The Factors of \((a, b, c, f, g, h)(x, y, z)^2 - \lambda(x^2 + y^2 + z^2)\).

By Robert J. T. Bell, M.A., B.Sc.

(Read and Received 11th March 1910).

If \(f(x, y, z) = ax^2 + by^2 + cz^2 + 2fyz + 2gxz + 2hxy, \)
and \(S = x^2 + y^2 + z^2, \)
\(f - \lambda S \) is the product of two factors of the form \(ax + \beta y + \gamma z \) if \(\lambda \) is a root of a discriminating cubic
\[
\begin{vmatrix}
 a - \lambda & h & g \\
 h & b - \lambda & f \\
 g & f & c - \lambda
\end{vmatrix} = 0.
\]

A well-known proof of the reality of the roots of the cubic is as follows:—

Write
\[
\phi(\lambda) = (\lambda - a)((\lambda - b)(\lambda - c) - f^2) - ((\lambda - b)g^2 + (\lambda - c)h^2 + 2fg),
\]
and \(\psi(\lambda) = (\lambda - b)(\lambda - c) - f^2. \)

Suppose that \(a > b > c; \)
when \(\lambda = +\infty, b, c, -\infty, \)
\(\psi(\lambda) = +\infty, -f^2, -c^2, +\infty. \)

Hence, (see figure), the equation \(\psi(\lambda) = 0 \) has two real roots, \(a \) and \(\beta, \) such that
\(a > b > c > \beta. \)

When
\(\lambda = +\infty, - (\sqrt{a - bg} \pm \sqrt{a - ch}), (\sqrt{b - \beta} g \pm \sqrt{c - \beta} h), -\infty. \)

Hence the cubic, \(\phi(\lambda) = 0, \) has three real roots, \(\lambda_1, \lambda_2, \lambda_3, \) such that \(\lambda_1 > a > \lambda_2 > \beta > \lambda_3. \)
Now

\[f - \lambda S = \frac{1}{b - \lambda} \left[\{hx + (b - \lambda)y + fz\}^2 + \frac{1}{\psi(\lambda)} \{x\psi(\lambda) - x(hf - b - \lambda g)\}^2 \right]. \]

Therefore if \(\lambda = \lambda_1, \ b - \lambda < 0 \) and \(\psi(\lambda) > 0 \), and \(f - \lambda S \) is of the form \(- (u^2 + v^2)\), where \(u \) and \(v \) are linear functions of \(x, y, z \), with real coefficients. If \(\lambda = \lambda_2, \ b - \lambda < 0 \) and \(\psi(\lambda) < 0 \), and \(f - \lambda S \) is of the form \(\pm (u^2 - v^2) \). If \(\lambda = \lambda_3, \ b - \lambda > 0 \) and \(\psi(\lambda) > 0 \), and \(f - \lambda S \) is of the form \(u^2 + v^2 \).

The only value of \(\lambda \) for which \(f - \lambda S \) is the product of factors with real coefficients is therefore the mean value \(\lambda_m \).

The result can be applied to find the real circular sections of the conicoid \(f(x, y, z) = 1 \). Write the equation

\[f(x, y, z) - \lambda(x^2 + y^2 + z^2) + \lambda(x^2 + y^2 + z^2) - 1 = 0, \]

and it appears that if \(f - \lambda S = 0 \) represents a pair of planes, the planes cut the conicoid in circles. The real circular sections are given by the mean root of the discriminating cubic.