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ON GMM INFERENCE: PARTIAL
IDENTIFICATION, IDENTIFICATION
STRENGTH, AND NONSTANDARD

ASYMPTOTICS

DONALD S. POSKITT

Monash University

This paper analyses aspects of generalized method of moments (GMM) inference
in moment equality models in settings where standard regularity conditions may
break down. Explicit analytic formulations for the asymptotic distributions of
estimable functions of the GMM estimator and statistics based on the GMM criterion
function are derived under relatively mild assumptions. The moment Jacobian is
allowed to be rank deficient, so first order identification may fail, the values of the
Jacobian singular values are not constrained, thereby allowing for varying levels
of identification strength, the long-run variance of the moment conditions can be
singular, and the GMM criterion function weighting matrix may also be chosen
sub-optimally. The large-sample properties are derived without imposing a specific
structure on the functional form of the moment conditions. Closed-form expressions
for the distributions are presented that can be evaluated using standard software
without recourse to bootstrap or simulation methods. The practical operation of the
results is illustrated via examples involving instrumental variables estimation of a
structural equation with endogenous regressors and a common CH features model.

1. INTRODUCTION

The generalized method of moments (GMM) approach to econometric modeling
has several well-known advantages, not least of which is that many economic
and financial models can be cast into the GMM framework. There is considerable
evidence from experimental investigations using simulation designs of empirical
relevance in economics and finance, however, that asymptotic theory can provide
poor approximations to the sampling distributions of GMM estimators and test
statistics. Examples of this discrepancy date back to the work of Tauchen (1986)
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and Hansen, Heaton, and Yaron (1996), and Podivinsky (1999) reviews a range of
early evidence showing that the sampling distributions of GMM estimators can be
skewed and heavy-tailed, and test statistics can exhibit substantial size distortions.
A more recent literature has sought to explain the shortcomings of standard GMM
asymptotics by reference to the concept of “weakness,” following ideas developed
in the context of instrumental variable (IV) estimation in linear equations models.
The motivation behind the arguments used in the IV literature stems from the
observation that standard large-sample approximations work poorly when the IVs
are weak, and the alternate paradigm chosen to explain this problem in linear IV
models is to allow reduced form-regression coefficients to approach zero as the
sample size n increases.1 There is an extensive literature on weak instruments (see,
inter alios, Stock, Wright, and Yogo, 2002; Hahn and Hausman, 2003; Andrews
and Stock, 2007), and given that IV estimation is perhaps the leading special case
of GMM, following a similar paradigm in investigations of GMM is natural.

In linear IV models, the reduced-form parameters that are the source of weak
identification do not appear in the structural equations of interest, and in their
analysis of weak identification in GMM, Stock and Wright (2000) similarly
consider population moment functions in which the IVs do not appear and
place conditions on these moment functions that imply that the IVs are weakly
identifying. Guggenberger and Smith (2005) derive the asymptotic distribution
of the generalized empirical likelihood (GEL) estimator and present GEL test
statistics that are invariant to the strength of the IVs for models specified by
nonlinear moment restrictions where identification is characterized as in Stock
and Wright (2000). Han and Phillips (2006) generalize the GMM limit theory of
Stock and Wright (2000) by considering moment conditions that can be functions
of endogenous and exogenous variables and IVs, and by allowing the number of
moment conditions to be large, while at the same time permitting the moment con-
ditions to be weak. Newey and Windmeijer (2009) further extend the work of Stock
and Wright (2000), Chao and Swanson (2005), and Han and Phillips (2006) by
allowing for differing convergence rates in their many weak moment asymptotics.
Antoine and Renault (2009) also examine GMM estimation with instruments of
varying strength, with an emphasis on asymptotic efficiency, and Caner (2010)
presents a similar generalization of Stock and Wright (2000) by allowing for
instruments of varying strength. Dovonon and Renault (2013) generalize Stock and
Wright (2000) by providing a general asymptotic theory for GMM when the rank
condition of the Jacobian matrix fails, but the moment conditions identify the true
parameter value via second-order identification (identification through the second
derivative of the moment conditions).

Many of the features observed in investigations of weak moment GMM asymp-
totics parallel those seen in the analysis of weak IVs, and these in turn parallel those
obtained with partially identified linear models. (See Poskitt and Skeels, 2013,

1See Phillips (2006) for an interesting historical perspective on the development of weak instruments dating back as
far as the 1970s.
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for a brief historical account of the latter connection.) To enquire as to what
features emerge from a consideration of partially identified models with mixed
levels of moment condition identification strength, and to ask if these explain
the shortcomings previously observed in applications of GMM, therefore seem
reasonable questions to raise. The present paper is designed to address these
questions by investigating the properties of GMM when the model is unidentified
or, more correctly, partially identified, and by examining the extent to which
previously observed features are reflected in GMM asymptotics with different
levels of moment identification strength.

Kleibergen (2005) has considered aspects of GMM inference without the
necessity to assume that the parameters are identified. Kleibergen’s focus is on
hypothesis testing, and by (i) replacing standard GMM necessary conditions for
identification with an assumption that the moment conditions and their Jaco-
bian are asymptotically jointly normal, and (ii) structuring the test statistics as
quadratic forms in the corresponding conditional Gaussian random variables,
he is able to derive conventional chi-squared asymptotic distributions and less
conventional chi-squared mixtures for his modified GMM test statistics. Andrews
and Guggenberger (2017) examine nonlinear conditional likelihood ratio (CLR)
tests that depend on a rank statistic that measures the rank of the expected Jacobian.
Andrews and Guggenberger (2017) follow the approach of Kleibergen using a
weighted orthogonalized version of the sample Jacobian. Lee and Liao (2018)
use the approach of Kleibergen to revisit the analysis of Dovonon and Renault
(2013), and they tackle the issue of identification failure by examining the behavior
of Hansen’s J-test (Hansen, 1982) based on the moment conditions and a zero
Jacobian of known form. Andrews and Guggenberger (2019) construct quasi CLR
and Anderson–Rubin test statistics that are robust to singularities using estimated
stochastic linear combinations of the moments that depend on the rank and singular
values of the Jacobian. In all these papers, the authors suggest that the critical
values of the nonstandard distributions derived for their test statistics be obtained
using bootstrap procedures or simulation methods.

In a contribution that steps outside the confines of the previous literature, Phillips
(2016) examines a form of identification failure due to regressor asymptotic
degeneracy. He develops a limit theory for regression estimates and test statistics
that shows that near-collinearity in stationary and trend stationary regressors can
produce serious failures for conventional inference. These include inconsistency,
the absence of an invariance principle, and mixed asymptotic normality for
appropriately standardised estimates. In spite of coefficient inconsistency and a
breakdown of standard central limit theory, near-singular regression designs of
the type considered in Phillips are not disastrous. They lead to random functional
characterizations of the limit theory in terms of series representations that result
in size distortions in linear regression models, and for IV regression estimates in
structural equation models, in test procedures, such as the overidentification test
of Sargan (1958), being conservative if implemented using standard chi-squared
critical values.
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A different line of investigation to that followed in the aforementioned
references considers moment inequality models. The parameters in such models
are partially identified, and the technical apparatus developed by Chernozhukov,
Hong, and Tamer (2007) and Menzel (2014) to investigate the estimation of
identified sets in moment inequality models can be exploited in moment equality
models for (as observed by the Co-Editor) a zero expected moment is equivalent
to the expectation of the moment and the expectation of its negative both being
nonnegative.2 Likewise, a moment inequality can be transformed into a moment
equality by the introduction of a nonnegative slack parameter. It seems reasonable
to conjecture that the techniques developed in this paper can be used to allow for
the violation of the necessary condition for identification that the introduction of
such slack parameters would entail, and that the nonstandard distribution theory
for estimable functions and test statistics developed in this paper can be adapted
to apply to moment inequality models. The details of such an analysis are beyond
the scope of the current paper, however, and will be pursued elsewhere.

The current paper examines similar issues to those considered in the extant
literature, but directs its attention to an analysis of the properties of standard GMM
estimators and GMM test statistics and diagnostic devices in moment equality
models. This paper therefore follows different avenues of investigation from those
taken in the preceding literature. Here, we impose no identification assumptions
of any type other than that the practitioner has employed a sufficient number of
linearly independent moments to meet the necessary condition for identification,
and that the expected value of the moment conditions equals zero at the true
parameter point. We do not impose any conditions on the functional form of the
moment conditions, and we allow the long-run variance of the moment conditions
to be singular. Singularity of the moment condition long-run variance implies that
the conventional choice for the GMM criterion function efficient weighting matrix
is not available, but the weighting matrix can be chosen sub-optimally without
affecting the results presented here other than a loss in efficiency. The moment
Jacobian is assumed to have constant rank in a neighborhood of the true parameter
vector but is allowed to be rank deficient, so first-order lack of identification may
hold. No constraints are imposed on the values of the nonzero Jacobian singular
values, thereby allowing for varying levels of moment condition identification
strength. Under relatively mild assumptions on the large-sample convergence prop-
erties of the moment conditions and the Jacobian, explicit analytic formulations
for the nonstandard asymptotic distributions of estimable functions of the GMM
estimator, and GMM test statistics, are derived. A significant contribution of this
paper therefore lies in the generality which the asymptotic results and associated
inferential procedures that are derived are applicable.

2Chernozhukov et al. (2007) and Menzel (2014) provide results on the consistency and coverage probability of set
estimators defined as lower contour sets of GMM-type criterion functions. These ideas are exploited below to establish
set convergence in the current setting.
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To set the scene, consider a situation where we have data wt, t = 1, . . . ,n, on a
v element random variable where the data generating process (DGP) comes from
a class of statistical models M characterized by a sample space (Rvn,Bvn) with
an associated sequence of probability measures Pθ,n(·) that are dependent on a
parameter θ = (θ1, . . . ,θp)

′ ∈ � ⊂ R
p. We suppose that the DGP gives rise to a set

of moment conditions E[μ(wt,θ)] where μ : Rv ×R
p �−→ R

k and μ(wt,θ) is a
k×1 vector-valued measurable function of the process wt. For each DGP inM, we
assume that there exists a parameter value θ0 ∈ � for which the moment conditions
E[μ(wt,θ0)] = 0 hold. Since in this setting the moment conditions are the only
vehicle available with which to characterise features of the model and investigate
the data, any modeling assumptions and estimation and inference techniques must
be defined and conducted via these conditions.

In the following section, Section 2, the GMM criterion function Qn(θ) and

GMM estimator θ̂n are defined, and the core assumptions adopted throughout
the paper are presented. A brief discussion of some GMM basics and other
developments in the extant literature that form a background to the discussion
presented in this paper is also presented. The paper then proceeds as follows.

In Section 3, the first results presented in this paper on partially identified
GMM models are established. The treatment of partially identified GMM models
introduces substantial complications into the analysis of the properties of Qn(θ)

and θ̂n. The concept of a quasi-true parameter set �0n is introduced in Section 3.1,
and it is shown that �0n generates a GMM Qn(θ) observational equivalence class
and that θ̂n converges to a quasi-true parameter value θ0n ∈ �0n in the sense that the
GMM solution set �̂n = {θ ∈ � : Qn(θ) = minθ∈� Qn(θ)} and �0n are Hausdorff–
Kuratowski convergent as n → ∞. Section 3.2 shows that although θ̂n does not
converge in a conventional manner, under a scenario involving a drifting sequence
of quasi-true parameters akin to a Pitman sequence, a class of estimable functions
can be defined that have limiting normal distributions. The second contribution of
this paper is thus to show that a consequence of working with partially identified
models is that certain functions of the parameters are estimable, and the GMM
estimators of these estimable functions will be consistent and have meaningful
limit distributions. It is demonstrated how hypotheses tests and confidence regions
can be constructed using the asymptotic normality of estimable functions as a
basis for the inference. Categories of moment condition identification strength
are presented in Section 3.2, and the effects of identification strength on the
limit distribution of estimable functions are explored. A further contribution of
this paper is thus to show that in the presence of weak identification, estimable
functions will converge to nonstandard convolutions of singular inverted Wishart
covariance matrix Gaussian mixtures.

Section 4 illustrates the ideas and concepts discussed in Sections 2 and 3 in the
context of two examples. Section 4.1 considers IV estimation of a simultaneous
equation system comprising a single structural equation with reduced-form
equations for the endogenous regressors and provides experimental illustrations
of the results on estimable functions presented in Section 3.2. Section 4.2
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demonstrates how the ideas and concepts introduced in the paper relate to the
common conditional heteroskedastic (CH) features model of Engle and Kozicki
(1993). For this particular nonlinear model, it is known that nullity of the moment
Jacobian at any common feature means that it is not possible to build a

√
n

consistent estimate of θ0 (Dovonon and Renault, 2013; Lee and Liao, 2018).
Consequently, the focus of interest turns to the nonstandard asymptotic properties
of Qn(θ) induced by the nonstandard asymptotic behavior of θ̂n.

A fourth contribution of this paper is therefore to derive the limiting distribution
of Hansen’s J-test statistic of overidentification (Hansen, 1982), and associated
statistics based on Qn(θ), when the standard theory does not apply due to, for
example, singularity in the moment long-run variance matrix or rank deficiency
in the moment Jacobian. The new limiting distributions can be expressed as
uniformly convergent series expansions in generalized Laguerre polynomials and
are presented in Section 5. A key feature of these distributions is that closed-
form expressions for their cumulative distribution functions are available. The
distributions can therefore be implemented numerically using standard software
without recourse to bootstrap or simulation methods.

Section 6 extends the illustrations presented in Section 4 and investigates the
properties of Hansen’s J-test statistic and associated statistics based on Qn(θ) in
the context of both the IV simultaneous equations model, Section 6.1, and the
common CH features model, Section 6.2. The paper concludes in Section 7 with a
brief summary and comment on the implications of the results for the practitioner.
The Supplementary Material of this article provides further technical material,
including regularity conditions, limit theory, and an illustration of algebraic and
numerical consequences of partial identification.

2. ASSUMPTIONS AND BACKGROUND

Suppose that the data wt, t = 1, . . . ,n, are generated by a DGP from M character-
ized by the parameter value θ0 ∈ �. Then θ0 is globally identified by the moment
conditions if

1

n

n∑
t=1

E[μ(wt,θ)] = μ̄n(θ) = 0 ⇐⇒ θ = θ0 . (2.1)

A direct consequence of the condition in (2.1) and the implicit function theorem is
that a necessary condition for the global identification of θ0 is that k ≥ p, namely,
the model is “just-identified” or “over-identified.” Since the researcher is at liberty
to specify any set of moment conditions for which they believe θ0 is identified, and
checking if k ≥ p simply involves counting the number of moments and the number
of parameters, we will assume throughout that k ≥ p, although the case where k < p
can be handled with relatively minor adjustments. We will not impose condition
(2.1) in the remainder of the paper and identification of the true parameter θ0 is
not assumed.
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For a “just-identified” or “over-identified” model, the GMM estimator is
obtained by minimizing the quadratic form

Qn(θ) = mn(w,θ)′Wnmn(w,θ), (2.2)

where the sample moment is

mn(w,θ) = 1

n

n∑
t=1

μ(wt,θ),

and Wn is a k × k symmetric and bounded weighting matrix, Wn = W′
n and

0 < ‖Wn‖ < ∞ with probability one where ‖Wn‖2 = tr(WnW′
n). By definition,

θ̂n = argmin
θ∈�

Qn(θ), (2.3)

and supposing that the moment conditions are continuously differentiable in θ , the
first order condition for a minimum of the criterion Qn(θ) at θ̂n is

∂Qn(θ )/∂θ
∣∣
θ=θ̂n

= 2 Dn(w,θ )′Wnmn(w,θ )
∣∣
θ=θ̂n

= 0, (2.4)

where

Dn(w,θ) = ∂mn(w,θ)

∂θ ′

is the k ×p sample Jacobian matrix.

Assumption 2.1. The parameter space � is a compact subset ofRp, the moment
conditions μ(wt,θ) are continuously differentiable in θ , and there exists a δ > 0
such that the Jacobian matrix

�̄n(θ) = 1

n

n∑
t=1

∂E [μ(wt,θ)]

∂θ ′

has constant rank r{�̄n(θ)} = qn for all θ ∈ N(θ0;δ) = {θ ∈ � : ‖θ0 −θ‖ < δ}, the
open neighborhood in � with center θ0 and radius δ > 0.

From a practical viewpoint, the presumption that the parameter space is closed
and bounded is unfortunate—it can be relaxed in some situations by using
appropriate convexity conditions (Hansen, 1982)—but it is maintained here for
ease of exposition and conformity with much of the existing literature. Continuous
differentiability of the moment conditions μ(wt,θ) is readily checked. Compact-
ness and continuity ensure that there exists a θ̂n that satisfies (2.3) and solves
(2.4), but uniqueness is not guaranteed. The solution set �̂n = {θ ∈ � : Qn(θ) =
minθ∈� Qn(θ)} will be either a singleton or a set of points, an issue that we will
return to in Section 3. When r{�̄n(θ)} = qn ≤ p for all θ ∈ N(θ0;δ), the Jacobian
matrix is said to be regular. If the Jacobian matrix �̄n(θ) is regular and rank
deficient, then the classical condition for (local) identification that the Jacobian has
full-column rank p will be violated. We present this result formally in the following
lemma.
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Lemma 2.1. Suppose that Assumption 2.1 holds. Then r{�̄n(θ)} = qn < p if and
only if for every neighborhood N(θ0;δ′), δ′ < δ, there exists a point θ ∈ N(θ0;δ′),
θ �= θ0, such that μ̄n(θ) = μ̄n(θ0). Moreover, when r{�̄n(θ)} = qn < p, then
{θ ∈ N(θ0;δ) : μ̄n(θ) = μ̄n(θ0)} is a compact, connected subset of � of dimension
p−qn.

The proof of Lemma 2.1, which is modeled on the proof of Rothenberg (1971,
Thm. 1, p. 579), is given in the Supplementary Material. Lemma 2.1 implies that θ0

is (locally) identified if and only if �̄n(θ) has full-column rank, but checking if θ0

is identified can be difficult if the structure of �̄n(θ) is complicated. Identification
is often therefore simply assumed, although a number of studies have shown that
imposing identification with some models may be too strong as an assumption,
and that conventional inference procedures break down when it fails (see Stock
et al., 2002, for example, and for further discussion and examples of identification
and the lack thereof (Hall, 2005, Chap. 3.1)).

For any fixed k and p with k ≥ p, the singular value decomposition of �̄n(θ0) is
given by

�̄n(θ0) = Ū0nS̄0nV̄0n, (2.5)

where the p columns of Ū0n, (k × p), are an orthonormal p-frame of O(k), the
Stiefel manifold inRk, so Ū′

0nŪ0n = Ip, S̄0n = diag{s̄0n,1, . . . , s̄0n,p}, and V̄0n, (p×p),
belongs to the orthogonal group O(p). Without loss of generality, the singular
values will be assumed to be listed in nonincreasing order, s̄0n,1 ≥ s̄0n,2 ≥ ·· · ≥
s̄0n,qn > s̄0n,qn+1 = ·· · = s̄0n,p = 0, where qn = r{�̄n(θ0)}, and 0 < s̄0n,qn ≤ ·· · ≤
s̄0n,1 < ∞. The value of qn will be called the identification rank, with 1 ≤ qn ≤ p.
When all the singular values are zero and �̄n(θ0) is null, we will set qn = 0.
The strength of the identification will depend on the magnitude of the singular
values, and borrowing from the categories and nomenclature of Andrews and
Guggenberger (2017, 2019):

(i) The identification strength of the moment conditions will be said to be strong

or semi-strong when limn→∞n
1
2 s̄0n,p = ∞. Strong identification occurs when

limn→∞n
1
2 s̄0n,p = ∞ and limn→∞s̄0n,p > 0, and semi-strong identification

occurs when limn→∞n
1
2 s̄0n,p = ∞ and limn→∞s̄0n,p = 0.

(ii) When limn→∞n
1
2 s̄0n,1 < ∞, the identification strength of the moment condi-

tions will be said to be weak.
(iii) When limn→∞n

1
2 s̄0n,1 = ∞ and limn→∞n

1
2 s̄0n,p < ∞, we will refer to the

moment condition identification strength as being mixed.

From the singular value decomposition in equation (2.5), the cth column of �̄n(θ0)

is given by

δ̄0n,c = Ū0nS̄0nv̄0n,c , c = 1, . . . ,p,
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where �̄n(θ0) = [δ̄0n,1, . . . ,δ̄0n,p] and V̄0n = [v̄0n,1, . . . ,v̄0n,p]. Since each column of
the Jacobian characterizes the behavior of the corresponding parameter estimate,

and ‖δ̄0n,c‖ = (
∑p

r=1 s̄2
0n,rv̄

2
0n,rc)

1
2 , it follows that θ̂n will inherit its identification

strength from that of the moment conditions, and that it can do so in various
different ways.

When the identification strength of the moment conditions is strong or semi-
strong, the singular values share a common divergent lower bound, and the

identification strength of θ̂n will also be strong or semi-strong since ‖δ̄0n,c‖ ≥
s̄0n,p(

∑p
r=1 v̄2

0n,rc)
1
2 . On the other hand, when the moment conditions are weakly

identifying, they share a common limiting upper bound, and the identification
strength of θ̂n will also be weak (as in Staiger and Stock, 1997, for example)

because ‖δ̄0n,c‖ ≤ s̄0n,1(
∑p

r=1 v̄2
0n,rc)

1
2 . Mixed moment identification strength is

referred to in Andrews and Guggenberger (2017) as “weak identification in a non-
standard sense.” When the identification rank qn < p, for example, s̄0n,qn+1 = ·· · =
s̄0n,p = 0, and if limn→∞n

1
2 s̄0n,qn = ∞, then the identification strength will be strong

or semi-strong since ‖δ̄0n,c‖ = (
∑qn

r=1 s̄2
0n,rv̄

2
0n,rc)

1
2 . In such a case, the identification

is weak in a nonstandard sense because it is a mixture of identification failure with
strong or semi-strong partial identification. More generally, whenever the singular
values have conflicting asymptotic properties, the identification strength will be
mixed, with individual components exhibiting different levels of identification
strength ranging from weak through to semi-strong and strong. These cases
include the combination of weak and strong parameter identification considered
in Stock and Wright (2000). Further discussion of the impact of these different
identification strengths is given in what follows, where it is shown that GMM
statistics have nonstandard asymptotic distributions due to identification failure
when θ0 is only partially identified or due to identification deficiency when the
moment conditions are weakly identifying.

Assumption 2.2. The empirical moments mn(w,θ) converge in probability to
their ensemble counterparts μ̄n(θ) uniformly in θ , more precisely,

sup
θ∈�

‖mn(w,θ)− μ̄n(θ)‖ p→ 0.

Furthermore, the moment Jacobian matrix Dn(w,θ) converges uniformly to its
theoretical counterpart �̄n(θ), that is,

sup
θ∈�

∥∥∥∥∥1

n

n∑
t=1

∂
(
μt(wt,θ)−E [μ(wt,θ)]

)
∂θ ′

∥∥∥∥∥ p→ 0.

Assumption 2.2 is a so-called “high-level’ assumption that accommodates
various types of data. Such assumptions are commonly adopted in GMM since
they have the advantage of making the results applicable to a wide range of special
cases. Their disadvantage is that their plausibility must be checked on a case-by-
case basis. Primitive regularity conditions that in turn imply Assumption 2.2 can of
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course be specified, an example of such conditions is given in the Supplementary
Material.

Assumption 2.3. The weighting matrix Wn, which can be a function of the

data, is positive semi-definite with probability one and ‖Wn − �̄n‖ p→ 0, where
0 < ‖�̄n‖ < ∞ and �̄n = �̄

′
n is such that

r{�̄n(θ0)
′�̄n�̄n(θ0)} = {r{�̄n(θ0)} = qn ≤ p ≤ r{�̄n} ≤ k .

Assumption 2.3 implies that lack of identification is not due to mn(w,θ) incor-
porating an insufficient number of linearly independent moments, but otherwise
imposes no further identification conditions. Assumption 2.3 is nonstandard in
that it is more conventional to assume that Wn and �̄n are nonsingular, in which
case it is well known that when the model is identified choosing Wn such that �̄n

equals the inverse of the long-run variance of the moment conditions is optimal
(see Hall, 2005, Thm. 3.4, for example3). If the long-run variance, �̄0n say, is
singular, the conventional choice for Wn as the regular inverse of a consistent
estimate of �̄0n is unavailable. It is obvious that Wn still determines the relative
weight given to the components of mn(w,θ), however, and the intuition that �̄n

should be inversely proportional to the long-run variance still stands. It is shown
below that when �̄0n is singular, an efficient (minimum variance) GMM estimator
is obtained when Wn is chosen such that ‖(�̄n − �̄

+
0n)�̄n(θ0)‖ → 0 where �̄

+
0n

denotes the Moore–Penrose generalized-inverse (g-inverse). It is well known that
discrepancies between the GMM weighting matrix limiting value and the optimal
choice are a possible source of poor performance for standard GMM asymptotics
(see, for example, Pagan and Robertson, 1997; Windmeijer, 2005, for discussions
of such issues and further references). As well as accommodating singularity in the
moment long-run variance—and rank deficiency in the Jacobian—the alternative
asymptotic theory developed in this paper for Qn(θ) allows for the possibility that
�̄n may not equal �̄

+
0n, and whatever is the nature of the relationship of �̄n to

�̄
+
0n, the new limiting distributions will adapt so as to yield the correct asymptotic

distribution.
Newey (1985) assumes that �̄n is positive semi-definite, but requires that

�̄n(θ0)
′�̄n�̄n(θ0) has full rank, r{�̄n(θ0)

′�̄n�̄n(θ0)} = p, which implies that
r{�̄n} ≥ p and that the model is identified since

r{�̄n(θ0)
′�̄n�̄n(θ0)} ≤ min{r{�̄n(θ0)},r{�̄n}}

and r{�̄n(θ0)} ≤ p. Kleibergen (2005) allows for the possibility that the long-
run variance matrix in his assumed joint asymptotic normal distribution of (in the
notation of this paper) mn(w,θ) and Dn(w,θ) is singular, but the singularity can

3Hall assumes that Wn is positive semi-definite but that �̄n is non-singular (Hall, 2005, Assum. 3.7). But if Wn

converges to �̄n, then it can be shown that the rank of Wn is bounded below by that of �̄n for all n sufficiently large
(see Puri, Russell, and Mathew, 1984, Lem. 3).
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only come from relationships between the moments and the Jacobian because
he presupposes that the moment long-run variance is positive definite. In their
extension of Kleibergen’s approach, Andrews and Guggenberger (2017) assume
that �̄n is positive definite and Lee and Liao (2018) suppose that Wn equals the
regular inverse of a consistent estimate of a positive definite moment long-run
variance. In their analysis of moment inequality models, Chernozhukov et al.
(2007) and Menzel (2014) suppose that the weighting matrix in their GMM-
type criterion functions is positive definite. As pointed out in Andrews and
Guggenberger (2019, Sect. 4), the condition that Wn and �̄n be nonsingular is
not inconsequential because in a number of models, lack of identification and
singularity of the moment long-run variance run hand in hand.4 Andrews and
Guggenberger (2019) therefore allow the long-run variance matrix of the moment
conditions to be singular, and in their analysis of identification- and singularity-
robust test statistics, they place no restrictions on the rank of �̄n(θ0). As such,
the work of Andrews and Guggenberger (2019) is (to the best of this author’s
knowledge) the only direct precursor to that of the current paper.

Let θi(1), . . . ,θi(p) denote a permutation of θ1, . . . ,θp. The following result arises
as a consequence of the function inversion theorem and the implicit function
theorem. See Marsden (1974, Thm. 5, pp. 236–237) for an equivalent statement
together with a proof.

Lemma 2.2. Suppose that Assumption 2.1 holds, that θ0 lies in the interior of �,
and that r{�̄n(θ)} = qn < p, for all θ ∈ N(θ0;δ). Then there exist an open set U ⊂ �

and an open set V ⊂ � with θ0 ∈ V, and a continuously differentiable function
g : U → V with a continuously differentiable inverse g−1 : V → U, such that
the composition μ̄ ◦ g(θ) = μ̄n(g(θ)) = μ̄n(β,α(β)), where β = (β1, . . . ,βqn)

′ =
(θi(1), . . . ,θi(qn))

′ and (θi(qn+1), . . . ,θi(p))
′ = α(β) = (α1(β), . . . ,αp−qn(β))′.

Lemma 2.2 implies that there exist a permutation matrix P and a parameter
vector Pθ = (θi(1), . . . ,θi(p))

′ such that the subvector β0 where Pθ0 = (β ′
0,α(β0)

′) is
identified from the compound moment condition μ(wt,g−1(θ)) = μ(wt,β,α(β)).
To see this, note that by an application of the chain rule,

∂μ̄n(β,α(β))

∂β ′ = �̄n(θ)P′
[

I
∂α(β)

∂β ′

]
,

and since the first qn columns of �̄n(θ)P′ have rank qn, the Jacobian matrix has
full-column rank qn for all (β ′,α(β)′)′ = g(θ), θ ∈ N(θ0;δ). Thus, Lemma 2.2
indicates that if �̄n(θ) is rank deficient, the model is still partially identified in the
sense that certain components of θ can be identified, the number of parameters that
can be identified being determined by the rank of �̄n(θ). The partially identified

4Singularity of the long-run variance occurs in likelihood -based models in which submodels of interest are nested
within encompassing models containing nuisance parameters that do not appear in the submodel, for example, and
Andrews and Guggenberger (2019) list seven examples of models where such singularities occur.
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parameter β will satisfy Assumption 2.1, and a GMM estimator β̂n obtained by
replacing mn(w,θ) in (2.2) by mn(w,β,α(β)) would, under the previously stated
conditions, converge to β0. In general, however, the practitioner will not be able
to construct β̂n because the function g(θ) = Pθ = (β ′,α(β)′) will be unknown and
the estimator will be unfeasible.

Analogous properties are observed in Stock and Wright (2000), wherein

it is assumed that μ̄n(θ) = μ̄β,n(β) + n− 1
2 μ̄α,n(α) where θ = (β ′,α′)′ and

∂μ̄β,n(β)/∂β ′ has full-column rank, implying that β is well identified but α

is only weakly identified or unidentified (Stock and Wright, 2000, Assum. C,
Sect. 2.3, pp. 1060–1062). The imposition of such a specialised additive structure
entails assigning the weakly and strongly identified directions in the parameter
space, and as is shown in Andrews and Guggenberger (2017), it is unlikely to be
a straightforward task to either verify or refute the existence of such structure in
a broad range of familiar econometric models.5 In this paper, we will ascertain
the consequences of employing the GMM estimator calculated from Qn(θ) while
allowing the data to be generated from a DGP that may be partially identified and
that can contain different levels of moment identification strength. We will do this
without imposing any special structure on the expected moment conditions or their
derivatives.

3. IDENTIFICATION AND ESTIMATION

3.1. Criterion and Estimator Convergence

The link between lack of identification and the estimation of θ via Qn(θ) follows
from the following result.

Theorem 3.1. Suppose that Assumptions 2.1–2.3 hold and that r{�̄n(θ)} < p,
for all θ ∈ N(θ0;δ) = {θ ∈ � : ‖θ0 −θ‖ < δ}, δ > 0. Then there exists a θ ∈ N(θ0;δ),
θ �= θ0, such that, for every η > 0, there exists an nη < ∞ such that

Pr[|Qn(θ0)−Qn(θ)| < η] > 1−η,

for all n > nη ≥ 1.

A basic requirement for θ̂n to be a consistent estimator of θ0 is that Qn(θ)

can distinguish θ0 from alternative values. Theorem 3.1 indicates that when n is
sufficiently large and �̄n(θ) has reduced rank, Qn(θ) will change by an arbitrarily
small amount between θ and θ0 with an arbitrarily large probability, and for almost
all samples, it will not be possible for Qn(θ) to distinguish between θ0 and θ . This
amounts to a form of GMM Qn(θ) observational equivalence.

A consequence of Theorem 3.1 is that θ̂n will not converge in a conventional
manner. To analyze this further, recall that the DGP is characterized by a parameter

5For a discussion of the role that Assumption C of Stock and Wright (2000) has played in the literature, see Andrews
and Guggenberger (2017, Sect. 2, pp. 1052–1055)
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value θ0 ∈ � such that μ̄n(θ0) = 0. If �̄n(θ) is regular with reduced rank
r{�̄n(θ)} < p, then from Lemma 2.1, we know that θ0 is (locally) unidentified
and there exists a compact, connected subset of � such that μ̄n(θ) = μ̄n(θ0) = 0.
We can think of this latter set as a collection of quasi-true parameters, motivating
the following definition.

Definition. When θ0 is unidentified, the subset of the parameter space given by

�0n = {θ ∈ � : μ̄n(θ) = 0}
will be referred to as the quasi-true parameter space.

It is perhaps worth noting that whereas θ0 is uniquely determined via the DGP
as the parameter value for which the moment conditions E[μ(wt,θ0)] = 0 hold,
and is identified if (2.1) holds, �0n delineates those values θ for which μ̄n(θ) =
μ̄n(θ0) = 0 and (2.1) is violated, and in general, the quasi-true parameter space
will, as with μ̄n(θ), depend on n.

Lemma 3.1. Let Q̄n(θ) = μ̄n(θ)′�̄nμ̄n(θ). If Assumptions 2.1–2.3 hold, then

|Qn(θ)− Q̄n(θ)| p→ 0 uniformly in θ .

Now, observe that Q̄n(θ) = Q̄n(θ0) = 0 for all θ ∈ �0n. Combining the result in
Lemma 3.1 with the non-uniqueness implicit in Theorem 3.1, we can anticipate
that under suitable regularity conditions, the GMM solution set �̂n = {θ ∈ � :
Qn(θ) = minθ∈� Qn(θ)} will converge to the quasi-true parameter space.

To characterize the behavior of the GMM estimator when the Jacobian is rank
deficient and the model is only partially identified, we will invoke the concept of
Hausdorff–Kuratowski set convergence. The distance between a point θ in � and
a subset A of � is given by

d(θ;A) =
{

infθA∈A{‖θ − θA‖}, for A �= ∅,

∞, for A = ∅
and the neighborhood N(A;ε) = {θ : d(θ;A) < ε}. The Hausdorff distance between
subsets A and B of � is defined as

dH(A;B) = max{D(A;B);D(B;A)},
where

D(A;B) = inf{ε > 0 : A ⊆ N(B;ε)}
= sup

θ∈A
d(θ;B),

unless both A and B are empty, in which case dH(A;B) = 0. For any sequence
of compact subsets An ⊆ �, the Kuratowski inferior and superior limits of An as
n → ∞ are defined as

liminf
n→∞ An =

{
θ ∈ � : limsup

n→∞
d(θ,An) = 0

}
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and

limsup
n→∞

An =
{
θ ∈ � : liminf

n→∞ d(θ,An) = 0
}
,

respectively. If the Kuratowski inferior and superior limits agree, i.e., they are
the same subset of �, then their common value is called the Kuratowski limit
of the sets An as n → ∞. For compact metric spaces, Kuratowski convergence
coincides with convergence of the Hausdorff metric (Ambrisio and Tilli, 2004).
We will therefore say that the sequence An is Hausdorff–Kuratowski convergent
to a closed subset A of � if and only if liminfn→∞ An = limsupn→∞ An = A, or
equivalently limn→∞ dH(An;A) = 0. Hausdorff–Kuratowski convergence of two
sequences, limn→∞ dH(An;Bn) = 0, is defined similarly mutatis mutandis.

Theorem 3.2. Suppose that Assumptions 2.1–2.3 hold and that μ̄n(θ) ∈
R

k\{x : �̄nx = 0}, for all θ ∈ �\�0n. Then the sequence of GMM solution sets
�̂n,�̂n+1,�̂n+2, . . . associated with Wn is Hausdorff–Kuratowski convergent to
�0n with probability approaching one, that is, for all ε > 0, there exists an nε ≥ 1
such that Pr[dH(�̂n;�0n) ≤ ε] > 1− ε, for all n > nε .

Imposition of the condition that μ̄n(θ) does not belong to the null space of �̄n

when μ̄n(θ) �= 0 is required in Theorem 3.2 since otherwise it would be possible
for there to exist a parameter sequence θn with θn ∈ �\�0n such that Qn(θ

n)

converges to zero as n → ∞. Lemma 3.2 in the following section indicates that
an optimal choice of weight matrix is obtained when �̄n = �̄

+
0n, and this choice

removes the possibility that �̄nμ̄n(θ) = 0 for θ ∈ �\�0n as the g-inverse eliminates
redundant moments in Q̄n(θ) = μ̄n(θ)′�̄nμ̄n(θ) and Q̄n(θ) = 0 if and only if
μ̄n(θ) = 0. Hausdorff distance has, of course, been employed elsewhere to study
convergence properties in situations where a set rather than a point is the focus
of interest. Recognizing that �̂n corresponds to the minimal contour level set of
Qn(θ), an appeal to Theorem 3.1 of Chernozhukov et al. (2007) can be made to

show that dH(�̂n;�0n) = Op(n− 1
2 ) for any qn = r{�̄n(θ)} �= 0. For completeness,

a direct proof of the weaker result presented in Theorem 3.2 is provided in the
Supplementary Material.

3.2. Estimable Functions and Asymptotic Normality

When the model is identified, it is well known that θ̂n is consistent for the true
parameter value θ0 and

√
n(̂θn − θ0) converges in distribution (see Hall, 2005,

Thm. 3.2, for example). In order to examine the behavior of θ̂n when the model
need not be identified, we will derive the asymptotic properties of (functions of)
(̂θn − θ0n) where, for any θ̂n ∈ �̂n, we will set

θ0n = arg min
θ∈�0n

‖̂θn − θ‖, (3.1)
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the projection of θ̂n on to �0n.6 Since ‖̂θn − θ0n‖ = d(̂θn;�0n) ≤ D(�̂n,�0n), it
follows from Theorem 3.2 that ‖̂θn −θ0n‖ < ε and we can see that the large-sample
behavior of θ̂n is being derived under a scenario akin to that employed when using a
Pitman sequence to analyze the properties of an estimator, only here θ0n is drifting
around in the quasi-true parameter set �0n such that θ̂n and θ0n form a matching
pair and ‖̂θn − θ0n‖ approaches zero as θ̂n enters N(�0n,ε).

Results on estimable functions will be stated and derived by first considering
the following combinations of identification rank and identification strength as
previously defined in Section 2; (i) identification rank qn = p and identifica-
tion strength is strong or semi-strong, and (ii) identification rank qn < p and

identification strength is mixed with limn→∞ n
1
2 s̄0n,qn → ∞ and n

1
2 ‖δ̄0n,c‖ =

(
∑qn

r=1 s̄2
0n,rv̄

2
0n,rc)

1
2 → ∞, c = 1, . . . ,p. Subsequently, the results will be extended to

cover cases where the identification strength can be weak. This way of proceeding
allows us to separate strict identification failure where qn < p from the less rigid
notion of identification deficiency inherent in the concept of weakness.

Rewrite the first-order condition in (2.4) that defines θ̂n as an implicit function
of the data as

Dn(̂θn)
′Wnmn(̂θn) = 0,

wherein we abbreviate Dn(w,θ) to Dn(θ), and mn(w,θ) to mn(θ). Expanding the
moment mn(̂θn) about mn(θ0n) gives

mn(̂θn) = mn(θ0n)+Dn(θ
∗)(̂θn − θ0n), (3.2)

where ‖θ∗ −θ0n‖ ≤ ‖̂θn −θ0n‖, and substituting this into the first-order condition,
we have

Dn(̂θn)
′WnDn(θ

∗)
√

n(̂θn − θ0n) = −Dn(̂θn)
′Wn

√
nmn(θ0n) . (3.3)

The general solution to (3.3) can be expressed as

√
n(̂θn − θ0n) = −GnDn(̂θn)

′Wn
√

nmn(θ0n)+ (Hn − I)z, (3.4)

where Gn = (Dn(̂θn)
′WnDn(θ

∗))+, Hn = (Dn(̂θn)
′WnDn(θ

∗))+(Dn(̂θn)
′WnDn(θ

∗))
and z is arbitrary (Rao and Mitra, 1971, Thm. 2.3.1(b)).

Theorem 3.2 implies that ‖̂θn − θ0n‖ p→ 0, and from the assumed convergence

of Dn(θ) to �̄n(θ), it follows that ‖Dn(̂θn) − �̄n(θ0n)‖ p→ 0 and ‖Dn(θ
∗) −

�̄n(θ0n)‖ p→ 0. From Slutsky’s theorem, we can therefore conclude that

‖Dn(̂θn)
′Wn − �̄

′
0n�̄n‖ p→ 0 and ‖Dn(̂θn)

′WnDn(θ
∗)− �̄

′
0n�̄n�̄0n‖ p→ 0, (3.5)

6That θ0n is the projection of θ̂n on to �0n is established in the Supplementary Material.
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where �̄0n = �̄n(θ0n), and since (under suitable regularity)
√

nmn(θ0) is
asymptotically normal, the general solution in (3.4) can be reexpressed as

√
n(̂θn − θ0n) = −	̄0n�̄

′
0n�̄n

√
nmn(θ0n)+ (H̄0n − I)z+op(1), (3.6)

where 	̄0n = (�̄
′
0n�̄n�̄0n)

+ and H̄0n = (�̄
′
0n�̄n�̄0n)

+(�̄
′
0n�̄n�̄0n).

When the model is identified, r{�̄0n} = p, θ0n = θ0, and the equation system
(3.6) has a unique solution for

√
n(̂θn −θ0) which converges in distribution because

�̄
′
0n�̄n�̄0n is invertible and H̄0n = I. When r{�̄0n} = qn < p, however, �̄

′
0n�̄n�̄0n

is singular and many solutions to (3.6) exist. A unique solution could be generated
by combining (3.6) with the constraint Pθ − (β ′,α(β)′) = 0 so as to extract the re-
scaled deviation

√
n(β̂n −β0n) for the parameter β. But as previously observed,

this is not feasible. In the absence of such parameter constraints, alternative
conditions that confine the infinite number of possible solutions to (3.6) to a
feasible finite set are required.

By Rao and Mitra (1971, Thm. 2.3.1(c)), the linear combination
√

nq′(̂θn −
θ0n) is unique for any vector q = (q1, . . . ,qp)

′ if (and only if) q′H̄0n = q′. This
condition is satisfied by any vector of the form q′ = z′H̄0n because q′H̄0n = z′H̄2

0n =
z′H̄0n = q′ since H̄0n is idempotent. Thus, by Theorem 3.2, for an arbitrary vector z,
the linear combination q′̂θn, where q′ = z′H̄0n will be consistent for the same linear
combination q′θ0n of the parameter θ0n ∈ �0n, and as will be shown below, for such
linear combinations

√
nq′(̂θn −θ0n) is asymptotically normal. Henceforth we will

therefore label a linear combination q′
0nθ where the vector q0n = z′H̄0n an estimable

function.
Borrowing notation from the empirical process literature, let

Gn(θ) = n
1
2 {Pn −Pn}μ(θ) = n

1
2 {mn(θ)− μ̄n(θ)}

define an empirical process Gn(θ) : θ ∈ � where, for θ1,θ2 ∈ �, the covariance
kernel

�̄n(θ1,θ2) = nE[(mn(θ1)− μ̄n(θ1)(mn(θ2)− μ̄n(θ2)
′] .

Now, suppose that the re-centered and re-scaled sample moments satisfy the
following functional CLT (FCLT) assumption, wherein the symbol ⇒ denotes
weak convergence of random functions on � with respect to the supremum norm,

and �̄
1
2
n (θ) denotes the positive semi-definite symmetric square root of �̄n(θ)

where �̄n(θ) = �̄n(θ,θ).

Assumption 3.1. The empirical process Gn(θ) = �̄
1
2
n (θ)Bn(θ), where Bn(θ) ⇒

B(θ), a zero-mean Gaussian stochastic process indexed by θ ∈ � with bounded
continuous sample paths and an identity covariance kernel.
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Conditions under which the FCLT presented in Assumption 3.1 will hold are
discussed in the Supplementary Material.

Theorem 3.3. Let q′
0nθ be an estimable function where, for any z �= 0,

q′
0n = z′H̄0n, and suppose that Assumptions 2.1–2.3 and 3.1 hold. Then

√
nq′

0n(̂θn − θ0n) = −z′	̄0n(�̄
′
0n�̄n)�̄

1
2
0nBn(θ0n)+op(1),

where �̄0n = �̄n(θ0n) and Bn(θ0n) ⇒ N (0,Ik).

Employing the Cramér–Wold device and Slutsky’s theorem in conjunction with
Theorem 3.3, we can conclude that the distribution of

√
nq′

0n(̂θn − θ0n) will be
approximately normal with zero mean and variance

z′	̄0n(�̄
′
0n�̄n�̄0n�̄

′
n�̄0n)	̄0nz . (3.7)

Hence, we can conclude that q′
0nθ̂n is a consistent and asymptotically normal

(CAN) estimator of the estimable function q′
0nθ .

The previous development derived the asymptotic distribution of the estimable
function q′

0nθ by expanding the moment conditions, following Hansen (1982). An
alternative approach is to follow the route taken by Newey and Windmeijer (2009)
and to expand the first-order condition. The latter is a standard approach in the
analysis of extremum estimators, and that it remains valid when the model is only
partially identified follows from the following companion theorem to Theorem 3.3.

Theorem 3.4. Suppose that Assumptions 2.1–2.3 and 3.1 hold and that the
moment conditions μt(wt,θ) are twice continuously differentiable in θ . Let Q(2)

n (θ)

denote the Hessian matrix ∂2Qn(θ)/∂θ∂θ ′, and set Q(2)
0n = Q(2)

n (θ0n) and q′
0n =

z′Q(2+)
0n Q(2)

0n where Q(2+)
0n = (Q(2)

0n )+. Then

√
nq′

0n(̂θn − θ0n) = −2z′Q(2+)
0n (�̄

′
0n�̄n)�̄

1
2
0nBn(θ0n)+op(1),

where �̄0n = �̄n(θ0n) and Bn(θ0n) ⇒ N (0,Ik).

When the model is identified, expanding the first-order condition leads to a
sandwich form for the GMM variance estimator that is consistent under standard
and (as is shown in Newey and Windmeijer, 2009) many weak moment asymp-
totics. An immediate consequence of Theorem 3.4 is that such an estimator remains
valid when the model is partially identified with (�̄

′
0n�̄n�̄0n)

+ replaced by 2Q(2+)
0n

in the asymptotic variance formula.

Lemma 3.2. If r{�̄′
0n�̄

′
n�̄0n} = r{�̄′

0n�̄
+
0n�̄0n} = qn, then the asymptotic

variance of
√

nq′
0n(̂θn − θ0n) where q′

0n = z′H̄0n, z �= 0, is bounded below by
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z′(�̄′
0n�̄

+
0n�̄0n)

+z, and a sufficient condition for the estimator associated with Wn

to be asymptotically efficient is that ‖(�̄n − �̄
+
0n)�̄0n‖ → 0.

Lemma 3.3 indicates that choosing Wn such that ‖Wn − �̄
+
0n‖

p→ 0 is optimal,
for then

‖�̄n�̄0n − �̄
+
0n�̄0n‖ ≤

(
‖(�̄n −Wn)‖+‖Wn − �̄

+
0n‖
)

· ‖�̄0n‖,

implying that ‖�̄n�̄0n − �̄
+
0n�̄0n‖ p→ 0. One such choice for a two-step GMM

estimator would be Wn = �̄n(̂θn1)
+, where θ̂n1 is a first-step estimator obtained

using a weight matrix Wn that is independent of θ—and typically not dependent on
the data, Wn = I for example. Theorem 3.2 indicates that there will exist a θ0n such

that ‖�̄n(̂θn1)−�̄0n‖ p→ 0, and if r{�̄n(̂θn1)} = r{�̄0n}, then ‖�̄n(̂θn1)
+ −�̄

+
0n‖

p→
0. In general, however, explicit use of �̄n(θ) will be either (i) not feasible because
derivation of the long-run variance matrix is intractable, or (ii) too difficult because
the structure of �̄n(θ) is too complicated. The commonly adopted solution is to
replace �̄n(θ) by a consistent estimate. If μt(wt,θ), t = 1, . . . ,n are independent
and identically distributed, for example, n(

∑n
t=1 μ(wt,θ̂n1)μ(wt,θ̂n1)

′)+ can serve
for Wn. For further details on estimating the long-run variance matrix, see Hall
(2005, Chap. 3.5). Henceforth we will refer to a CAN estimator q′

0nθ̂n of q′
0nθ0n that

satisfies the efficiency bound as a consistent and efficient asymptotically normal
(CEAN) estimator.

Suppose that Wn has been chosen optimally. Then, for any given z, Theorem 3.3

can be implemented using z′(Dn(̂θn)
′WnDn(̂θn))

+z to estimate the variance in (3.7)
since by Theorem 3.2 ‖̂θn − θ0n‖ = op(1). Similarly, q′

0n = z′H̄0n can be esti-

mated by z′Ĥ0n where Ĥ0n = (Dn(̂θn)
′WnDn(̂θn))

+(Dn(̂θn)
′WnDn(̂θn)). Unknown

ensemble averages are thereby replaced by sample statistics, circumventing the fact
that in practice θ0n will not be known. The applied researcher will want to conduct
inference on the true parameter θ0 of course. Whenever θ0n ∈ N(θ0;δ), then

‖H̄0n(θ0n −θ0)‖ ≤ δ, and if δ = o(n− 1
2 ), we can conclude that

√
nz′H̄0n(̂θn −θ0n) =√

nz′H̄0n(̂θn − θ0)+o(1). Inference on θ0 can then be conducted by constructing
hypotheses tests or confidence regions based on the asymptotic normality of√

nz′Ĥ0n(̂θn − θ0n) as given in Theorem 3.3.
The distributional properties presented in Theorems 3.3 and 3.4 presuppose that

the identification strength of identified and partially identified parameters is strong.
In general, however, the behavior of estimable functions will depend on the level of
individual parameter identification strength. To delineate the range of parameter
identification strength that may occur, we will follow the existing literature and
characterize parameter identification strength by reference to a matrix-valued
normalizing sequence and set J̄n(θ) = �̄n(θ)Nn, where Nn = diag{nλ1, . . . ,nλp},
0 ≤ λc ≤ 0.5, c = 1, . . . ,p. Let J̄0n = J̄n(θ0n) = [j̄0n,1, . . . , j̄0n,p]. The identification

strength of the cth component of θ̂n = (θ̂n1, . . . ,θ̂np)
′ will be reflected in the value

of limn→∞ n−λc‖j̄0n,c‖, c = 1, . . . ,p, and adopting commonly employed labels we
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will divide θ into strongly, moderately, and weakly identified parameter subsets
according to whether λc = 0, 0 < λc < 0.5, or λc = 0.5, respectively. These more
conventional parameter identification strength labels translate into the moment
condition identification strength categories via the relationship

lim
n→∞n

1
2 ‖δ̄0n,c‖ = lim

n→∞n
1
2

(
qn∑

r=1

s̄2
0n,rv̄

2
0n,rc

) 1
2

= lim
n→∞‖j̄0n,c‖n

1
2 −λc ,

from which it follows that

lim
n→∞nλc s̄0n,qn

(
qn∑

r=1

v̄2
0n,rc

) 1
2

≤ lim
n→∞‖j̄0n,c‖ ≤ lim

n→∞nλc s̄0n,1

(
qn∑

r=1

v̄2
0n,rc

) 1
2

and the parameter identification strength labels need not match the moment
condition identification strength categories. For example, if while the moment
condition identification strength is mixed limn→∞ nλc s̄0n,1 < ∞ when 0 ≤ λc < 0.5,
the parameter identification strength may appear to be strong, rather than moderate,
a case called “joint weak identification” in Andrews and Guggenberger (2017).

In order to examine the effects of variations in parameter identification strength,
we will add the following assumption.

Assumption 3.2. Let

Fn(θ) = n
1
2 {Pn −Pn}∂μ(θ)

∂θ
= n

1
2 {Dn(θ)− �̄n(θ)} : θ ∈ �

denote the empirical process with covariance kernel


̄n(θ1,θ2) = nE[vec{Dn(θ1)− �̄n(θ1)}vec{Dn(θ2)− �̄n(θ2)}′] .

Then vec{Fn(θ)} = 
̄
1
2
n (θ)Wn(θ) where 
̄n(θ) = 
̄n(θ,θ) and Wn(θ) ⇒ W(θ), a

zero-mean Gaussian stochastic process indexed by θ ∈ � with bounded continuous
sample paths and an identity covariance kernel. Furthermore, the joint distribution
of vec{Fn(θ)} and Gn(θ) is given by[

Gn(θ)

vec{Fn(θ)}
]

=
[

I 0
C̄(θ)�̄

+
n (θ) I

][
�̄

1
2
n (θ)Bn(θ)


̄
1
2
n (θ)Wn(θ)

]
,

wherein Wn(θ) is asymptotically independent of Bn(θ).

Suppose that there exists a permutation of the parameter vector Pθ =
(θc(1), . . . ,θc(p))

′ such that J̄(θ)P = �̄(θ)PMn where Mn = P′NnP = diag{nλc(1), . . . ,

nλc(p)} where λc(i) = 0.0, for i = 1, . . . ,ps, 0 < λc(i) < 0.5, for i = ps +1, . . . ,ps +pm,
and λc(i) = 0.5, for i = p − pw + 1, . . . ,p, ps + pm + pw = p. The consequences for
estimable functions are summarized in the following theorem.
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Theorem 3.5. Suppose that Assumptions 2.1–2.3, 3.1, and 3.2 hold. Then, for
any z �= 0 and permuted parameter vector Pθ , we have q′

0nPθ is an estimable
function whenever q′

0n = z′H0n where H0n = (K′
0n�̄nK0n)

+(K′
0n�̄nK0n), and

√
nq′

0nM−1
n P(̂θn − θ0n) = −z′(K′

0n�̄nK0n)
+(K′

0n�̄n)�̄
1
2
0nBn(θ0n)+op(1),

where K0n = J̄0nP+F0nPSw, Sw = diag(

ps+pm︷ ︸︸ ︷
0, . . . ,0 ,

pw︷ ︸︸ ︷
1, . . . ,1), and (P′ ⊗I)vec{F0n} =

(P′ ⊗ I)
̄
1
2
0nWn(θ0n) where 
̄0n = 
̄n(θ0n) and Wn(θ0n) ⇒ N (0,Ikp).

Theorem 3.5 is analogous to Theorem 1 of Stock and Wright (2000), and
Theorem 2 of Guggenberger and Smith (2005), wherein the parameter vector is
shown to converge in distribution under (Stock and Wright, 2000, Assum. C) to
a functional of a weakly convergent sequence. Theorem 3.5 is derived without
recourse to Stock and Wright (2000, Assum. C), and it relates to the convergence in
probability of estimable functions to a random variable comprised of nonstandard
convolutions of functions of singular inverted Wishart covariance matrix Gaussian
mixtures.7

From the identity
√

nq′
0nM−1

n P(̂θn − θ0n) ≡ ∑p
i=1 n(0.5−λc(i))qon,c(i)(θ̂nc(i) −

θ0n,c(i)), it is apparent that if the parameter identification strength is strong overall
(ps = p), then the previous limit theory in Theorem 3.3 will apply with a standard

n
1
2 -convergence rate. If the parameter identification strength is only moderate to

strong (pm +ps = p), consistency and asymptotic normality will still hold, but the
convergence rate of the components n(0.5−λc(i))qc(i)(θ̂nc(i) −θ0n,c(i)), i = ps +1, . . . ,p,
could be quite slow relative to the standard

√
n rate if λc(i) is close to 0.5. These

convergence rates may be amplified or attenuated via the influence of J̄0nP. When
the parameter identification strength is strong and ‖J̄0n‖ = O(n−κ), for example,

the n
1
2 -convergence rate will be deflated if the moment identification strength

is semi-strong and 0 < κ < 1
2 . If the parameter identification strength is partly

weak, however (λc(i) = 0.5, for i = p−pw +1, . . . ,p where 1 ≤ pw < p), Theorem
3.5 indicates that uncertainty will be retained in the limit by way of estimable
functions containing a random component with a non-degenerate non-normal
asymptotic distribution. Thus, in a partially identified model with mixed levels
of identification strength, GMM estimates of estimable functions will exhibit
different large-sample behavior according to the dictates of the identification
strength attributable to individual parameter estimates. Since the latter will be
unknown, this does not augur well for their application in the construction of test
statistics or confidence regions.

7The singular inverted Wishart distribution is defined as the distribution of the Moore–Penrose inverse of a singular
Wishart distributed matrix (see Bodnar, Mazur, and Podgorski, 2016; Srivastava, 2003 for details). Theorem 3.5
provides a generalization of Corollary 3.1(b) to Theorem 3.1 of Choi and Phillips (1992) where the asymptotic
distribution of the IV estimator is shown to be a non-degenerate covariance matrix mixture (see also Staiger and
Stock (1997, Sect. 2B, p. 562))). The asymptotic results presented in Choi and Phillips (1992) derive from the central
limit theory given in Phillips (1989), which also delivers the limit theory used in Staiger and Stock (1997) .
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4. ILLUSTRATIONS I

4.1. The Linear Equations Model

Here, we will illustrate the previous results via what might be regarded as a leading
case of GMM; namely the classical linear equations model with structural equation

yt = x′
tθ +ut, t = 1, . . . ,n, (4.1)

and reduced form

xt = �ξ t +vt, t = 1, . . . ,n, (4.2)

where x′
t = (x1t, . . . ,xpt) is a vector of endogenous regressors, θ ′ = (θ1, . . . ,θp),

ξ ′
t = (ξ1t, . . . ,ξkt) is a vector of IVs that is uncorrelated with ν ′

t = (ut,v′
t), and the

reduced-form parameter � is p×k, k ≥ p. It will be assumed that n−1∑n
t=1 ν tν

′
t

p→
V = E[ν tν

′
t], n−1∑n

t=1 ξ tξ
′
t

p→ � = E[ξ tξ
′
t], and that n− 1

2
∑n

t=1 ξ t ⊗ ν ′
t ⇒

N (0,�⊗V) where �⊗V is positive definite. For the purposes of this simulation,
exercise ξ t ⊗ν ′

t, t = 1, . . . ,n = 250, were generated as independent and identically
distributed N (0,�⊗V) random variables with � = Ik and

V =
[

1 ρ ′
ρ T

]
,

where the vector ρ = (ρ, . . . ,ρ)′ and T is a pth-order Toeplitz matrix with the
first row (1,ρ,ρ2, . . . ,ρp−1). A mild degree of endogeneity was induced by setting
ρ = 0.5. The true structural equation coefficient was set equal to the p element sum
vector, θ0 = (1, . . . ,1)′.

The above simultaneous equations IV model maps into the previous GMM
notation via w′

t = (yt,x′
t,ξ

′
t), μ(wt,θ) = ξ t(yt − x′

tθ) and ∂μ(wt,θ)/∂θ ′ = −ξ tx
′
t.

Writing yt = ξ ′
tπ + (ut + v′

tθ) for the reduced form for yt leads to the expression
�(π −�′θ) for μ̄n(θ). The long-run variance �̄0n = σ 2

u � where σ 2
u = E[u2

t ] and
the optimal weighting matrix corresponds to �̄n = nσ 2

u (
∑n

t=1 ξ tξ
′
t)

+. The Jacobian
�̄n(θ) = −��′. From the equality μ̄n(θ)− μ̄n(θ0) = −��′(θ − θ0), it follows
that �0n = {θ : ��′(θ − θ0) = 0} and hence that H̄0nθ0n = H̄0n(H̄0nθ0) where
H̄0n = H = (���′)+(���′). From the results presented in Section 4, we also
know that q′̂θn will be a CEAN estimator of q′θ0n = z′Hθ0n = z′Hθ0 = q′θ0 for
any vector of the form q′ = z′H where z is arbitrary.

For this model, the Jacobian −��′ is independent of θ , and since by assumption
� is positive definite, the identification of θ depends solely upon the reduced-form
coefficient. From an experimental perspective, this represents a useful simplifica-
tion since it allows the degree of partial identification and the moment condition
identification strength to be controlled directly via manipulations of the singular
values of �. The singular value decomposition �′ = USV was constructed by
drawing the columns of U (k × p) and V (p × p) randomly from the uniform
distributions in O(k) and O(p), respectively, and fixing the singular values via

https://doi.org/10.1017/S0266466623000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000221


896 DONALD S. POSKITT

the specification S = diag(s1, . . . ,sq,0, . . . ,0) so that the identification rank equals
r{�} = q ≤ p. The individual parameter identification strength, which is here
equivalent to instrument strength, was controlled by setting �′ = J̄N−1

n where
J̄ = USV and Nn is chosen to give the desired combination of strong, moderate,
and weak identification with P = I.

For the classical linear equations model, it is well known that the efficient two-
step GMM estimator reduces to the two-stage least squares (TSLS) estimator. In
the current setting, the TSLS solution set is given by those parameter values that
solve the second-stage normal equations,

�̂n = {
θ : (X′

Pξ X)θ = X′
Pξ y

}
,

where X′ = (x1, . . . ,xn), y = (y1, . . . ,yn)
′, and the projection matrix Pξ =

X(X′
X)+X′, where X

′ = (ξ 1, . . . ,ξ n). A typical element of �̂n is given by

θ̂n = (X′
Pξ X)+X′

Pξ y+ ((X′
Pξ X)+(X′

Pξ X)− I)z, (4.3)

where z is arbitrary. Substituting y = Xθ0 + u into (4.3) and taking limits as

n → ∞ yields the result that dH(�̂n;{θ : θ = Hθ0 +(H−I)z}) p→ 0, and hence that

dH(�̂n;�0n)
p→ 0 since {θ : θ = Hθ0 + (H− I)z} = �0n because ��′(H− I) = 0

(cf. Theorem 3.2). Substituting y = Xθ0 +u into (4.3) and multiplying through on
the left-hand and right-hand sides by z′(X′

Pξ X)+(X′
Pξ X) gives

z′(X′
Pξ X)+(X′

Pξ X)(̂θn − θ0) = z′(X′
Pξ X)+X′

Pξ u . (4.4)

Equation (4.4) forms a TSLS counterpart to Theorem 3.3, from which we know
that the asymptotic distribution of

√
nq′(̂θn − θ0n) where q′ = z′H will be normal

with zero mean and variance σ 2
u z′(���′)+z. To implement this result, in practice,

the obvious estimate of H can be obtained by inserting n−1(X′
Pξ X) in place of

(���′) to give Ĥ = (X′
Pξ X)+(X′

Pξ X), similarly, the variance can be estimated
by replacing (���′) by n−1(X′

Pξ X) and the residual variance σ 2
u by the estimate

constructed from the TSLS residuals as σ̂ 2
u = (n − p)−1∑n

t=1(yt − x′
t̂θn)

2. The
quasi-true parameter θ0n is given here, as indicated in the theoretical development
in Section 3.2, by Ĥθ0.

Figure 1 graphs the simulated distribution function and the normal probability
plot of the theoretical quantity

√
nq′(̂θn − θ0n)/sez(̂θn) when q′ = z′H where

z′ = (1, . . . ,1) and sez(̂θn) = σu

√
z′(���′)+z, and the corresponding empirical

quantity
√

nq′(̂θn −θ0n)/sez(̂θn) when q′ = z′Ĥ and sez(̂θn) = σ̂u

√
nz′(X′Pξ X)+z

was used for the estimated standard error. The results depicted in Figure 1 were
obtained when p = 5 and k = 9, using si = 5.0(0.8)(i−1), i = 1, . . . ,p, and R = 5,000
replications.

Perusal of Figure 1 indicates that in settings where the model is identified, the
level of endogeneity is moderate, the degree of overidentification is quite large,
and the instruments are strong, a sample size of n = 250 is sufficient for the
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Figure 1. Distribution of TSLS estimable function estimates: number of endogenous regressors p = 5,
number of instruments k = 9, sample size n = 250. Identified model: identification rank q = p = 5.

finite-sample distribution of the theoretical and empirical values of
√

nq′(̂θn −
θ0n)/sez(̂θn) to be virtually identical, with both following the dictates of Theo-
rem 3.3 reasonably well. The distribution and normal probability plots in Figure 1
indicate that in this case the quantiles of

√
nq′(̂θn − θ0n)/sez(̂θn) are well approx-

imated by the quantiles of a standard normal distribution ζ(1−α) for 0.01 ≤ α ≤
0.99. Such results are not new, of course, but serve here to provide a basis for
comparison.

The results depicted in Figure 2 were obtained using the same experimental
design as Figure 1 save that si = 5.0(0.8)(i−1), i = 1, . . . ,q, si = 0, i = q+1, . . . ,p,
q = p − 2 = 3, so the DGP is only partially identified. The detrimental impact of
lack of identification upon the sampling distribution of

√
nq′(̂θn − θ0n)/sez(̂θn)

can be clearly seen in Figure 2. Figure 2a shows that the quantiles of the√
nq′(̂θn −θ0n)/sez(̂θn) theoretical values remain well approximated by ζ(1−α) for

0.025 ≤ α ≤ 0.975, but the empirical
√

nq′(̂θn − θ0n)/sez(̂θn) quantile values are
no longer approximated by those of a standard normal distribution.8 The ability of
estimable functions to ameliorate the adverse effects of identification failure can
be gleaned, nevertheless, from an examination of Figure 2b. Figure 2b plots the
simulated distribution function and the normal probability plot of the theoretical
and empirical quantities

√
nq′(̂θn − θ0n)/sez(̂θn) when the non-estimable value

q = z is used in place of the estimable values employed in Figure 2a.
The extreme tails of the theoretical values of

√
nq′(̂θn − θ0n)/sez(̂θn) observed

in Figure 2b accord with the findings of Phillips (1989) where it is shown that the
TSLS estimator of an unidentified parameter converges in law to a non-degenerate
distribution and that the uncertainty that results from lack of identification persists

8Results obtained using a sandwich estimate for the standard error, namely sez (̂θn) = (nz′(X′
Pξ X)+

(X′
X(X′

X)+(X′D̂uX)(X′
X)+X′X)(X′

Pξ X)+z)
1
2 where D̂u denotes the diagonal matrix diag((y1 −x′

1 θ̂n)
2, . . . ,(yn −

x′
n θ̂n)

2), were qualitatively the same.
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(a) TSLS estimable function estimates
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(b) TSLS non-estimable function “estimates”

Figure 2. Distribution of TSLS estimable and non-estimable function values in panels (a) and (b)
respectively: number of endogenous regressors p = 5, number of instruments k = 9, sample size n =
250. Partially identified model: identification rank q = p−2 = 3.

in the limit in the form of a covariance matrix normal mixture. In the simula-
tions reported here, 4,046 out of 5,000 replications gave a theoretical value of

|√nq′(̂θn −θ0n)/sez(̂θn)| in excess of 3.25, for a standard Cauchy random variable
Pr(|C| ≥ 3.25) = 0.81. The use of estimable functions has clearly corrected for the
extreme behavior of the theoretical values, as seen in a comparison of the properties
of the theoretical values of

√
nq′(̂θn − θ0n)/sez(̂θn) observed in Figure 2a and

Figure 2b. Interestingly enough, and by way of contrast, the empirical
√

nq′(̂θn −
θ0n)/sez(̂θn) quantile values do not appear to have altered much between the two
scenarios depicted in Figure 2a and Figure 2b the distribution being similarly
leptokurtic and skewed in both cases. The differences in behavior between the
theoretical and empirical values of

√
nq′(̂θn − θ0n)/sez(̂θn) arise in part because

n−1(X′
Pξ X) is frequently deemed to be nonsingular, a consequence of which is

that Ĥ = I and q′ = z′Ĥ = z′, so the empirical estimable function values collapse
to the non-estimable function values. A more detailed explanation of the causes of
this phenomenon is presented in the Supplementary Material.
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Figure 3. Distribution of TSLS estimable function values: number of endogenous regressors p = 5,
number of instruments k = 9, sample size n = 250. Identified model: identification rank q = p = 5 and
identification strength mixed, ps = 3 and pw = 2.

We will now extend the previous illustrations and assess how mixed levels of
identification strength will influence the previously observed behavior.

Figure 3 is based on the same experimental design as employed in Figure 1, save
that in Figure 3 the DGP is identified and the strength of the instruments is mixed,
that is, the identification rank q = p = 5 and the instruments contain both strong
ps = 3 and weak pw = 2 components. Figure 3 plots the theoretical and empirical
values of

√
nq′(̂θn −θ0n)/sez(̂θn) when q = z, which is estimable because the DGP

is identified and H = I.
The only difference between the DGP giving rise to Figure 3 and the DGP that

gave rise to Figure 1 is that in Figure 3 the strength of the instruments is mixed,
ps = 3 and pw = 2, whereas in Figure 1, the instruments were uniformly strong,
ps = p = 5. The upshot of this difference is clearly seen in the contrast between
Figure 1, wherein the behavior of

√
nq′(̂θn − θ0n)/sez(̂θn) was in close accord

with asymptotic normality, and Figure 3, wherein the theoretical and empirical
values of

√
nq′(̂θn − θ0n)/sez(̂θn) exhibit significant bias, with a distribution that

is positively skewed relative to the normal distribution. Similar effects to those
seen in Figure 3 were first documented in Staiger and Stock (1997), where
the nomenclature “local-to-zero asymptotics” was coined to describe the weak

instrument case �′ = J̄n− 1
2 . For reviews of the weak instrument local-to-zero

asymptotics literature, see Stock et al. (2002) and Andrews and Stock (2007).
Staiger and Stock (1997) showed that the TSLS estimator is inconsistent and has
a nonstandard asymptotic distribution when the instruments are weak, and the
behavior seen in Figure 3 indicates that similar properties will prevail for estimable
functions in the nonstandard weakly identified case where the instrument strength
is mixed, as indicated in Theorem 3.5.

When applied to DGPs containing both partial and weak identification, the
TSLS estimator exhibits behavior very similar to that seen in Figure 3. Unlike
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the situation in Figure 2, however, consideration of estimable functions does not
adjust for the effect of identification failure, neither for the empirical values nor
the theoretical values of

√
nq′(̂θn −θ0n)/sez(̂θn). The estimable function and non-

estimable function values are essentially identical for both. This invariance occurs
because not only does Ĥ = I for the empirical values, for the reasons already
given, but the added randomness in the Jacobian from the limiting properties

of J̄ + n− 1
2
∑n

t=1 ξ tv
′
tSw introduced by the presence of identification weakness

(recall Assumption 3.2 and Theorem 3.5) implies that, bar sets of measure zero,
n−1(NnX′

Pξ XNn) will be nonsingular for all n sufficiently large and hence that
H0n = I for the theoretical values. So z′(H0n − I)(̂θn − θ0) = −z′(Ĥ− I)θ0 = 0.

An interesting feature of Figure 3 is that even though the DGP is identified the
behavior of both the theoretical and empirical values of

√
nq′(̂θn − θ0n)/sez(̂θn)

parallel that of the non-estimable values of
√

nq′(̂θn − θ0n)/sez(̂θn) with q = z
seen in Figure 2b. In Figure 2b, the DGP instrument strength was strong, ps = 5,
but the identification rank q = p − 2 = 3 and the rank deficiency p − q = 2.
The DGP underlying Figure 3 corresponds to an identified model where r{�} =
p = 5, 0 < ‖J̄‖ < ∞ and the parameter identification strength is mixed, with
λc = 0, c = 1, . . . ,ps = 3, and λc = 0.5, c = p − pw + 1, . . . ,p, pw = 2, so Nn =
diag(1,1,1,n

1
2 ,n

1
2 ). The last two columns of J̄N−1

n will be arbitrarily close to
zero for all n sufficiently large, suggesting that whereas θc, c = 1, . . . ,ps will be
strongly identified as n increases, the weakly identified parameters θc, c = p −
pw +1, . . . ,p, will appear to be unidentified. In light of the previous observations, it
might therefore seem not unreasonable to conjecture that the behavior of statistics
computed from data derived from an identified DGP with ps strongly identified and
pw weakly identified parameters will ultimately be difficult to distinguish from the
behavior that would be seen had the statistics been computed from data produced
by a DGP with strongly but partially identified parameters with identification rank
q = ps < p and rank deficiency p−q = pw. In what follows, it will be shown that
such a conjecture is false.

4.2. Common Conditional Heteroskedastic Features

In their analysis of common features, Engle and Kozicki (1993) suggested that
Hansen’s J-test (Hansen, 1982) could provide a unified testing framework. As
shown in Dovonon and Renault (2013), however, in the nonlinear example of
testing for common CH features identification failure is an integral part of
the model and standard GMM asymptotic theory, and the distribution of the
J-test statistic in particular, breaks down. A p-dimensional stochastic process
rt = (r1t, . . . ,rpt)

′ (a vector of asset returns) is said to have p − K time invariant
CH common features, K < p, if it has a conditional covariance matrix given
by

Var(rt+1|Ft) = 
Dt

′ +�,
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where Var[rt+1|Ft] denotes the conditional variance of rt+1 given all available
information at period t, 
 is a p × K matrix, Dt = diag{σ 2

1t, . . . ,σ
2
Kt}, � is a p × p

positive definite matrix, and {Ft}t≥0 is the filtration to which {rt}t≥0 and {σ 2
it }t≥0,

1 ≤ i ≤ K, are adapted. In this framework, a CH common feature is by definition
any vector θ in R

p such that Var[θ ′rt+1|Ft] = θ ′�θ ′, a constant.
Following Dovonon and Renault (2013), suppose that: (i) r{
} = K and Var[dt],

where dt is the K component vector (σ 2
1t, . . . ,σ

2
Kt)

′, is nonsingular, (ii) E[rt+1|Ft] =
0 and (iii) there exists a k-dimensional vector of Ft-measurable instruments ξ t such
that Var[ξ t] is nonsingular and r{Cov[ξ t,dt]} = K. Then the common features are
the solutions θ ∈ R

p, θ �= 0, of the moment conditions

μt((ξ
′,r′),θ) = E[ξ t{(θ ′rt+1)

2 − c(θ)}] = 0,

where c(θ) = E[(θ ′rt+1)
2] (Dovonon and Renault, 2013, Lem. 2.2). If the process

(ξ ′
t,r

′
t+1)

′ is stationary and ergodic with E[‖ξ t‖2] < ∞ and E[‖rt+1‖4] < ∞, and
(ξ ′

t,r
′
t+1)

′ fulfills the conditions needed for (ξ ′
t,vec(rt+1r′

t+1)
′)′ to satisfy a central

limit theorem, then

�̄n(θ) = 1

n

n∑
t=1

∂E
[
μt((ξ

′,r′),θ)
]

∂θ ′ = ∂μ̄n(θ)

∂θ ′ = 0 (4.5)

for any common feature θ (Dovonon and Renault, 2013, Prop. 2.1). Thus, we have
that the Jacobian will be null and r{�̄n(θ)} = qn = 0 for any true value θ0 and any
θ ∈ N(θ0;δ). Consequently, first-order identification failure becomes an intrinsic
property of the model.

Under current assumptions, Var[θ ′rt+1|Ft] equals a constant if and only if θ

equals a nontrivial solution to the homogeneous equation system 
′θ = 0. The null
space of 
′ has dimension p−K and in order to achieve identification, exclusion
restrictions must be imposed that characterize a subset of the parameter space
� that contains at most one unknown common feature θ0, with � taken as an
arbitrarily large compact subset of R

p. Various parameter restrictions could be
imposed, but a common and interpretable normalization condition is the unit cost
constraint that

∑p
i=1 θi = 1, which leads to the interpretation of θ ′rt as the return

per dollar invested. Setting α = 1−∑p−1
i=1 βi where βi = θi, i = 1, . . . ,p−1, we can

see that the unit cost constraint parallels Lemma 2.2 and the moment conditions
and Jacobian can be viewed as functions of β = (βi, . . . ,βp−1)

′ ∈ B ⊂ R
p−1.

Suppose that the unit cost condition is imposed. Using a sequence of elementary
row transformations, the equation system 
′θ = 0 can be rewritten in equivalent
row echelon form

H1β1 +H2β2 +hα = 0, (4.6)

where H1 is a K × K upper triangular matrix with unit diagonal elements, H2

is a K × (p − K − 1) matrix, h is a K × 1 column vector, and β = (β ′
1,β

′
2)

′ is a
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conformable partition of β. If K = p−1, then β = β1 = (βi, . . . ,βK)′, the second
term H2β2 is null, and (4.6) can be rewritten as

(H1 −hi′K)β1 +h = 0,

where iK = (1, . . . ,1)′, the K ×1 sum vector. Since r{[(H1 −hi′K) : −h]} = r{(H1 −
hi′K)} = K, it follows that θ is uniquely identified from β = β1 = (βi, . . . ,βK)′ and
α = 1−∑K

i=1 βi. In line with Engle and Kozicki (1993), both Dovonon and Renault
(2013) and Lee and Liao (2018) impose the condition that K = p − 1 in order to
achieve identifiability. If K < p−1, however, (4.6) implies that any θ = (β ′,α)′ in
which

(H1 −hi′K)β1 = h(i′p−K−1β2 −1)−H2β2,

where β2 = (βK+1, . . . ,βp−1)
′ is arbitrary will satisfy both the unit cost constraint

and 
′θ = 0. Thus, if the assumption that K = p−1 has been imposed erroneously,
the unit cost condition will fail to identify θ0. Moreover, recognizing that β1 is a
linear and therefore convex function of β2, it follows that, when K < p−1,

�0n = {θ = (β ′
1,β

′
2,α)′ : (H1 −hi′K)β1 +h = (hi′p−K−1 −H2)β2 , α = 1−

p−1∑
i=1

βi},

a convex subset of �. In what follows, we will examine the consequences of
supposing that K = p−1 when in truth K ≤ p−1.

In order to render the previous theoretical structure operative, we will suppose
that the DGP is given by the CH factor model

rt+1 = μ+
ft+1 +ut+1 (4.7)

with constant factor loadings 
 and uncorrelated factors f1t, . . . , fKt where:
Var[ft+1|Ft] = Dt, Var[ut+1|Ft] = �, E[(f′

t,u
′
t)

′|Ft] = 0, and E[ftu′
t|Ft] = 0. We

will set our empirical moments conditions to

mn(θ) = n−1
X

′Mnr(θ), (4.8)

where X
′ = (ξ 1, . . . ,ξ n), Mn = In − n−1ini′n, and r(θ) = ((θ ′r2)

2, . . . ,(θ ′rn+1)
2)′.

Under the conditions as previously stated, Assumptions 2.1 and 2.2 hold, and if in
addition Assumption 2.3 also holds with �̄n positive definite, then by Lemma 3.1
the GMM estimate θ̂n = argminθ∈� Qn(θ) where

Qn(θ) = r(θ)′MnXWnX
′Mnr(θ)/n2, (4.9)

will be consistent for θ0 provided appropriate identification constraints have
been imposed that ensure Q̄n(θ) = μ̄n(θ)′�̄nμ̄n(θ) is uniquely minimized at θ0.
Otherwise, Theorem 3.2 will obtain. It is shown in Dovonon and Renault (2013,
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Props. 3.1 and 3.2) that the nullity of the moment Jacobian at any common feature
prevents a

√
n consistent estimate of θ0 from being built and that when θ0 is

identified ‖̂θn − θ0‖ = Op(n−1/4). Our focus of interest turns therefore to the
asymptotic properties of the GMM criterion function and the nonstandard behavior
of Qn(θ) that might be induced by the nonstandard asymptotic behavior of the
GMM estimator.

5. CRITERION-BASED INFERENCE

Our purpose here is to examine the effects of lack of identification and identifica-
tion strength on the properties of nQn(θ) and to investigate the consequences for
Hansen’s J-test of overidentification and the implementation of other inferential
procedures based on nQn(θ). Theorem 5.1 shows that in the presence of singularity
in the moment long-run variance, or rank deficiency in the Jacobian, or insufficient
identification strength, nQn(̂θn), nQn(θ0n), and nQn(θ0n)−nQn(̂θn) have nonstan-
dard asymptotic distributions. In Theorem 5.1, the symbol ≺ is used to denote
stochastic dominance and the symbolic logic notation {a∨b∨c} is used to denote
the disjunction a or b or c.9

Theorem 5.1. Assume that the conditions of Theorem 3.5 hold and let θ̂n denote
a GMM estimator obtained by minimizing Qn(θ) where Wn is chosen such that

‖Wn − �̄n‖ p→ 0. Set �̄0n = �̄
1
2
n K0n(K′

0n�̄nK0n)
+K′

0n�̄
1
2
n and let Lk(ζ,A) denote

the probability law of the quadratic form ζ ′Aζ where ζ = (ζ1, . . . ,ζk)
′ ∼ N (0,Ik)

and A = A′ ≥ 0. Then

nQn(θ0n) ⇒ Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n) {≺ ∨ ≡ ∨ �}χ2(kn),

where kn = r{�̄0n}, and nQn(θ0n) can be decomposed into the sum of two
asymptotically independent components,

nQn(̂θn) ⇒ Lk(ζ,�̄
1
2
0n�̄

1
2
n (I− �̄0n)�̄

1
2
n �̄

1
2
0n){≺ ∨ ≡ ∨ �}χ2(kn −qn)

and

n{Qn(θ0n)−Qn(̂θn)} ⇒ Lk(ζ,�̄
1
2
0n�̄

1
2
n �̄0n�̄

1
2
n �̄

1
2
0n) .{� ∨ ≡ ∨ ≺}χ2(qn),

where qn = r{K0n}.

9For any two probability measures P1 and P2 belonging to a set of measuresP on a measurable space (�,S), P2 is said
to dominate P1, denoted P1 ≺ P2, if and only if P1(A) > P2(A) for all A ∈ S. This endows the space P with a partial
ordering P1{≺ ∨ ≡ ∨ �}P2, meaning that P2 dominates P1, or P1 and P2 are equivalent, or P1 dominates P2. On the
real line, this ordering assumes a very simple form: P1 ≺ P2 if and only if 1−F1(x) < 1−F2(x) for all x ∈ R where
for i = 1,2, Fi(x) is the cumulative distribution function (CDF) associated with Pi, namely Fi(x) = Pi((−∞,x]).
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There are aspects of Theorem 5.1 that are worthy of comment:

1. Whenever standard GMM assumptions are violated, the large-sample dis-
tributions of nQn(̂θn), nQn(θ0n), and nQn(θ0n) − nQn(̂θn) will be given by
generalized Laguerre series probability laws, and conventional chi-squared
approximations will only provide probability bounds, with the direction and
magnitude of the stochastic dominance between the two distributions dependent
on the nature and severity of the violation.

2. If Wn is chosen optimally and identification strength is strong, Theorem 5.1
recovers the standard χ2(k − p), χ2(k) and χ2(p) large-sample distributions
that hold in the identified full-rank case (see Hall, 2005, Chap. 5, for example).

3. Even if Wn is chosen optimally and identification strength is strong, singu-
larity in the moment long-run variance and rank deficiency in the Jacobian
result in chi-squared distributions with degrees of freedom determined by
kn = r{�̄0n} < k and qn = r{K0n} < p that provide probability bounds to the
underlying generalized Laguerre series probability laws.

4. Theorem 5.1 indicates that identification strength affects the distributional
properties of nQn(θ) via its impact upon �̄0n. When the identification strength
is weak, for example, the parameter values may not be readily discernable
from the data because Qn(θ) will not be able to discriminate among different
values of θ if ∂Dn(θ)/∂θ ≈ �̄n(θ) ≈ 0, suggesting that tests and confidence
sets based on nQn(θ) will not be immune from identification deficiency.
Nevertheless, even though the precision of any inference based upon Qn(θ)

may be impaired in the presence of identification deficiency, the generalized
Laguerre series probability laws for the limiting distributions of nQn(θ0n),
nQn(̂θn), and n{Qn(θ0n)− Qn(̂θn)} presented in Theorem 5.1 will adapt to the
circumstances and yield correct probability calculations.

In the following section, Section 6.1, these aspects of Theorem 5.1 are demon-
strated in the context of the classical linear equations model considered in Sec-
tion 4.1. Before proceeding, however, we present in Theorem 5.2 a modification
to the results presented in Theorem 5.1 that allows for the added complexity
introduced by the null Jacobian and first-order identification failure of the common
CH features model that was outlined in Section 4.2.

Theorem 5.2. Assume that the common CH features model satisfies the con-
ditions stated in Section 4.2 and let θ̂n denote a GMM estimator obtained by

minimizing Qn(θ) where Wn is chosen such that ‖Wn − �̄n‖ p→ 0. Let Lk(ζ,A,b)

denote the probability law of the quadratic form (ζ − b)′A(ζ − b) where ζ =
(ζ1, . . . ,ζk)

′ ∼ N (0,Ik), A = A′ ≥ 0 and ‖b‖ �= 0. Then

nQn(θ0n) ⇒ Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n)

and

nQn(̂θn) ⇒ Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n, − �̄

+
2

0nμ̄0n),
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where μ̄0n = μ̄n(ν̄0n),

ν̄0n = arg min
ν0n∈Rp

μ̄n(ν0n)
′�̄

+
2

0n(�̄
1
2
0n�̄n�̄

1
2
0n)�̄

+
2

0nμ̄n(ν0n) .

The following features of Theorems 5.1 and 5.2 should be added to the previous
list.

5. The generalized Laguerre series probability laws in Theorems 5.1 and 5.2 have
closed-form expressions for their cumulative distribution functions that can
be readily implemented numerically using standard software without recourse
to bootstrap or simulation methods. The probability distribution function of
Lk(ζ,A,b) (Lk(ζ,A) ≡ Lk(ζ,A,0)) takes the form

Lk(A,b;x) = 1

2k/2�(k/2)

∫ x/β

0
t(k−2)/2et/2dt+(

x

2β

)
e−x/2β

∞∑
j=1

ωj
�(j)

�((k +2j)/2)
L(k/2)

j−1 (x/2β),

(5.1)

where the weights ωj = (2j)−1∑j−1
r=0 τj−rωr, j = 1,2, . . ., and

τj = tr{(I−A/β)j}− (j/β)b′A(I−A/β)j−1b, j = 1,2, . . . ,

ω0 = 1, and L(γ )

j (·), j = 1,2, . . ., are the generalized Laguerre polynomials that
form an orthogonal family on 0 ≤ x < ∞ with respect to the Gamma distribution
with shape parameter γ . The series is uniformly convergent for all x ≥ 0 for any
value of β such that 2β exceeds the largest eigenvalue of A, and reduces to a
chi-squared form if A2 = A (for details, see Johnson, Kotz, and Balakrishnan,
1995, Chap. 29.5.3).

6. The use of nQn(θ) in conjunction with generalized Laguerre series probability
laws therefore presents the applied researcher with a straightforward method of
constructing asymptotically valid hypothesis tests and confidence sets that will
have size and coverage equal to their respective nominal levels and that will be
robust to identification failure and deficiency.

These features are noteworthy because although random-functional characteriza-
tions of the limiting probability laws of test statistics of interest have been given
elsewhere, and it has been pointed out that the distributions will be nonstandard in
the presence of identification failure and deficiency (see Staiger and Stock, 1997;
Stock and Wright, 2000; Guggenberger and Smith, 2005; Dovonon and Renault,
2013), explicit closed-form expressions for the probability distributions have not
previously been presented in the literature as they have here.
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6. ILLUSTRATIONS II

6.1. The Linear Equations Model

In order for the orthogonal decomposition nQn(θ) = n{Qn(θ)−Qn(̂θn)}+nQn(̂θn)

in Theorem 5.1 to be valid, the same weighting matrix must be used when
evaluating each component, which here amounts to using the TSLS error variance
estimate. The consequence of using σ̂ 2

u is that nQn(θ) equates to a modified
Anderson–Rubin statistic, and Hansen’s J-statistic nQn(̂θn) equals the test statistic
of Sargan (1958). Figure 4 graphs the simulated empirical distribution function of
the modified Anderson–Rubin (mAR) statistic, the Hansen–Sargan (HS) statistic,
and the pseudo-likelihood-ratio (pLR) statistic (n{Qn(θ) − Qn(̂θn)}), together
with two approximating Laguerre series expansions and the (bounding) chi-
squared distributions as given in Theorem 5.1. The approximating Laguerre series
expansions were evaluated by calculating the probability distribution function of
Lk(ζ,A) with the theoretical value of A replaced by either; (i) the sample analog
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Figure 4. Distribution of modified Anderson–Rubin statistic, Hansen–Sargan statistic, and pseudo-
likelihood ratio statistic: number of endogenous regressors p = 5, number of instruments k = 9, sample
size n = 250. Identified model with identification rank q = p = 5 and instrument strength strong ps =
p = 5.
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constructed by substituting n−1(X′
X)̂σ 2

u for �̄0n, Wn for �̄n, −n−1(X′X) for �̄0n,
and n−1(X′

Pξ X)̂σ 2
u for �̄

′
0n�̄n�̄0n, or (ii) the mean of the sample analogs over

the experimental replications. The first of these will be referred to as an analog
Laguerre series expansion and denoted Lk(An), and the second as a mean Laguerre
series expansion and denoted Lk(A).

The results depicted in Figure 4 were obtained using the same experimen-
tal design and parameter values as employed in Figure 1, where the level of
endogeneity is moderate, the degree of overidentification is quite large, and the
instruments are strong, with p = 5 and k = 9, and sample size n = 250. We can
see from Figure 4 that in the standard case where the model is identified and the
identification strength is strong, Lk(An), Lk(A), and the chi-squared distributions
are virtually identical for the mAR, HS, and the pLR statistic, and they are all
roughly coincident with their simulated empirical distribution functions. Such
outcomes are not unexpected and serve as a basis for comparison (as with Figure 1),
but they also demonstrate how Theorem 5.1 encompasses the standard results and
indicate how generalized Laguerre series probability laws will coalesce with chi-
squared distributions when appropriate.

Figure 5 is based on the same experimental design and parameter values as
employed in Section 4.1 to explore how data generated by a partially identi-
fied model will influence the large-sample properties of statistics of interest.
In Figure 5, the DGP is partially identified with strong instruments, the identi-
fication rank q = p − 2 = 3 and ps = p = 5. It is apparent from Figure 5 that lack
of identification has a significant impact on the behavior of nQn(θ). We find that
whereas both the analog and mean Laguerre series expansions continue to trace
out the simulated empirical distribution function of each statistic quite closely,
the chi-squared approximations no longer yield accurate guides to the sampling
distributions of the statistics. The χ2(q) and χ2(p) approximations provide upper
and lower bounds (respectively) to Lk(An), Lk(A) and the simulated empirical
distribution function for the pLR statistic, but Lk(An), Lk(A) and the simulated
empirical distribution function are dominated by the chi-squared approximations
for both the mAR statistic and the HS statistic.

In Figure 6, the DGP is identified, but the strength of the instruments is mixed,
the identification rank q = p = 5, and the instruments contain both strong ps = 3
and weak pw = 2 components. Thus, in the DGP giving rise to Figure 6, the
strength of the instruments is mixed, ps = 3 and pw = 2, whereas in the DGP that
gave rise to Figure 4, the instruments were uniformly strong, ps = p = 5. The
impact of weak instruments can be seen here in the behavior of the mAR statistic
and the pLR statistic. In Figure 4, we saw that when the model was identified
and the instruments were uniformly strong, Lk(An), Lk(A), and the chi-squared
approximations were virtually identical, and they were all roughly coincident with
their simulated empirical distribution functions. In Figure 6, we now see that
when the model is identified but the strength of the instruments is mixed, both
the analog and mean Laguerre series expansions continue to match the simulated
empirical distribution function of each statistic quite closely, but the chi-squared
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Figure 5. Distribution of modified Anderson–Rubin statistic, Hansen–Sargan statistic, and pseudo-
likelihood-ratio statistic: number of endogenous regressors p = 5, number of instruments k = 9, sample
size n = 250. Partially identified model with identification rank q = 3 and instrument strength strong
ps = 5.

approximations no longer yield accurate guides to the sampling distributions of the
mAR or the pLR statistic. Interestingly enough, for the HS statistic Lk(An), Lk(A),
the chi-squared approximation and the simulated empirical distribution are all in
close proximity, indicating that the HS statistic appears to exhibit an invariance to
mixed levels of instrument strength in identified settings. For the mAR statistic
and the pLR statistic, however, the chi-squared approximations are dominated
by the Laguerre series expansions and the simulated empirical distribution. The
chi-squared approximations are particularly poor in the right-hand tail of the
distributions, the third quartile of mAR and pLR corresponding roughly to the
0.875 quantile of their chi-squared approximations, for example. This result is
explicative of the over-rejection of test statistics based upon the TSLS estimator
found previously by Staiger and Stock (1997) when the instruments are weak.10

10When the sample size was increased from n = 250 to n = 5,000, the distributional properties of the mAR, HS, and
pLR statistics changed little despite there being a 20-fold increase in the sample size. This presumably reflects that,
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Figure 6. Distribution of modified Anderson–Rubin statistic, Hansen–Sargan statistic, and pseudo-
likelihood-ratio statistic: number of endogenous regressors p = 5, number of instruments k = 9, sample
size n = 250. Identified model with identification rank q = p = 5 and instrument strength mixed ps = 3,
pw = 2.

A further observation to be made of Figures 5 and 6 is that the only difference
in their DGPs is that the level of identification deficiency in Figure 5, p − q = 2,
matches the extent of the weakness in Figure 6, pw = 2. In both cases, Lk(An)

and Lk(A) are able to accurately characterize the sampling distribution of all three
statistics mAR, HS, and pLR. The chi-squared approximations, on the other hand,
dominate the sampling distributions of the mAR and HS statistics in the partially
identified case depicted in Figure 5, whereas the stochastic ordering is reversed in
the weakly identified case depicted in Figure 6. In Section 4, it was observed that
the behavior of estimable functions led to the conjecture that statistics computed
from data derived from different DGPs would behave similarly if the degree of
identification failure in one DGP matched the level of identification deficiency
given by the extent of the weakness in the other. The contrast between the behavior
seen in Figures 5 and 6 obviously runs counter to this conjecture.

as indicated in Theorem 3.5, for the DGP used in Figures 3 and 6, the TSLS estimates will be inconsistent and have
a nonstandard non-degenerate asymptotic distribution.
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Finally, for the structural equation plus reduced-form model in equations (4.1)
and (4.2), the maximal invariants under the group of non-singular linear transfor-
mations are the canonical correlations between xt and ξ t. For the DGPs examined
here, the canonical correlations between xt and ξ t are 0.9761, 0.9153, 0.9079, 0.0,
and 0.0 in the partially identified case, and 0.9708, 0.9368, 0.8861, 0.0599, and
0.0227 in the weakly identified case. The maximal invariants map into eigenvalues
�1 ≥ ·· · ≥ �p of the concentration parameter nT

+
2 (���′)T

+
2 of

{�1, . . . ,�p} = {40.7934,10.8018,9.8616,0.0000,0.0000}
for the partially identified DGP and

{�1, . . . ,�p} = {33.2556,14.8268,7.7831,0.0637,0.0233}
for the weakly identified DGP. Suppose that such values were to be observed
in practice and then employed in the widely used test procedure of Cragg and
Donald (1993), implemented by assigning a value to either asymptotic bias or
size distortion and using the arguments of Stock and Yogo (2005, Sect. 3) to
calculate a so-called weak instrument set. Then, following Stock and Yogo (2005),
the hypothesis that the instruments lie in the weak instrument set will be rejected
if the p-value Pr{χ2(k,δw) > (n − k) × �p} is less than α where α is the size of
the test and the non-centrality parameter δw is determined by the weak instrument
set. Whatever value is assigned to δw, this p-value would exceed 0.1469 for both
the partially identified DGP and the weakly identified DGP. If the likelihood ratio
(coefficient of vector alienation) statistic of Poskitt and Skeels (2008) were to be
similarly employed, using Pr{χ2(pk,δs) < −(2n − (p + k + 1)) × log(

∏p
j=1(1 +

�j)
− 1

2 )} to approximate its p-value (Poskitt and Skeels, 2008, Thm. 2), then the
hypothesis that the instruments are strong will be rejected if the p-value is less
than α. For any value of δs > 0, both the partially identified DGP and the weakly
identified DGP would result in this p-value being approximately zero. In both
settings, the models would therefore be deemed to be unidentified or weakly
identified at any conventional level of significance. Thus, the practitioner would
be made aware of identification issues, although the origin of any identification
problems would remain obscure. Nevertheless, the applied researcher can take
comfort from the fact that calculations conducted using Laguerre series expan-
sions to approximate the sampling distributions of statistics constructed from the
standard GMM criterion function nQn(θ) will give accurate probability values in
the presence of identification issues, irrespective of the latter’s source.

6.2. Common Conditional Heteroskedastic Features

In this subsection, we will examine the finite-sample behavior of the GMM
criterion function using the CH common factor model in (4.7). We consider a
quadruple vector rt with one, two, and three stationary and ergodic generalized
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Table 1. Parameter values for CH experimental DGPs, p = 4

DGP K0 �0n 
0 GARCH(σ0,φ0,ρ0)

CH1 1

⎡⎢⎢⎢⎣
−(1+β2)

β2

β3

(2−β3)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1

1

1/2

1/2

⎤⎥⎥⎥⎦ (0.2,0.2,0.6)

CH2 2

⎡⎢⎢⎢⎣
(β3 −6)/8

−(β3 +2)/8

β3

(2−β3)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0

1 1

1/2 1/4

1/2 1/8

⎤⎥⎥⎥⎦
(

0.2,0.2,0.6

0.2,0.4,0.4

)

CH3 3

⎡⎢⎢⎢⎣
−1/2

−1/2

−2/7

16/7

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0

1 1 0

1/2 1/4 1

1/2 1/4 1/8

⎤⎥⎥⎥⎦
⎛⎜⎝ 0.2,0.2,0.6

0.2,0.4,0.4

0.1,0.1,0.8

⎞⎟⎠

autoregressive conditionally heteroskedastic (GARCH) factors. The vector of
factors ft = (f1t, . . . ,fKt)

′) are generated from normal GARCH(σ,φ,ρ) processes:

fj(t+1) = σjtεj(t+1) and σjt = σj +φjf
2
jt +ρjσ

2
t−1 j = 1, . . . ,K ,

where εt = (ε1t, . . . ,εKt)
′ is an i.i.d. white noise N (0,Ik) process. The idiosyncratic

shock ut is an i.i.d. N (0,0.5I4) white noise process that is independent of the
stochastic disturbance εt. The parameter values chosen for the GARCH(σj,φj,ρj)

factors, j = 1, . . . ,K, the factor loadings considered in the simulation study, and
the true and pseudo-true unit cost common features are presented in Table 1. The
parameters β2 and β3 that appear in the �0n column are arbitrary and characterize
the unit cost common feature pseudo-true parameter space for K = p−1 = 3 when
K0 = 1 and K0 = 2. The parameter μ was set equal to zero throughout. That the
conditions stated in Section 4.2 are satisfied for these DGPs is outlined in the Sup-
plementary Material. For each DGP, experiments were conducted for sample sizes
n = 250,500,750,1,250,2,000,3,250,5,250, and 8,500, each with R = 5,000
replications. The experimental design and parameter values employed here parallel
those employed in Dovonon and Renault (2013) and Lee and Liao (2018) but
explore in greater detail a broader range of unidentified models.

For each DGP, θ̂n = argminθ∈� Qn(θ) was calculated while imposing the unit
cost constraint and assuming that K = p−1 = 3. From the norm inequality

‖Dn(θ)′Wnmn(θ)‖ ≤ ‖Dn(θ)′W
1
2
n ‖ · ‖W

1
2
n mn(θ)‖,

it follows that the first-order condition for a minimum of Qn(θ) will be satisfied

by any θ such that Dn(θ)′W
1
2
n = 0. That such a solution is possible in the current

setting follows from (4.5) since by Assumption 2.2 (which holds by virtue of the

https://doi.org/10.1017/S0266466623000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000221


912 DONALD S. POSKITT

conditions stated in Section 4.2) Dn(θ) converges uniformly to �̄n(θ) and �̄n(θ) =
0 for any common feature. Substituting θ = Eβ + e where

E =
[

Ip−1

−i′p−1

]
and e = (0, . . . ,0,1)′

into the moment conditions in (4.8) and differentiating with respect to β leads us,
after some straightforward if somewhat tedious manipulations, to the following

representation for the vectored homogeneous equation vec{Dn(θ)′W
1
2
n } = 0,

1

n

n∑
t=1

(W
1
2
n (ξ t − ξ̄)⊗E′rtr′

t(Eβ + e)) = 0, (6.1)

where ξ̄ = n−1∑n
t=1 ξ t. Let

∇rt = E′rt = ((r1t − rpt), . . . ,(r(p−1)t − rpt))
′

and set

An = 1

n

n∑
t=1

(W
1
2
n (ξ t − ξ̄)⊗∇rt∇r′

t)

and

bn = 1

n

n∑
t=1

(W
1
2
n (ξ t − ξ̄)⊗∇rtrpt) .

Then, from (6.1), we can conclude that for any given weight matrix Wn, the
corresponding criterion minimizing solution is given by

θ̃n = e−EA+
n bn .

For the purposes of the current simulations, the GMM estimator θ̂n was taken as the

iterated two-step estimate θ̃
(s′)
n where the sequence θ̃

(s)
n , s = 1,2, . . ., was initiated

with θ̃
(0)

n calculated using Wn = I and θ̃
(s)
n was obtained using Wn = ̂̄�+

0n(̃θ
(s−1)

n )

where

̂̄�0n(θ) = 1

n

n∑
t=1

(ξ t − ξ̄)(ξ t − ξ̄)′{(θ ′rt+1)
2 − r(θ)}2 , r(θ) = 1

n

n∑
t=1

(θ ′rt+1)
2 .

The iterations were terminated at θ̃
(s′)
n where s′ is the first index such that

nQn(̃θ
(s)
n ) ≤ nQn(̃θ

(s−1)

n ), s ≤ s′, and nQn(̃θ
(s′)
n ) < nQn(̃θ

(s′+1)

n ), s′ ≤ 50.11

11The average value of s′ across the simulations reported below was 3.5193.
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Following Engle and Susmel (1993), the instrument sets employed were
ξ t = (r2

1t, . . . ,r
2
pt)

′ and ξ t = (r2
1t, . . . ,r

2
pt,r1t · r2t, . . . ,r(p−1)t · rpt)

′, namely r2
it, and

r2
it plus rit · rjt, for i = 1, . . . ,p, j = i + 1, . . . ,p, p = 4, giving k = 4 and k = 10,

respectively. For the AR statistic nQn(θ0n), the probability law Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n)

and the χ2(k) distribution coincide since �̄n = �̄
+
0n and in the current setting �̄0n

is nonsingular. The AR analog and mean Laguerre series expansions correspond

to calculating Lk(A;x) with A = ̂̄� 1
2
0n(θ0n)

̂̄�+
0n(θ0n)

̂̄� 1
2
0n(θ0n), which equates to

estimating �̄0n by ̂̄�+
0n(θ0n). For nQn(̂θn), the analog Laguerre series expansion

Lk(An,bn) was evaluated by calculating Lk(A,b;x) with A = ̂̄� 1
2
0n(̂θn)Wn

̂̄� 1
2
0n(̂θn)

and b = −̂̄� +
2

0n (̂θn)̂u0n‖mn(̂ν)‖ where û0n is the eigenvector corresponding to the

smallest eigenvalue of ̂̄� +
2

0n (̂θn)(
̂̄� 1

2
0n(̂θn)Wn

̂̄� 1
2
0n(̂θn))

̂̄� +
2

0n (̂θn) and ν̂ minimizes
n−1∑n

t=1(ν
′rt)

2, ‖ν‖ = 1. These assignments amount to estimating �̄0n bŷ̄�0n(̂θn), �̄n by Wn, and μ̄0n by μ̂0n = û0n‖mn(̂ν)‖. The mean Laguerre series
expansion Lk(A,b) was calculated with A = A and b = b where A and b denote
the average value of the sample analog estimates obtained across the experimental
replications.

Figure 7 graphs the distributions of nQn(θ0n) and nQn(̂θn) observed with DGP
CH3 for k = 10 when n = 1,250 and n = 2,000. At these sample sizes, the variation
in nQn(θ0n) from realization to realization generates an observed distribution that
is slightly more leptokurtic and skewed than χ2(k), but the distributions have
virtually coalesced by the time n = 8,500, the largest sample size considered. The
observed distribution of nQn(̂θn) dominates the χ2(k − K) = χ2(7) distribution
and aligns with Lk(An,bn) and Lk(A,b) alongside χ2(k) = χ2(10). This accords
with the finding of Dovonon and Renault (2013) that Hansen’s J-test (the HJ-test)
is over-sized and confirms that the χ2(k) distribution will provide asymptotically
conservative critical values. The Laguerre series expansions trace out the tail

behavior of the distribution of nQn(̂θn) more precisely, the non-centrality of the
expansions reflecting the over-sized nature of HJ-test.12 Interestingly enough, as
n increases, the Laguerre series expansions maintain the asymptotic first-order
stochastic dominance condition

χ2(k −K) ≺ Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n, − �̄

+
2

0nμ̄0n) ≺ χ2(k)

(Dovonon and Renault, 2013, Thm. 3.2) despite being non-central.
To illustrate the properties of the AR and HJ statistic in the unidentified case,

Figure 8 depicts the outcomes obtained with DGPs CH2 and CH1 for k = 4
when n = 1,250. In Figure 8, the AR statistic was calculated as nQn(θ0n) where

12In the linear equations IV framework of Section 6.1, the Jacobian is rank deficient, but �̄0n �= 0 and the constancy
of �̄0n = −��′ implies that the condition for second-order identification (Dovonon and Renault, 2013, Assum. 5)
fails. The parameter θ0 therefore remains unidentified, resulting in HJ-test being under-sized in the presence of the
first- and higher-order identification failure that arises in the linear IV setting.
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Figure 7. Distribution of nQn(θ0n) and nQn (̂θn) for DGP CH3 for k = 10 and n = 1,250, 2000.

θ0n was set equal to the pseudo-true parameter in �0n with the smallest norm.
Figure 8 also illustrates the behavior of a modified version of the HJ-statistic.
An alternative approach to implementing the non-centrality in Theorem 5.2 is to
adjust the HJ-statistic by applying a mean correction to the moment conditions.
The mean corrected version, or modified HJ-statistic, is given by

nMQn(̂θn) = (mn(̂θn)− μ̂0n)
′Wn(mn(̂θn)− μ̂0n) .

The re-centering induced by the mean correction implies that nMQn(̂θn) ⇒
Lk(ζ,�̄

1
2
0n�̄n�̄

1
2
0n) and the cumulative distribution function of nMQn(̂θn) can be

approximated by a central Laguerre series expansion Lk(A;x) calculated with

A = �̄
1
2
0n�̄n�̄

1
2
0n.

There are some obvious commonalities between the qualitative features seen in
Figure 7 and those observed in Figure 8.

Once again, the χ2(k) asymptotic approximation provides a relatively accu-
rate characterization of the observed distribution of the AR statistic. The χ2(k)
percentile values also provide not unreasonable approximations to the distribution
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Figure 8. Distribution of nQn(θ0n) and nMQn (̂θn) for DGPs CH1, panel (a), and CH2, panel (b), for
k = 4 and n = 1,250.

of the modified HJ-statistic, but the Laguerre series expansions are again able

to more accurately trace out the tail behavior of nMQn(̂θn). That the difference
between the Laguerre series expansions and the χ2(k) approximation is not

inconsequential can be gleaned from the fact that for nMQn(̂θn) the tail probability
1−Lk(A,χ2

0.95(k)) equaled 0.078 when K0 = 2 and 0.0846 when K0 = 1.
Overall, similar features to those seen in Figures 7 and 8 were obtained

using DGPs CH3, CH2, and CH1, and various parameter settings. The significant
properties that were observed are as follows: (i) The AR statistic can be used as a
tool for conducting inference in the common CH features model. Thus, a so-called
S-set, namely {θ : nQn(θ) < χ2

(1−α)(k)} (Stock and Wright, 2000, pp. 1064–1065),
will provide an asymptotically valid (1−α)100% confidence region since nQn(θ)

will converge in distribution to a χ2(k) random variable when evaluated at any
parameter point in �0n. (ii) The HJ-test will be over-sized if it is employed using
a conventional χ2

(1−α)(k − K) critical value. With moderate to large-sample sizes,

a Laguerre series expansion of the sampling distribution of nQn(̂θn) or nMQn(̂θn)

will provide accurate finite sample p-values.
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Addendum. Andrews (1997) has proposed using the HJ-statistic to test for
numerical convergence. First, one obtains an initial estimate, θ̂n1 say. Presupposing
that the model is identified, that Wn has been chosen optimally, and that r{�̄0n} = k,
one then checks to see if θ̂n1 satisfies nQn(̂θn1) < χ2

(1−α)(k − p). If θ̂n1 satisfies

the test, one computes θ̂n, typically using a local optimization algorithm such as
Newton–Raphson starting from the initial estimate θ̂n1. If θ̂n1 fails the test, one
looks for a new initial estimate, perhaps by considering new starting values for
the local optimization algorithm. The previous results indicate that identification
failure will compromise such a strategy. Theorem 3.1 and Lemma 3.1 indicate
that when the model is unidentified, Qn(θ) will be “flat” with respect to θ in
neighborhoods of �0n, and flatness of Qn(θ) can of course cause numerical
difficulties. The consequences for Andrews’ strategy will, however, be contextual.

If a practitioner mistakenly presupposes that a linear equations IV model is

identified and compares nQn(̂θn) to the critical value χ2
(1−α)(k − p), then the

probability of rejection may be less than the nominal size if the DGP is in fact
unidentified. This will be so if the Laguerre series expansion sampling distribution
of nQn(̂θn) is dominated by χ2(k − p), as seen in Figure 5. This will result
in Pr(nQn(̂θn) ≥ χ2

(1−α)(k − p)) � α and indicates that the occurrence of the

event nQn(̂θn1) < χ2
(1−α)(k −p) in conjunction with a failure to achieve numerical

convergence may not reflect intractability of the global optimization but may be
indicative of an unrecognized lack of identification.13 On the other hand, the HJ-
test is over-sized when applied to a common CH features model and nQn(̂θn)

can exceed a χ2
(1−α)(k − K) critical value by a considerable margin even though

numerical convergence has occurred, as seen in Figure 7. In both cases, the problem
can be rectified by not using the chi-squared critical value. This can be done
by employing the Laguerre series expansion sampling distribution of nQn(̂θn) to
calculate a p-value that will be robust to identification failure.

7. SUMMARY

In this paper, it has been shown that a consequence of working with partially
identified GMM models is that although the identified parameter set can be con-
sistently estimated, only certain, so-called, estimable functions of the parameters
will possess meaningful limit distributions. When evaluated using theoretical
population ensemble averages, estimable functions can ameliorate the adverse
effects of identification failure. But due to the fragile relationship between the
rank of convergent matrices and their limiting g-inverse, and associated numerical
accuracy issues, when estimable functions are calculated using consistent esti-
mates based on sample counterparts to population ensemble averages, they fail
to counteract the deleterious consequences of identification failure. Moreover, in
the presence of weak identification, estimable functions will have a nonstandard

13Wright (2003) has proposed an hypothesis test for detecting lack of identification that might be of use here.
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non-degenerate limiting distribution. These results suggest that although estimable
functions are of interest from a theoretical perspective, they do not present the
applied researcher with an attractive option and their use in practice may be ill
advised.

Fortunately, a new limiting distribution theory for Hansen’s J-test statistic and
associated statistics based on the GMM criterion function Qn(θ) was developed
that encompasses standard theory and is also applicable when the standard theory
does not apply due to (i) rank deficiency in the moment Jacobian �̄0n, (ii) singu-
larity in the moment long-run variance matrix �̄0n, (iii) the weighting matrix Wn

not appropriately converging to �̄0n, or (iv) weak identification strength. The new
limiting distributions can be expressed as uniformly convergent series expansions
in generalized Laguerre polynomials and can be readily evaluated using standard
software without the need to make recourse to bootstrap or simulation methods.
Monte Carlo experiments indicated that generalized Laguerre series probability
laws will adapt to the prevailing circumstances and provide accurate guides to the
sampling distributions of the different GMM statistics based on Qn(θ). The use
of the standard GMM criterion function Qn(θ) in conjunction with generalized
Laguerre series probability laws therefore offers the practitioner a reliable and
robust inferential tool.

APPENDICES

A. Proofs

Proof. (Theorem 3.1). It follows from Assumption 2.1, and by the definition of the
differential, that given ε > 0, there exists a δ(ε)) such that θ ∈ N(θ0;δ(ε)) implies

|Qn(θ)−Qn(θ0)−2mn(θ0)′WnDn(θ0)(θ − θ0)| ≤ ε‖θ − θ0‖, (A.1)

wherein we have used the abbreviated notation mn(θ) for mn(w,θ), and Dn(θ) for Dn(w,θ).
Now, set θ = θ0 +λu where |λ| < δ(ε) and u denotes a vector of unit length that belongs to
the null space of �̄n(θ0). Then θ ∈ N(θ0;δ(ε)) and by construction �̄n(θ0)(θ − θ0) = 0,
so θ belongs to the tangent plane of the level set {θ : Q̄n(θ) = Q̄n(θ0)} at θ0 (see Marsden,
1974, Sects. 6.4 and 6.6, for a definition and discussion of tangent planes).

Substituting θ = θ0 +λu in (A.1), we obtain the inequality

|Qn(θ)−Qn(θ0)| ≤ ε‖θ − θ0‖+2|mn(θ0)′WnDn(θ0)(θ − θ0)|
= |λ|{ε +2|mn(θ0)′WnDn(θ0)u|}
< δ(ε)

{
ε +2|mn(θ0)′WnDn(θ0)u|} . (A.2)

Using Assumptions 2.2 and 2.3 in conjunction with Slutsky’s theorem, it is a straightforward

exercise to verify that ‖mn(θ0)′WnDn(θ0) − μ̄n(θ0)′�̄n�̄n(θ0)‖ p→ 0, and since by
construction μ̄n(θ0)′�̄n�̄n(θ0)u = 0, it follows that

lim
n→∞Pr(|mn(θ0)′WnDn(θ0)u| > ε) = 0. (A.3)
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From (A.2) and (A.3), we can therefore deduce that

|Qn(θ0)−Qn(θ)| ≤ δ(ε)
{
ε +2op(1)

}
,

and choosing ε such that 3εδ(ε) < η and nη such that

Pr(|mn(θ0)′WnDn(θ0)u| ≤ ε) > 1−η

for n > nη gives the stated result. �

Proof. (Lemma 3.1). Applying the Cauchy–Schwartz inequality in the form |x′Ay| ≤
‖x‖ · ‖y‖ · ‖A‖ to the expansion

|Qn(θ)− Q̄n(θ)| = |mn(θ)′Wnmn(θ)− μ̄n(θ)′�̄nμ̄n(θ)|
≤ |(mn(θ)− μ̄n(θ))′Wn(mn(θ)− μ̄n(θ))|

+2|μ̄n(θ)′Wn(mn(θ)− μ̄n(θ))|
+ |μ̄n(θ)′(Wn − �̄n)μ̄n(θ)|

gives

|Qn(θ)− Q̄n(θ)| ≤ ‖mn(θ)− μ̄n(θ)‖2‖Wn‖
+2‖μ̄n(θ)‖‖mn(θ)− μ̄n(θ)‖‖′Wn‖
+‖μ̄n(θ)‖2‖Wn − �̄n‖ .

By assumption, ‖mn(θ)− μ̄n(θ)‖ p→ 0 uniformly in θ . Since � is compact and μ̄n(θ) is a
continuous function of θ , there exists a constant M < ∞ such that supθ∈� ‖μ̄n(θ)‖ < M.

Furthermore, since ‖Wn‖ ≤ ‖�n‖+‖Wn −�n‖ where ‖�n‖ < ∞ and ‖Wn − �̄n‖ p→ 0,
it follows that ‖Wn‖ is Op(1).

Hence, we can conclude that

lim
n→∞Pr( sup

θ∈�

|Qn(θ)− Q̄n(θ)|) = 1,

as required. �

Proof. (Theorem 3.3). Multiplying the left-hand side of equation (3.6) by z′H̄0n gives

z′H̄0n
√

n(̂θn − θ0n) = √
nq′

0n(̂θn − θ0n),

since q′
0n = z′H̄0n, and multiplying the first term on the right-hand side of (3.6) by z′H̄0n

gives

−z′H̄0n	̄0n�̄
′
0n�̄n

√
nmn(θ0n) = −z′	̄0n�̄

′
0n�̄n

√
nmn(θ0n)

since H̄0n	̄0n = 	̄0n.
Multiplying equation (3.6) through by z′H̄0n and reexpressing the result using the

previous equalities now yields the expansion

√
nq′

0n(̂θn − θ0n) = −z′	̄0n�̄
′
0n�̄n

√
nmn(θ0n)+op(1), (A.4)
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and using the representation from Assumption 3.1

Gn(θ) = n
1
2 {mn(θ)− μ̄n(θ)} = �̄

1
2
n (θ)Bn(θ)

evaluated at θ = θ0n gives the desired result. �

Proof. (Theorem 3.4). Expanding ∂Qn (̂θ)/∂θ about ∂Qn(θ0n)/∂θ using a first-order
Taylor series with Peano’s form for the remainder gives us

∂Qn(̂θn)

∂θ
= ∂Qn(θ0n)

∂θ
+ ∂2Qn(θ0n)

∂θ∂θ ′ (̂θ − θ0n)+o(‖̂θ − θ0n‖),

which we rewrite as

Q(2)
0n

√
n(̂θn − θ0n) = −2Dn(θ0n)′Wn

√
nmn(θ0n)+op(1)

since by definition ∂Qn (̂θ)/∂θ = 0 and ‖̂θ − θ0n‖ p→ 0. Employing Theorem 2.3.1(b) of
Rao and Mitra (1971) gives us

√
n(̂θn − θ0n) = −2Q(2+)

0n Dn(θ0n)′Wn
√

nmn(θ0n)+ (Q(2+)
0n Q(2)

0n − I)z+op(1),

where z is arbitrary.

Multiplying the previous equation through by z′Q(2+)
0n Q(2)

0n gives us the unique value√
nq′

0n(̂θn − θ0n) on the left-hand side (Rao and Mitra, 1971, Thm. 2.3.1(c)). On the

right-hand side, we get −2z′Q(2+)
0n Dn(θ0n)′Wn

√
nmn(θ0n)+op(1). The stated result now

follows since by Assumption 3.1 n
1
2 mn(θ0n) = �̄

1
2
n (θ0n)Bn(θ0n). �

Proof. (Lemma 3.2). The proof of this lemma is given in the Supplementary Material.
�

Proof. (Theorem 3.5). For ease of reference, recall that the general solution to the first-
order condition in (3.3) can be expressed as

√
n(̂θn − θ0n) = −GnDn(̂θn)′Wn

√
nmn(θ0n)+ (Hn − I)z,

where Gn = (Dn(̂θn)′WnDn(θ∗))+, Hn = (Dn(̂θn)′WnDn(θ∗))+(Dn(̂θn)′WnDn(θ∗))

and z is arbitrary. Multiplying through by M−1
n P, recognizing that PMnM−1

n P = I since
P′P = PP′ = PP = I, gives us

√
nM−1

n P(̂θn − θ0n) =− (M−1
n PG+

n PM−1
n )MnP′Dn(̂θn)′Wn

√
nmn(θ0n) (A.5)

+ ((M−1
n PHnPMn)− I)M−1

n Pz .

From Assumption 3.2, we have that n
1
2 {Dn(θ)− �̄n(θ)} = Fn(θ), and from the law of the

iterated logarithm for Brownian motion (Wiener) processes, we have√
n

2loglogn
sup
θ∈�

∥∥Dn(θ)− �̄n(θ)
∥∥≤ 1, almost surely,
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from which it follows that nκ supθ∈�

∥∥Dn(θ)− �̄n(θ)
∥∥ = op(1) for 0 ≤ κ < 1

2 . We

can therefore deduce that supθ∈� ‖MnP′{Dn(θ) − �̄n(θ)}′(Wn − �̄n)‖ p→ 0 and that

supθ∈� ‖MnP′{Dn(θ)− �̄n(θ)}′(Wn − �̄n){Dn(θ)− �̄n(θ)}PMn‖ p→ 0, and the equality
{Dn(θ) − �̄n(θ0n)}PMn = {Dn(θ) − Dn(θ0n)}PMn + {Dn(θ0n) − �̄n(θ0n)}PMn implies
that

Dn(̂θn)PMn − J̄n(θ0n)P = {Dn(θ0n)− �̄n(θ0n)}PMn +op(1)

and

Dn(θ∗)PMn − J̄n(θ0n)P = {Dn(θ0n)− �̄n(θ0n)}PMn +op(1),

where ‖θ∗ − θ0n‖ ≤ ‖̂θn − θ0n‖ = op(n− 1
2 ) by Theorem 3.2. The upshot of this is that

Dn(̂θn)PMn and Dn(θ∗)PMn both equal K0n +op(1) where

K0n = J̄n(θ0n)P+{Dn(θ0n)− �̄n(θ0n)}PMn ,

and substituting into (A.5) yields the limiting expression

√
nM−1

n P(̂θn − θ0n) = −	0nK′
0n�̄n

√
nmn(θ0n)+ (H0n − I)M−1

n Pz+op(1), (A.6)

where 	0n = (K′
0n�̄nK0n)+ and H0n = (K′

0n�̄nK0n)+(K′
0n�̄nK0n) for the general

solution.
From Rao and Mitra (1971, Thm. 2.3.1), it follows that q′

0nPθ is estimable whenever
q′

0n = z′H0n, z �= 0, giving the first part of the theorem. Multiplying (A.6) through by
z′H0n = q′

0n then yields

z′H0n
√

nM−1
n P(̂θn − θ0n) =q′

0n
√

nM−1
n P(̂θn − θ0n)

=− z′(K′
0n�̄nK0n)+K′

0n�̄n
√

nmn(θ0n)+op(1),

from which the second statement in the theorem follows since nκ‖Dn(θ0n)− �̄n(θ0n)‖ =
op(1) for 0 ≤ κ < 1

2 and n
1
2 vec{Dn(θ0n)− �̄n(θ0n)} = vec{Fn(θ0n)} = 
̄

1
2
0nWn(θ0n). �

In order to establish Theorem 5.1 appeal will be made to the following result, the proof
of which is given in the Supplementary Material.

Lemma A.1. Assume that xn ∈ R
k converges to x as n → ∞, and that ‖An − A‖ → 0

where An = A′
n and A = A′ are positive semi-definite k × k matrices and 0 ≤ ‖A‖ < ∞.

Then |xnAnxn − xAx| → 0 as n → ∞. Furthermore, liminfn→∞ xnA+
n xn ≥ xA+x, and

|xnA+
n xn −xA+x| → 0 as n → ∞ if and only if r{An} = r{A} for all n sufficiently large.

Proof. (Theorem 5.1). From Assumption 5, it follows that
√

nmn(θ0n) = �̄
1
2
0nζ 0n where

ζ 0n ⇒ ζ ∼ N(0,I). Using Lemma A.1 together with Skorokhod’s representation theorem,
we are therefore led to the conclusion that
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nQn(θ0n) = nmn(θ0n)′Wnmn(θ0n)

= ζ ′
0n�̄

1
2
0nWn�̄

1
2
0nζ 0n

= ζ ′
0n�̄

1
2
0n�̄n�̄

1
2
0nζ 0n +op(1),

where ‖Wn − �̄n‖ → 0. A quadratic function of ζ is obviously Fréchet differentiable, and
therefore Lipschitzian and hence uniformly continuous, and it follows upon application of
the Continuous Mapping Theorem (CMT) in conjunction with Lemma A.1 that nQn(θ0n) ⇒
Lk(ζ,�̄

1
2
0n�̄n�̄

1
2
0n). If �̄n = �̄

+
0n, then nQn(θ0n) ⇒ χ2(kn) where kn = tr{�̄

1
2
0n�̄

+
0n�̄

1
2
0n} =

tr{�̄+
0n�̄0n} = r{�̄0n} ≤ k. This follows from Theorem 9.2.1 of Rao and Mitra (1971)

since �̄
1
2
0n�̄

+
0n�̄

1
2
0n is a symmetric and idempotent matrix. The stated stochastic dominance

follows since �̄n{< ∨ = ∨ >}�̄+
0n implies that �̄

1
2
0n�̄n�̄

1
2
0n{< ∨ = ∨ >}�̄

1
2
0n�̄

+
0n�̄

1
2
0n.

Solving (A.6) for (̂θn −θ0n) and substituting back into the expansion of mn(̂θn) in (3.2)
gives us

mn(̂θn) =mn(θ0n)−Dn(θ∗)PMn{	0nK′
0n�̄nmn(θ0n)+ (H0n − I)M−1

n Pz/
√

n+op(1)}
={I−K0n	0nK′

0n�̄n}mn(θ0n)+K0n(I−H0n)M−1
n Pz/

√
n+op(1), (A.7)

where z is arbitrary. We can therefore infer that

√
nW

1
2
n mn(̂θn) = (I− �̄

1
2
n K0n	0nK′

0n�̄
1
2
n )�̄

1
2
n �̄

1
2
0nζ 0n + �̄

1
2
n K0n(I−H0n)M−1

n Pz+op(1)

= (I−A0n(A′
0nA0n)+A′

0n)�̄
1
2
n �̄

1
2
0nζ 0n +A0n(I−H0n)M−1

n Pz+op(1),

where H0n = (A′
0nA0n)+(A′

0nA0n) and A′
0n = K′

0n�̄
1
2
n . Since by Lemma 2.2.6(b) of Rao

and Mitra (1971) A0n(I− H̄0n) = 0, it follows that

nQn(̂θn) = ζ ′
0n�̄

1
2
0n�̄

1
2
n (I−A0n(A′

0nA0n)+A′
0n)�̄

1
2
n �̄

1
2
0nζ 0n +op(1),

and Lemma 2.2.6(d) of Rao and Mitra (1971) implies that A0n(A′
0nA0n)+A′

0n is invariant
to the choice of g-inverse. Application of the CMT in conjunction with Lemma A.1 now
indicates that

nQn(̂θn) = ζ ′
0n�̄

1
2
0n�̄

1
2
n (I−A0n(A′

0nA0n)+A′
0n)�̄

1
2
n �̄

1
2
0nζ 0n +op(1)

⇒ Lk(ζ,�̄
1
2
0n�̄

1
2
n (I− �̄0n)�̄

1
2
n �̄

1
2
0n) .

Furthermore, straightforward algebraic manipulation shows that

∇0n = �̄
1
2
0n�̄

1
2
n (I−A0n(A′

0nA0n)+A′
0n)�̄

1
2
n �̄

1
2
0n

is a symmetric nonnegative definite matrix and that ∇0n is idempotent if and only if
�̄n�̄0n�̄n = �̄n. Theorem 9.2.1 of Rao and Mitra (1971) therefore implies that nQn(̂θn) ⇒
χ2(kn −qn) when �̄n = �̄

+
0n where kn = tr{�̄

1
2
0n�̄

+
0n�̄

1
2
0n} = tr{�̄+

0n�̄0n} = r{�̄0n} and
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qn = tr{�̄
1
2
0n(�̄

+
0nK0n(K′

0n�̄
+
0nK0n)+K′

0n�̄
+
0n)�̄

1
2
0n}

= tr{(K′
0n�̄

+
0nK0n)+(K′

0n�̄
+
0nK0n)}

= r{K′
0n�̄

+
0nK0n} .

That Lk(ζ,�̄
1
2
0n�̄

1
2
n (I− �̄0n)�̄

1
2
n �̄

1
2
0n){� ∨ ≡ ∨ ≺}χ2(kn −qn) follows.

Via an application of a similar logic, we are also led to the conclusion that

n{Qn(θ0n)−Qn (̂θn)} = ζ ′
0n�̄

1
2
0n�̄

1
2
n (A0n(A′

0nA0n)+A′
0n)�̄

1
2
n �̄

1
2
0nζ 0n +op(1)

⇒ Lk(ζ,�̄
1
2
0n�̄

1
2
n �̄0n�̄

1
2
n �̄

1
2
0n){� ∨ ≡ ∨ ≺}χ2(qn) .

Since (�̄
1
2
0n�̄n�̄

1
2
0n −∇0n)∇0n = 0, it follows from Theorem 9.4.1 of Rao and Mitra (1971)

that nQn (̂θn) and n{Qn(θ0n)−Qn (̂θn)} are asymptotically independent. �

Proof. (Theorem 5.2). The first part of Theorem 5.2 concerning the distribution of
nQn(θ0n) parallels that of Theorem 5.1 and can be verified in an identical manner. To
establish the second part of Theorem 5.2, we will adapt the argument used in Dovonon
and Renault (2013, p. 2576) and consider the second-order Taylor expansion

mn (̂θn) = mn(θ0n)+
p∑

i=1

∂mn(θ0n)

∂θi
(θ̂n − θ0n)i + 1

2

p∑
i=1

p∑
j=1

(θ̂n − θ0n)
′
i
∂2mn(θ0n)

∂θi∂θj
(θ̂n − θ0n)j

= mn(θ0n)+Dn(θ0n)(̂θn − θ0n)+ 1

2
(Ik ⊗ (̂θn − θ0n)

′) ∂vec(Dn(θ)′)
∂θ ′ (̂θn − θ0n) . (A.8)

Since by Corollary 3.1 and Proposition 3.1 of Dovonon and Renault (2013) the second term
in (A.8) Dn(θ0n)(̂θn − θ0n) = Op(n−3/4), and

∂vec(Dn(θ)′)
∂θ ′ = 2

n

n∑
t=1

((ξ t − ξ̄)⊗ rtr′
t),

it follows that

mn(̂θn) = mn(θ0n)+ 1

n

n∑
t=1

((ξ t − ξ̄)⊗ (̂θn − θ0n)′rtr′
t (̂θn − θ0n))+op(n− 1

2 )

= mn(θ0n)+ 1

n

n∑
t=1

((ξ t − ξ̄) · ((̂θn − θ0n)′rt)
2 +op(n− 1

2 ) . (A.9)

Let ν̂0n = n
1
4 (̂θn − θ0n) and note from Assumption 2.2 and (A.9) that

√
nmn(̂θn) = √

nmn(θ0n)+ μ̄n(̂ν0n)+op(1)

and hence that

nQn(̂θn) = (
√

nmn(θ0n)+ μ̄n(̂ν0n))′Wn(
√

nmn(θ0n)+ μ̄n(̂ν0n))+op(1) .

Now, set

nQn(ν0n) = nmn(θ0n +n− 1
4 ν0n)′Wnmn(θ0n +n− 1

4 ν0n),
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where ν0n = n
1
4 (θ − θ0n), θ ∈ �. Using a second-order Taylor expansion as in (A.8) and

setting
√

nmn(θ0n) = �̄
1
2
0nζ 0n where ζ 0n ⇒ ζ ∼ N (0,Ik), we have

nQn(ν0n) = (
√

nmn(θ0n)+ μ̄n(ν0n))′Wn(
√

nmn(θ0n)+ μ̄n(ν0n))+op(1)

= (�̄
1
2
0nζ 0n + μ̄n(ν0n))′Wn(�̄

1
2
0nζ 0n + μ̄n(ν0n))+op(1)

= (ζ 0n + �̄
+
2

0nμ̄n(ν0n))′�̄
1
2
0n�n�̄

1
2
0n(ζ 0n + �̄

+
2

0nμ̄n(ν0n))+op(1),

since by assumption ‖Wn −�̄n‖ p→ 0 (Assumption 2.2). This implies that for any ν0n ∈R
p

nQn(ν0n) ⇒ Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n, − �̄

+
2

0nμ̄n(ν0n)) .

By definition,

nQn(̂θn) = nQn (̂ν0n) = min
ν0n∈Rp

nQn(ν0n) .

It follows that the distribution of nQn(̂θn) is either equivalent to or is dominated by
the distribution of nQn(ν0n) for all ν0n �= ν̂0n. From (5.1), the distribution function

Lk(�̄
1
2
0n�̄n�̄

1
2
0n, − �̄

+
2

0nμ̄n(ν0n);x) is a monotonically decreasing function of the non-
centrality parameter

κ(ν0n) = μ̄n(ν0n)′�̄
+
2

0n(�̄
1
2
0n�̄n�̄

1
2
0n)�̄

+
2

0nμ̄n(ν0n),

for any x ≥ 0, and it follows that nQn (̂θn) ⇒ Lk(ζ,�̄
1
2
0n�̄n�̄

1
2
0n, − �̄

+
2

0nμ̄0n) where μ̄0n =
μ̄n(ν̄0n), ν̄0n = argminκ(ν0n). �
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