{3} t_{3}+b_{4} t_{4}, \\
G\left(t_{1}+t_{2} i+t_{3} j+t_{4} k\right) & =-b_{1} t_{1}+b_{2} t_{2}+b_{3} t_{3}+b_{4} t_{4}, \\
M(\lambda) & =|\lambda|^{2},
\end{aligned}
$$

and
where $b_{1}, b_{2}, b_{3}, b_{4}$ are real constants satisfying $\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \neq(0,0,0,0)$. The converse is also true.

Proof: Comparing the equations

$$
F(\lambda)+M(\lambda) G\left(\lambda^{-1}\right)=0 \text { and } F(-\lambda)+M(-\lambda) G\left(-\lambda^{-1}\right)=0
$$

we obtain $G\left(\lambda^{-1}\right)(M(\lambda)-M(-\lambda))=0$. As G is nonzero we have necessarily $M(\mu)=$ $M(-\mu)$ for at least one $\mu \in \mathbb{H}^{*}$. Using the multiplicativity of M we get

$$
M(\lambda)=M(\mu) M\left(\mu^{-1} \lambda\right)=M(-\mu) M\left(\mu^{-1} \lambda\right)=M(-\lambda)
$$

for any $\lambda \in \mathbb{H}$. For every $\lambda \in \mathbb{H}$ we can find a quaternion μ such that $\lambda=\mu^{2}$. Thus, we have $M(\lambda)=M\left(\mu^{2}\right) \geqslant 0$ for any $\lambda \in \mathbb{H}$.

Since F and G are additive they can be written as

$$
\begin{aligned}
& F\left(t_{1}+t_{2} i+t_{3} j+t_{4} k\right)=\sum_{i=1}^{4} f_{i}\left(t_{i}\right), \\
& G\left(t_{1}+t_{2} i+t_{3} j+t_{4} k\right)=\sum_{i=1}^{4} g_{i}\left(t_{i}\right),
\end{aligned}
$$

where $f_{i}, g_{i}: \mathbb{R} \longrightarrow \mathbb{R}$ are additive functions. Substituting $t, t i, t j$, and $t k$ in (FE) we get

$$
f_{i}(t)+s_{i} M(t) g_{i}\left(t^{-1}\right)=0, \quad t \in \mathbb{R}^{*}
$$

where $s_{1}=1, s_{2}=-M(i), s_{3}=-M(j)$, and $s_{4}=-M(k)$. The restriction $M_{\mid \mathbb{R}}$ is not identically zero since otherwise all f_{i} would be zero functions which would contradict the fact that F is nonzero. The multiplicativity of M implies now that $M(t)$ is a nonzero real number for every nonzero real t. Moreover, we have $M(1)=M(-1)=$ $M(i)=M(j)=M(k)=1$. It follows that for every $i, i=1,2,3,4$, additive functions f_{i} and $s_{i} g_{i}$ are either both nonzero or both identically equal to zero. We may now
apply [9, Corollary 4.2] in order to derive from $f_{i}(t)+s_{i} M(t) g_{i}\left(t^{-1}\right)=0$ that f_{i}, g_{i}, and the restriction of M to the field of reals are either of the form

$$
f_{i}(t)=D_{i}(t)+b_{i} t, g_{i}(t)=u_{i}\left(D_{i}(t)-b_{i} t\right), \quad M(t)=t^{2},
$$

where $D_{i}, i=1,2,3,4$, are derivations on the field of real numbers, $b_{i}, i=1,2,3,4$, are real constants, and $u_{1}=1$, while $u_{2}=u_{3}=u_{4}=-1$; or
$f_{i}(t)=\operatorname{Im}\left(a_{i} \phi(t)\right)+\operatorname{Re}\left(b_{i} \phi(t)\right), g_{i}(t)=u_{i}\left(\operatorname{Im}\left(a_{1} \phi(t)\right)-\operatorname{Re}\left(b_{1} \phi(t)\right)\right), M(t)=|\phi(t)|^{2}$, where $\phi: \mathbb{R} \longrightarrow \mathbb{C}$ is a nontrivial embedding, $a_{i}, b_{i}, i=1,2,3,4$, are real constants, $u_{1}=1, u_{2}=u_{3}=u_{4}=-1$, and $\operatorname{Im} \phi, \operatorname{Re} \phi$, denote respectively the imaginary part of ϕ, the real part of ϕ.

Let us first consider the case that $M(t)=t^{2}$ holds for all real numbers t. Let λ be a strictly imaginary quaternion, that is $\lambda=-\bar{\lambda}$. For such λ we have

$$
|\lambda|^{4}=M\left(|\lambda|^{2}\right)=M(\lambda \bar{\lambda})=M(\lambda) M(-\lambda)=(M(\lambda))^{2},
$$

and consequently, $M(\lambda)=|\lambda|^{2}$. For an arbitrary $\lambda \in \mathbb{H}$ one can always find strictly imaginary quaternions λ_{1} and λ_{2} such that $\lambda=\lambda_{1} \lambda_{2}$. It follows that we have $M(\lambda)=$ $|\lambda|^{2}$ for all $\lambda \in \mathbb{H}$. We can easily derive from (FE) that for an arbitrary quaternion $\lambda=t_{1}+t_{2} i+t_{3} j+t_{4} k$ with $|\lambda|=1$ the relation

$$
D_{1}\left(t_{1}\right)+D_{2}\left(t_{2}\right)+D_{3}\left(t_{3}\right)+D_{4}\left(t_{4}\right)=0
$$

is valid. It follows also that $D_{1}\left(t_{1}\right)+D_{2}\left(-t_{2}\right)+D_{3}\left(-t_{3}\right)+D_{4}\left(-t_{4}\right)=0$, and consequently, $D_{1}(t)=0$ for all $t, 0 \leqslant t \leqslant 1$. From additivity of D_{1} we get that D_{1} is identically equal to zero. Clearly, the same must be true for $D_{i}, i=2,3,4$. One can now easily verify that

$$
\begin{aligned}
F\left(t_{1}+t_{2} i+t_{3} j+t_{4} k\right) & =\sum_{i=1}^{4} b_{i} t_{i}, \\
G\left(t_{1}+t_{2} i+t_{3} j+t_{4} k\right) & =-b_{1} t_{1}+\sum_{i=2}^{4} b_{i} t_{i}, \\
M(\lambda) & =|\lambda|^{2}
\end{aligned}
$$

and
satisfy the (FE).
In the case that we have $M(t)=|\phi(t)|^{2}$ for all real numbers we get, in the same way as above, that $M(\lambda)=|\phi(|\lambda|)|^{2}$ holds for all quaternions λ. The same method as in the first case gives us

$$
\operatorname{Im}\left(a_{1} \phi\left(t_{1}\right)+\ldots+a_{4} \phi\left(t_{4}\right)\right)=0
$$

and $a_{1} \operatorname{Im} \phi=\ldots=a_{4} \operatorname{Im} \phi=0$. Since $\operatorname{Im} \phi$ cannot be identically zero, we have $a_{1}=\ldots=a_{4}=0$. Substituting quaternions $\lambda=1+t_{2} i+t_{3} j+t_{4} k$ and $\bar{\lambda}$ in (FE), and comparing the results so obtained, we get

$$
b_{1}\left(1-\left|\phi\left(|\lambda|^{2}\right)\right| \operatorname{Re\phi }\left(|\lambda|^{-2}\right)\right)=0
$$

As ϕ is a nontrivial ring morphism, this implies $b_{1}=0$. Similarly, one can verify that $b_{2}=b_{3}=b_{4}=0$. This completes the proof.

The following theorem is an extension of Kurepa's solution of Halperin's problem concerning quadratic forms on quaternionic vector space [6 , Theorem 2].

Theorem 2. Let X be a vector space over the skew field of quaternions \mathbb{H}, M a real function on \mathbb{H}, and Q a nonzero real functional on X satisfying the parallelogram law and the homogeneity $Q(\lambda x)=M(\lambda) Q(x)$. Then $M(\lambda)=|\lambda|^{2}$, the functional $B: X \times X \longrightarrow \mathbb{H}$ given by

$$
B(x, y)=m(x, y)+i m(x, i y)+j m(x, j y)+k m(x, k y)
$$

where

$$
m(x, y)=(1 / 4)(Q(x+y)-Q(x-y))
$$

is a sequilinear functional, and

$$
B(x, x)=Q(x)
$$

holds for all $x \in X$.
Proof: It is well known that the functional $m(x, y)$ is biadditive [5, Lemma 1]. Obviously, we have $m(\lambda x, \lambda y)=M(\lambda) m(x, y)$. Assume that $m(x, y)=0$ for all $x, y \in X$. Then we have $Q(x+y)=Q(x-y)$. Putting $x=y=z / 2$ in this equation we get $Q(z)=0$ for all $z \in X$ which is a contradiction with our assumption that Q is nonzero. Fix now $x_{0}, y_{0} \in X$ such that $m\left(x_{0}, y_{0}\right) \neq 0$. Comparing relations

$$
\begin{gathered}
m\left(\lambda \mu x_{0}, \lambda \mu y_{0}\right)=M(\lambda \mu) m\left(x_{0}, y_{0}\right) \\
m\left(\lambda \mu x_{0}, \lambda \mu y_{0}\right)=M(\lambda) m\left(\mu x_{0}, \mu y_{0}\right)=M(\lambda) M(\mu) m\left(x_{0}, y_{0}\right)
\end{gathered}
$$

and
we see that M is multiplicative. For any nonzero $\lambda \in \mathbb{H}$ we have

$$
m\left(\lambda x_{0}, y_{0}\right)-M(\lambda) m\left(x_{0}, \lambda^{-1} y_{0}\right)=0
$$

Consequently, mappings $M: \mathbb{H} \longrightarrow \mathbb{R}$ and $F, G: \mathbb{H} \longrightarrow \mathbb{R}$ given by

$$
F(\lambda)=m\left(\lambda x_{0}, y_{0}\right), \quad G(\lambda)=-m\left(x_{0}, \lambda y_{0}\right)
$$

satisfy the (FE). Obviously, mappings F and G are additive and nonzero. According to Theorem 1 the mapping M is of the form $M(\lambda)=|\lambda|^{2}$. Using [6, Theorem 2] one can complete the proof.

References

[1] B. R. Ebanks, 'The equation $F(x)+M(x) F\left(x^{-1}\right)=0$ for additive F and multiplicative M on the positive cone $\mathbf{R}^{n \prime}$, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 247-252.
[2] B. R. Ebanks, 'On the equation $F(x)+M(x) G\left(x^{-1}\right)=0$ on K^{n} ', Linear Algebra Appl. 125 (1989), 1-17.
[3] B. R. Ebanks, Pl. Kannappan, and C. T. Ng, 'Generalized fundamental equation of information of multiplicative type', Aequationes Math. 32 (1987), 19-31.
[4] Pl. Kannappan and C. T. Ng , 'On a generalized fundamental equation of information', Canad. J. Math. 35 (1983), 862-872.
[5] S. Kurepa, 'The Cauchy functional equation and scalar product in vector spaces', Glasnik Mat. Fiz.-Astr. 19 (1964), 23-36.
[6] S. Kurepa, 'Quadratic and sesquilinear functionals', Glasnik Mat. Fiz.-Astr. 20 (1965), 79-92.
[7] S. Kurepa, 'On quadratic forms', Aequationes Math. 34 (1987), 125-138.
[8] Gy. Maksa, 'Solution on the open triangle of the generalized fundamental equation of information with four unknown functions', Utilitas Math. 21 (1982), 267-282.
[9] C. T. Ng , 'The equation $F(x)+M(x) G\left(x^{-1}\right)=0$ and homogeneous biadditive forms', Linear Algebra Appl. 93 (1987), 255-279.
[10] P. Vrbová, 'Quadratic functionals and bilinear forms', Casopis Pest. Mat. 98 (1973), 159-161.
[11] J. Vukman, 'Some functional equations in Banach algebras and an application', Proc. Amer. Math. Soc. 100 (1987), 133-136.

Department of Mathematics
University of Ljubljana
Jadranska 19
61000 Ljubljana
Yugoslavia.

[^0]: Received 13 December 1990
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

