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COMBINATORIAL MATRICES 
WITH SMALL DETERMINANTS 

MORRIS NEWMAN 

1. Introduction. In this paper we will be concerned with the determinants 
of matrices whose elements are 0, 1 or — 1 , 1. Accordingly, let Sntk be the set of 
n X n 0, 1 matrices with exactly k ones in each row and column; and let Hn 

be the set of n X n — 1, 1 matrices. Let J = Jn denote (as usual) the n X n 
matrix all of whose elements are one. Then / is the only element of 5W,W, / also 
belongs to Hn, and the elements of Sn>k may be characterized as those n X n 
0, 1 matrices A such that AJ = J A = kj. 

Let 

(1) mn,k = min|det (A)\, A G Sn,k, det (A) ^ 0, 

(2) Mn,k = max|det (A)\, A £ Sn,k. 

We will show below that mnjk is well-defined except when n = k > 1, and 
n = 4, k = 2. These are the only values such that every element of Sn>k is 
singular, and will be tacitly excluded from all discussions involving mntk. 

The Hadamard bound for determinants shows that Mn>k ^ kn/2. Further
more it is clear that det (̂ 4) = 0 mod k for every A G Sn>k, so that mn<k è k. 
Thus we have the crude bounds 

* S mn,k S Mn>k ^ kn'\ 

The Hadamard bound is exact for an orthogonal matrix; and if A is '"close" to 
an orthogonal matrix, it can be expected to have a large determinant. Thus if 
k = q-\-l,n = q2-{-q-\-l, where g is a prime power, then there is a finite 
projective plane of order g; and if A is the incidence matrix of this plane, A is 
1 'close" to an orthogonal matrix, and 

|det G4)| = ç(«2+*)/2(ç + 1) = (k - iyn-»'2k. 

Thus 

(k - iyn~v/2k ^ Mn,k g kn/2, 

when & = g - f l , ? z = g2 + g + l, and g is a prime power. This question is 
treated in detail and essentially solved completely by H. J. Ryser in his paper 
[1]. Accordingly we will confine ourselves to the study of nin,k, and also to the 
easier question of the behavior of mnj defined below: 

(3) mn = min|det (A)\, A £ Hn, det (A) 9*0. 

It is not difficult to show that mn = 2n~1. 
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2. The behavior of rnn,k. We first prove a preliminary lemma. 

LEMMA 1. Let A be an n X n matrix such that A J = s J, s j* 0. Then 

(4) det (J + A) = ((« + s)/s) det (A). 

In particular, if A £ Snrk, then 

(5) det ( / - A) = {-l)n-l((n - k)/k) det (A). 

Proof. The following argument uses the multilinearity of the determinant. 
Write A as the matrix of its column vectors: 

A = [AUA2, . . . ,An]. 

Let 5 be the « X 1 vector all of whose entries are one. Then 

At + A2 + . . . + An = sô, 

and 

J + A = [A1 + ô,A2 + ô,...,An + ô]. 

If we subtract the first column of J + A from all the other columns, we find 
that 

det (J + A) = det [Ai + ô, A2 — Au . . . , An — A^. 

The multilinearity now implies that 

det (J + A) = det (A) + det [Ô, A2 - Ah . . . , An - Ai], 

Furthermore, 

det (A) = det [Au A2, . . . , An] = det [Au A2 - Au . . . , An - A{\ 

= det [sô - (n - l ) ^ i , A2 - Au . . . , An - A{\, 

as may be seen by adding columns 2, 3, . . . , n to column 1. This readily implies 
that 

det [Ô, A2 - Au • • • , An - Ai] = (n/s) det (A) 

and it follows that 

det (J + A) = det (A) + (n/s) det (A) = {{n + s)/s) det (A). 

Hence (4) is proved, and (5) is an immediate corollary. This completes the 
proof. 

Formula (4) also holds when s = 0, in the form 

det ( / + A) = nA, 

where A is the product of the eigenvalues of A other than 0. 
We now prove the fact mentioned previously: 
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THEOREM 1. Let n, k be integers such that n ^ k ^ 1. Then Sntk always con
tains a nonsingular matrix, except when n = k > 1, and n = 4, k = 2. 

Proof. It is clear that if n = k, then Sn>k consists of the J matrix alone, which 
is singular for n > 1. Furthermore every element of £4,2 is permutation 
equivalent to 

""l 1 0 0" 
1 0 1 0 
0 1 0 1 
0 0 1 1 

and each of these is singular. The cases noted are thus genuine exceptions. 
Let P = Pn denote the n X n full cycle 

1 1 0 0 
1 1 0 0 

or to 
0 0 1 1 
0 0 1 1 

p = 

0 1 0 
0 0 1 

0 0 0 
1 0 0 

Then I + P + P2 + . . . + Pn~l = J} so that the powers of P are disjoint. 
Put 

Ck = I + P + P 3 + P5 + • • • + P2k~\ k ^ (n/2) + 1. 

Then Ck Ç SHik. Furthermore, Ck is singular if and only if there is a f such that 
r = 1, and 

(6) 1 + r + r3 + r5 + ... + r2*-3 = o. 
If f = 1, then (6) becomes fe = 0, which is impossible. If f = — 1 , then (6) 
becomes k — 2 = 0. Let us assume that k > 2. Then (6) does not hold for 
f = + 1 , and is equivalent to 

(7) 1 + f 1 - f 2 

= 0. 
i - r 

Take complex conjugates in (7) and equate the results. We find that 
ç2Jc-2 _ ^ g u t ^ jg j s impossible, as is evident from (7). It follows that Ck is 
nonsingular for 3 ^ k ^ (w/2) + 1. 

Now set Dn-k = / — CA;. Then A ^ G S^-*, and (n/2) — I ^ n — k S 
n — 3. Furthermore, Lemma 1 implies that 

det (2V*) = ( - î y - H O * - *)/*) det ( Q , 

so that -D„_t is also nonsingular. We are left with the cases k = 1, 2, « — 2, 
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n — 1. Now SUti consists of the permutat ion matrices, and all of these are 
nonsingular; and every element of 5n>n_i is permutat ion equivalent to J — 7, 
which is nonsingular for n > 1. We are thus left with the cases k = 2, n — 2. 

Suppose first t ha t k = 2. Note tha t if n is odd and > 1, then 7 + Pn G 5Wf2, 
is nonsingular, and has determinant 2. If n is even and > 4 , then n = m + 3, 
where m is odd and > 1 . Fur thermore, Q = 7 + (7*3 + 7 ^ ) belongs to .SWf2, 
is nonsingular, and has determinant 4. This disposes of k = 2. 

Now suppose tha t k = n — 2. Then if w is odd and > 1 , J — I — Pn £ 
Sn>n-2 and Lemma 1 implies t ha t det (J — I — Pn) = n — 2. If n is even and 
> 4 , then J — Q G 5n>n_2 and Lemma 1 implies tha t det (7 — Q) = 4 — 2n. 
T h u s all cases are covered and the proof is complete. 

The next result supplies a lower bound for mntk and determines it exactly 
when (n, k) = 1. 

T H E O R E M 2. Let d = (n, k) denote the greatest common divisor of n and k. Let A 
be any matrix of SnJc. Then det (^4) = 0 mod kd, so that mn<k ^ kd. Furthermore, 
mn<k = k if and only if d = 1. 

Proof. Let A be any matrix of SnJc. We perform the following elementary 
operations on A (which do not change the de te rminan t ) : 

i) add rows 2, 3, . . . , n to row 1 ; 
ii) add columns 2, 3, . . . , n to column 1. 

T h e first row of the resulting matr ix is a = [nk, k, k, . . . , k] and the first 
column is aT. I t follows a t once tha t det (^4) is divisible by kd, so tha t mn>k ^ 
kd. T h u s the first par t of the theorem is proved. To prove the second par t , 
we note first t ha t if mnjc = k, then d = 1. Suppose then tha t d = 1, and 
consider the matrix 

(8) E = Entk = I + P + P2 + . . . + Pk~\ 

Then E Ç Sn>k, and 

det (£) = n (i + i- + f + • • • + r*+i) = k n -,--4 • 
Since (&, w) = 1, f* runs over all wth roots of uni ty other than 1 once and once 
only as f does. Hence 

n a - r*) = n a - r) * o, 
and it follows tha t det ( £ ) = ^. This completes the proof. 

There is another case when mnJ: can be determined completely, which rep
resents the other extreme. We have 

T H E O R E M 3. Suppose that k divides n, and n > 2k. Then mUtk = k2. 
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Proof. W e have n = kt, t > 2. P u t 

n = ni + n2, ni = (t — l)k — 1, n2 = k + 1. 

Then {n\, k) = 1, ni > k, (n2, k) = 1, n2 > k. P u t 4̂ = Enltk + £n2>fc (see 
formula (8)) . Then A Ç ,SWffc and det (^4) = &2. T h u s mnjc ^ &2. Bu t also 
win,*. = k2> by Theorem 2. I t follows t h a t mnjc = &2, and the proof is complete. 

We note t ha t if k is odd, then m2k>k may be shown to be k2, by consideration of 

the matr ix 

P + P 2 + . . . + P " _ 1 + P* + 1 . 

These results p rompt the reasonable conjecture t ha t mnjk = kd = k(n, k). 

We are going to get further information on the size of mn>fc. T h e following 

lemma, which is of independent interest, will be useful for this purpose. 

L E M M A 2. Let m be a positive integer, c any integer. Then if m is odd, or if m is 

even and c is even, the congruence 

(9) c = x + y mod m 

has a solution such that 

(x, ni) — (y, m) = 1. 

Proof. Suppose first t ha t Wi, m2 are relatively prime positive integers, and 
t h a t Xi, 3>i, x2, yi m a y be found such t h a t 

c = xi + 3>i mod mi, c = x2 + y2 mod m2, 

(xitmi) = (yi,mi) = 1, (x2jm2) = (y2,m2) = 1. 

Determine x, 3; by the Chinese Remainder Theorem so t h a t 

x = Xi mod mi, x = X2 mod m2, y = yi mod mi, y = y2 mod m2 . 

Then it is readily verified t h a t c = x + y mod m\m2, and t h a t (x, mim2) = 
(y, m\m2) — 1. I t follows t h a t it is only necessary to prove the lemma when 
m — pe, p prime. Here we proceed as follows: if (p, c — 1) = 1, take x = 
c — 1, y = l. H p divides c — 1, take x = c — 2, y = 2 (notice t h a t p 9^ 2 
in this case). This completes the proof. 

T h e case when c is odd and m is even is a genuine exception, since x and y 
cannot then both be odd in (9). 

WTe now prove the following result. 

T H E O R E M 4. Suppose that k is odd, or that n and k are even, and that n > 
3k — 2. Then mnjk ^ k2. 

Proof. By L e m m a 2 we m a y determine ki, k2 so t h a t 0 ^ ki, k2 :g k — 1, 
(ki, k) = (k2, k) = 1, and n = ki + k2 mod k. P u t n = k\ + k2 + tk. Then 

3k - 2 < n = h + k2 + tk ^ 2k - 2 + tk, 
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so that / > l .Thus / ^ 2, and we may write n = %\ + n2, where n\ = (t — l)k 
+ ki, n2 = k + k2} and (wi, k) = 1, wi > &, (n2, &) = 1, #2 > &• Put 4̂ = 
Enltk + -EW2,fc- Then 4̂ Ç 5w>fc and det (/I) = &2, so that wn>fc ^ &2. This com
pletes the proof. 

Similar bounds may be derived when k > (2n — 2)/3, and n and k are of 
opposite parity, by consideration of the matrix J — A. 

Finally, we prove the following in this section: 

THEOREM 5. The number mntk is bounded above by a number which depends 
only on k. 

Proof. We may assume that k > 2, since the examples given in Theorem 1 
together with Theorem 2 show that 

J 2 n odd, n > 1, 
{4: n even, n > 4. 

Write 

n = qk + r, 0 ^ r ^ k — 1. 

Suppose first that q > 3. Put 

ni = (q - 3)k + 1, n2 = k + 1, ns = 2k + r - 2, 

so that n = n\ + n2 + W3. Then 

(wi, &) = 1, Wi > ky (n2, k) = 1, n2 > k, k < nz ^ 3& — 3. 

It follows by the method of Theorem 4 and by the Madamard bound for 
determinants that 

mn,k ^ k- k'kn*'2 S &(3*+1)/2. 

Next suppose that q ^ 3. Then n ^ 4& — 1, and so 

m»,* ^ &*/2 ̂  ¥i1c~l)'2. 

These inequalities clearly imply the result. 

3. The behavior of mn. We now consider the easier question of the determi
nation of mn, defined by (3). We shall prove 

THEOREM 6. The number mn defined by (3) is equal to 2n~x. 

Proof. Let A be any matrix of Hn. Add the first row of A to all the other rows. 
In the resulting matrix, all elements other than those in the first row are even. 
It follows that det (A) = 0 mod 2n~\ Now let A = (atj) be the matrix of Hn 

such that 

(l i^j 
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Add the first row of A to all the other rows. The resulting matrix is upper tri
angular with diagonal elements 1, 2, 2, . . . , 2 and so has determinant 2n~1. 
It follows that mn = 2n~l, and the proof is complete. 
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