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COMBINATORIAL MATRICES 
WITH SMALL DETERMINANTS 

MORRIS NEWMAN 

1. Introduction. In this paper we will be concerned with the determinants 
of matrices whose elements are 0, 1 or — 1 , 1. Accordingly, let Sntk be the set of 
n X n 0, 1 matrices with exactly k ones in each row and column; and let Hn 

be the set of n X n — 1, 1 matrices. Let J = Jn denote (as usual) the n X n 
matrix all of whose elements are one. Then / is the only element of 5W,W, / also 
belongs to Hn, and the elements of Sn>k may be characterized as those n X n 
0, 1 matrices A such that AJ = J A = kj. 

Let 

(1) mn,k = min|det (A)\, A G Sn,k, det (A) ^ 0, 

(2) Mn,k = max|det (A)\, A £ Sn,k. 

We will show below that mnjk is well-defined except when n = k > 1, and 
n = 4, k = 2. These are the only values such that every element of Sn>k is 
singular, and will be tacitly excluded from all discussions involving mntk. 

The Hadamard bound for determinants shows that Mn>k ^ kn/2. Further­
more it is clear that det (̂ 4) = 0 mod k for every A G Sn>k, so that mn<k è k. 
Thus we have the crude bounds 

* S mn,k S Mn>k ^ kn'\ 

The Hadamard bound is exact for an orthogonal matrix; and if A is '"close" to 
an orthogonal matrix, it can be expected to have a large determinant. Thus if 
k = q-\-l,n = q2-{-q-\-l, where g is a prime power, then there is a finite 
projective plane of order g; and if A is the incidence matrix of this plane, A is 
1 'close" to an orthogonal matrix, and 

|det G4)| = ç(«2+*)/2(ç + 1) = (k - iyn-»'2k. 

Thus 

(k - iyn~v/2k ^ Mn,k g kn/2, 

when & = g - f l , ? z = g2 + g + l, and g is a prime power. This question is 
treated in detail and essentially solved completely by H. J. Ryser in his paper 
[1]. Accordingly we will confine ourselves to the study of nin,k, and also to the 
easier question of the behavior of mnj defined below: 

(3) mn = min|det (A)\, A £ Hn, det (A) 9*0. 

It is not difficult to show that mn = 2n~1. 
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2. The behavior of rnn,k. We first prove a preliminary lemma. 

LEMMA 1. Let A be an n X n matrix such that A J = s J, s j* 0. Then 

(4) det (J + A) = ((« + s)/s) det (A). 

In particular, if A £ Snrk, then 

(5) det ( / - A) = {-l)n-l((n - k)/k) det (A). 

Proof. The following argument uses the multilinearity of the determinant. 
Write A as the matrix of its column vectors: 

A = [AUA2, . . . ,An]. 

Let 5 be the « X 1 vector all of whose entries are one. Then 

At + A2 + . . . + An = sô, 

and 

J + A = [A1 + ô,A2 + ô,...,An + ô]. 

If we subtract the first column of J + A from all the other columns, we find 
that 

det (J + A) = det [Ai + ô, A2 — Au . . . , An — A^. 

The multilinearity now implies that 

det (J + A) = det (A) + det [Ô, A2 - Ah . . . , An - Ai], 

Furthermore, 

det (A) = det [Au A2, . . . , An] = det [Au A2 - Au . . . , An - A{\ 

= det [sô - (n - l ) ^ i , A2 - Au . . . , An - A{\, 

as may be seen by adding columns 2, 3, . . . , n to column 1. This readily implies 
that 

det [Ô, A2 - Au • • • , An - Ai] = (n/s) det (A) 

and it follows that 

det (J + A) = det (A) + (n/s) det (A) = {{n + s)/s) det (A). 

Hence (4) is proved, and (5) is an immediate corollary. This completes the 
proof. 

Formula (4) also holds when s = 0, in the form 

det ( / + A) = nA, 

where A is the product of the eigenvalues of A other than 0. 
We now prove the fact mentioned previously: 
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THEOREM 1. Let n, k be integers such that n ^ k ^ 1. Then Sntk always con­
tains a nonsingular matrix, except when n = k > 1, and n = 4, k = 2. 

Proof. It is clear that if n = k, then Sn>k consists of the J matrix alone, which 
is singular for n > 1. Furthermore every element of £4,2 is permutation 
equivalent to 

""l 1 0 0" 
1 0 1 0 
0 1 0 1 
0 0 1 1 

and each of these is singular. The cases noted are thus genuine exceptions. 
Let P = Pn denote the n X n full cycle 

1 1 0 0 
1 1 0 0 

or to 
0 0 1 1 
0 0 1 1 

p = 

0 1 0 
0 0 1 

0 0 0 
1 0 0 

Then I + P + P2 + . . . + Pn~l = J} so that the powers of P are disjoint. 
Put 

Ck = I + P + P 3 + P5 + • • • + P2k~\ k ^ (n/2) + 1. 

Then Ck Ç SHik. Furthermore, Ck is singular if and only if there is a f such that 
r = 1, and 

(6) 1 + r + r3 + r5 + ... + r2*-3 = o. 
If f = 1, then (6) becomes fe = 0, which is impossible. If f = — 1 , then (6) 
becomes k — 2 = 0. Let us assume that k > 2. Then (6) does not hold for 
f = + 1 , and is equivalent to 

(7) 1 + f 1 - f 2 

= 0. 
i - r 

Take complex conjugates in (7) and equate the results. We find that 
ç2Jc-2 _ ^ g u t ^ jg j s impossible, as is evident from (7). It follows that Ck is 
nonsingular for 3 ^ k ^ (w/2) + 1. 

Now set Dn-k = / — CA;. Then A ^ G S^-*, and (n/2) — I ^ n — k S 
n — 3. Furthermore, Lemma 1 implies that 

det (2V*) = ( - î y - H O * - *)/*) det ( Q , 

so that -D„_t is also nonsingular. We are left with the cases k = 1, 2, « — 2, 
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n — 1. Now SUti consists of the permutat ion matrices, and all of these are 
nonsingular; and every element of 5n>n_i is permutat ion equivalent to J — 7, 
which is nonsingular for n > 1. We are thus left with the cases k = 2, n — 2. 

Suppose first t ha t k = 2. Note tha t if n is odd and > 1, then 7 + Pn G 5Wf2, 
is nonsingular, and has determinant 2. If n is even and > 4 , then n = m + 3, 
where m is odd and > 1 . Fur thermore, Q = 7 + (7*3 + 7 ^ ) belongs to .SWf2, 
is nonsingular, and has determinant 4. This disposes of k = 2. 

Now suppose tha t k = n — 2. Then if w is odd and > 1 , J — I — Pn £ 
Sn>n-2 and Lemma 1 implies t ha t det (J — I — Pn) = n — 2. If n is even and 
> 4 , then J — Q G 5n>n_2 and Lemma 1 implies tha t det (7 — Q) = 4 — 2n. 
T h u s all cases are covered and the proof is complete. 

The next result supplies a lower bound for mntk and determines it exactly 
when (n, k) = 1. 

T H E O R E M 2. Let d = (n, k) denote the greatest common divisor of n and k. Let A 
be any matrix of SnJc. Then det (^4) = 0 mod kd, so that mn<k ^ kd. Furthermore, 
mn<k = k if and only if d = 1. 

Proof. Let A be any matrix of SnJc. We perform the following elementary 
operations on A (which do not change the de te rminan t ) : 

i) add rows 2, 3, . . . , n to row 1 ; 
ii) add columns 2, 3, . . . , n to column 1. 

T h e first row of the resulting matr ix is a = [nk, k, k, . . . , k] and the first 
column is aT. I t follows a t once tha t det (^4) is divisible by kd, so tha t mn>k ^ 
kd. T h u s the first par t of the theorem is proved. To prove the second par t , 
we note first t ha t if mnjc = k, then d = 1. Suppose then tha t d = 1, and 
consider the matrix 

(8) E = Entk = I + P + P2 + . . . + Pk~\ 

Then E Ç Sn>k, and 

det (£) = n (i + i- + f + • • • + r*+i) = k n -,--4 • 
Since (&, w) = 1, f* runs over all wth roots of uni ty other than 1 once and once 
only as f does. Hence 

n a - r*) = n a - r) * o, 
and it follows tha t det ( £ ) = ^. This completes the proof. 

There is another case when mnJ: can be determined completely, which rep­
resents the other extreme. We have 

T H E O R E M 3. Suppose that k divides n, and n > 2k. Then mUtk = k2. 
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Proof. W e have n = kt, t > 2. P u t 

n = ni + n2, ni = (t — l)k — 1, n2 = k + 1. 

Then {n\, k) = 1, ni > k, (n2, k) = 1, n2 > k. P u t 4̂ = Enltk + £n2>fc (see 
formula (8)) . Then A Ç ,SWffc and det (^4) = &2. T h u s mnjc ^ &2. Bu t also 
win,*. = k2> by Theorem 2. I t follows t h a t mnjc = &2, and the proof is complete. 

We note t ha t if k is odd, then m2k>k may be shown to be k2, by consideration of 

the matr ix 

P + P 2 + . . . + P " _ 1 + P* + 1 . 

These results p rompt the reasonable conjecture t ha t mnjk = kd = k(n, k). 

We are going to get further information on the size of mn>fc. T h e following 

lemma, which is of independent interest, will be useful for this purpose. 

L E M M A 2. Let m be a positive integer, c any integer. Then if m is odd, or if m is 

even and c is even, the congruence 

(9) c = x + y mod m 

has a solution such that 

(x, ni) — (y, m) = 1. 

Proof. Suppose first t ha t Wi, m2 are relatively prime positive integers, and 
t h a t Xi, 3>i, x2, yi m a y be found such t h a t 

c = xi + 3>i mod mi, c = x2 + y2 mod m2, 

(xitmi) = (yi,mi) = 1, (x2jm2) = (y2,m2) = 1. 

Determine x, 3; by the Chinese Remainder Theorem so t h a t 

x = Xi mod mi, x = X2 mod m2, y = yi mod mi, y = y2 mod m2 . 

Then it is readily verified t h a t c = x + y mod m\m2, and t h a t (x, mim2) = 
(y, m\m2) — 1. I t follows t h a t it is only necessary to prove the lemma when 
m — pe, p prime. Here we proceed as follows: if (p, c — 1) = 1, take x = 
c — 1, y = l. H p divides c — 1, take x = c — 2, y = 2 (notice t h a t p 9^ 2 
in this case). This completes the proof. 

T h e case when c is odd and m is even is a genuine exception, since x and y 
cannot then both be odd in (9). 

WTe now prove the following result. 

T H E O R E M 4. Suppose that k is odd, or that n and k are even, and that n > 
3k — 2. Then mnjk ^ k2. 

Proof. By L e m m a 2 we m a y determine ki, k2 so t h a t 0 ^ ki, k2 :g k — 1, 
(ki, k) = (k2, k) = 1, and n = ki + k2 mod k. P u t n = k\ + k2 + tk. Then 

3k - 2 < n = h + k2 + tk ^ 2k - 2 + tk, 
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so that / > l .Thus / ^ 2, and we may write n = %\ + n2, where n\ = (t — l)k 
+ ki, n2 = k + k2} and (wi, k) = 1, wi > &, (n2, &) = 1, #2 > &• Put 4̂ = 
Enltk + -EW2,fc- Then 4̂ Ç 5w>fc and det (/I) = &2, so that wn>fc ^ &2. This com­
pletes the proof. 

Similar bounds may be derived when k > (2n — 2)/3, and n and k are of 
opposite parity, by consideration of the matrix J — A. 

Finally, we prove the following in this section: 

THEOREM 5. The number mntk is bounded above by a number which depends 
only on k. 

Proof. We may assume that k > 2, since the examples given in Theorem 1 
together with Theorem 2 show that 

J 2 n odd, n > 1, 
{4: n even, n > 4. 

Write 

n = qk + r, 0 ^ r ^ k — 1. 

Suppose first that q > 3. Put 

ni = (q - 3)k + 1, n2 = k + 1, ns = 2k + r - 2, 

so that n = n\ + n2 + W3. Then 

(wi, &) = 1, Wi > ky (n2, k) = 1, n2 > k, k < nz ^ 3& — 3. 

It follows by the method of Theorem 4 and by the Madamard bound for 
determinants that 

mn,k ^ k- k'kn*'2 S &(3*+1)/2. 

Next suppose that q ^ 3. Then n ^ 4& — 1, and so 

m»,* ^ &*/2 ̂  ¥i1c~l)'2. 

These inequalities clearly imply the result. 

3. The behavior of mn. We now consider the easier question of the determi­
nation of mn, defined by (3). We shall prove 

THEOREM 6. The number mn defined by (3) is equal to 2n~x. 

Proof. Let A be any matrix of Hn. Add the first row of A to all the other rows. 
In the resulting matrix, all elements other than those in the first row are even. 
It follows that det (A) = 0 mod 2n~\ Now let A = (atj) be the matrix of Hn 

such that 

(l i^j 
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Add the first row of A to all the other rows. The resulting matrix is upper tri­
angular with diagonal elements 1, 2, 2, . . . , 2 and so has determinant 2n~1. 
It follows that mn = 2n~l, and the proof is complete. 
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