ed, including 333 students and 228 control subjects. Detailed results are presented in the table. The overall estimated prevalence of MRSA carriage was 2.5%, which was high when compared with the rate recorded for HCWs from countries displaying a low MRSA endemicity in hospitals.

Regarding the student population, no statistical association was found between nasal carriage of MRSA and any of the items listed above and recorded through the questionnaire. In addition, no significant statistical difference in the prevalence of either methicillin-susceptible *S. aureus* or MRSA nasal carriage was found between students and control subjects. This study, performed during a non-epidemic period, did not confirm the high prevalence of MRSA nasal carriage observed in students of our hospital during previous epidemic periods. The results displayed in the table indicate that the two populations with the higher prevalence of MRSA nasal carriage were practitioners and fellows. When these two categories were compared with the other HCWs, a trend toward a significant statistical difference was observed (P = .07 by Fisher's exact test). Actually, compliance with handwashing and hand antiseptic was shown to be poor in this population. The latter observation suggests targeting physicians for audit of hygienic practices and information on hand antiseptic.

REFERENCES

TABLE

Frequency of Methicillin-Sensitive and Methicillin-Resistant *Staphylococcus aureus* Nasal Carriage by Category of Healthcare Worker at the University Hospital of Saint-Etienne, Saint-Etienne, France, in February 2000

<table>
<thead>
<tr>
<th>Category of HCW</th>
<th>No. of Samples</th>
<th>MSSA Prevalence (No. [%])</th>
<th>MRSA Prevalence (No. [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fellow</td>
<td>120</td>
<td>23 (19.2)</td>
<td>4 (3.3)</td>
</tr>
<tr>
<td>Medical student</td>
<td>124</td>
<td>24 (19.4)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Nursing student</td>
<td>89</td>
<td>21 (23.6)</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>Control subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practitioner</td>
<td>38</td>
<td>7 (18.4)</td>
<td>2 (5.3)</td>
</tr>
<tr>
<td>Nurse</td>
<td>102</td>
<td>24 (23.5)</td>
<td>3 (2.9)</td>
</tr>
<tr>
<td>Assistant nurse</td>
<td>47</td>
<td>8 (17.0)</td>
<td>1 (2.1)</td>
</tr>
<tr>
<td>Cleaning agent</td>
<td>41</td>
<td>5 (12.2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>561</td>
<td>132 (23.5)</td>
<td>14 (2.5)</td>
</tr>
</tbody>
</table>

*HCW = healthcare worker; MSSA = methicillin-susceptible *Staphylococcus aureus*; MRSA = methicillin-resistant *S. aureus*; CI95 = 95% confidence interval; NA = not applicable.*

Resistance to Penicillin and Erythromycin in *Streptococcus pneumoniae* Bloodstream Isolates From Cancer and Non-Cancer Patients Within 10 Years

To the Editor:

Penicillin resistance in *Streptococcus pneumoniae* and erythromycin resistance in *S. pyogenes* are important antimicrobial resistance problems in the general population in Europe. However, resistance to penicillin and erythromycin in viridans streptococci has been less extensively studied. Viridans streptococci in neutropenic patients may cause bacteremias with septic shock and acute respiratory distress syndrome, with a mortality rate of 25% to 40%.9,12 Therefore, prophylaxis with penicillin or a macrolide has been widely used in many hematology–oncology departments and, as a result, selection of erythromycin-resistant and penicillin-resistant mutants of viridans streptococci has become a major concern.3 However, in other patient populations in the community, susceptibility profiles of viridans streptococci have not usually been reported14 despite the fact that viridans streptococci can harbor erythromycin resistance genes from *S. pyogenes* and *S. pneumoniae*.5,10

We compared resistance to erythromycin and penicillin in bloodstream isolates from cancer and noncancer patient populations within the past 10 years in two large hospitals—a tertiary-care cancer center and a community county hospital. Strains of viridans streptococci were tested for resistance to penicillin, erythromycin, and 14 other antibiotics using the disk-diffusion method according to the guidelines of the National Committee for Clinical Laboratory Standards.5 Resistance to penicillin was defined as a minimum inhibitory concentration of greater than 0.25 μg/mL. Resistance to erythromycin was defined as a minimum inhibitory concentration of greater than 0.5 μg/mL.

Two groups of viridans streptococcal strains were compared—those isolated from patients in a small community hospital (Nitra District Hospital) (Fig. 1) and those isolated from patients in a tertiary-care cancer center (Fig. 2).

Downloaded from https://www.cambridge.org/core. IP address: 54.191.40.80, on 01 May 2017 at 11:11:51, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. doi:10.1086/503499
from cancer patients in a cancer hospital (Fig. 2).

On comparison of the two groups (Figs. 1 and 2 and Table 1), the incidence of viridans streptococci isolated from both blood and non-sterile cultures in general county hospital was decreasing. Resistance to penicillin and erythromycin varied between 5% and 32% in 1991 to 2001; however, resistance to penicillin and erythromycin had been low (0% to 6%) within the past 2 years, and lower than in 1991 to 1999 (4.5% to 5.6% for penicillin and 7.5% to 10.5% for erythromycin; \(P < .05, t \)-test). Resistance in isolates from cancer patients had also declined (Fig. 2). The prevalence of resistance had decreased from 50% for penicillin and 25% for erythromycin in 1993 to 12.5% in 1998 and 9% in 1999 for both erythromycin and penicillin (\(P < .01, t \)-test).

The reason for the decrease in resistance for both penicillin and erythromycin was unclear. Perhaps the cessation of prophylaxis with azithromycin performed during 1993 to 1995 for leukemia patients and penicillin prophylaxis during 1991 to 1998 played some role in the decreased resistance among cancer patients. However, we have no explanation for the decrease in resistance in the general hospital, where the overall consumption of beta-lactams and macrolides increased during 1990 to 1998. These rates were comparable to the community prevalence or the prevalence in general hospitals in the Netherlands and the United Kingdom, but much lower than those reported from the United States, Spain, Taiwan, France, or Canada (Table 2).

There were no significant differences in the susceptibility of isolates from cancer patients versus patients in the general hospital for either drug. Trends toward increasing susceptibility to erythromycin and penicillin of viridans streptococci were observed in these two hospitals during 2000 to 2001 compared with during 1992 to 1996.

REFERENCES

TABLE 1
PERCENTAGE OF STRAINS RESISTANT TO PENICILLIN AND ERYTHROMYCIN

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>44(30.1)</td>
<td>29(20.5)</td>
<td>6(4.5)</td>
<td>24(21.5)</td>
<td>33(35.5)</td>
<td>19(18.5)</td>
<td>22(32.0)</td>
<td>23(35.6)</td>
<td>17(32.0)</td>
<td>1(6.0)</td>
<td>1(5.0)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>12(8.5)</td>
<td>7(5.0)</td>
<td>10(7.6)</td>
<td>11(10.0)</td>
<td>12(9.0)</td>
<td>5(9.0)</td>
<td>7(10.5)</td>
<td>6(10.0)</td>
<td>4(7.5)</td>
<td>1(5.0)</td>
<td>0(0.0)</td>
</tr>
</tbody>
</table>

TABLE 2
SUSCEPTIBILITY OF VIRIDANS STREPTOCOCCI TO ANTIBIOTICS

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Penicillin Resistant</th>
<th>Erythromycin Resistant</th>
<th>No. of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>1996-2000</td>
<td>15%</td>
<td>0%</td>
<td>607 (endocarditis blood cultures)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1995-1999</td>
<td>5%</td>
<td>3.20%</td>
<td>342 (all isolates)</td>
</tr>
<tr>
<td>Argentina</td>
<td>1990-1994</td>
<td>NA</td>
<td>2.60%</td>
<td>NA</td>
</tr>
<tr>
<td>Spain</td>
<td>1994-1999</td>
<td>14.30%</td>
<td>17.70%</td>
<td>NA</td>
</tr>
<tr>
<td>France</td>
<td>1988-1995</td>
<td>40%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1998</td>
<td>64%</td>
<td>50%</td>
<td>NA</td>
</tr>
<tr>
<td>United States</td>
<td>1996</td>
<td>56%</td>
<td>NA</td>
<td>78 (bacteremia in cancer patients only)</td>
</tr>
<tr>
<td>Slovakia</td>
<td>1990-1997</td>
<td>24%</td>
<td>NA</td>
<td>418 (bacteremias)</td>
</tr>
<tr>
<td>Canada</td>
<td>1995-1997</td>
<td>28%</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

NA = not applicable.

Adriana Ondrusova, MD
School of Public Health
University of Trnava
Trnava, Slovak Republic

Anne Liskova, MD
Department of Microbiology
Hospital of Nitra
Nitra, Slovak Republic

Joseph Miklosko, MD
School of Public Health
University of Trnava
Trnava, Slovak Republic

Robert Babela, PhD
School of Public Health
University of Trnava
Trnava, Slovak Republic

St. Elizabeth and National Cancer Institutes
Bratislava, Slovak Republic

Vladimir Krcmery, FACP, MD
St. Elizabeth and National Cancer Institutes
Bratislava, Slovak Republic
NOW AVAILABLE
from Infectio Diagnostic (IDI)

IDI-MRSA™

Helps Minimize Transmission
of Nosocomial Infection

Next in IDI's series of fast and accurate DNA-based
diagnostic tests, IDI-MRSA™:

• detects methicillin resistance in
 Staphylococcus aureus

• eliminates false positives from
 coagulase-negative staphylococci

One test provides all the answers

• Speed: results in 1 hour
• Simplicity: direct from a nasal swab
• Sensitivity: 93%
• Specificity: 96%

Using real-time PCR *Smart Cycler*® automated analysis,
IDI's breakthrough assay eliminates the need for
labour-intensive, time-consuming culture detection,
offering an extremely effective way to reduce:

• MRSA-related morbidity and mortality
• the financial burden associated with
 managing MRSA infections

Revolutionizing Screening Practices

For more information, or to obtain a complimentary IDI-MRSA™
information insert, please contact our local distributor:
Cepheid (USA): **1-888-336-2743**
Somagen (Canada): **1-800-661-9993**