COMBINATORIAL MATRICES WITH SMALL DETERMINANTS

MORRIS NEWMAN

1. Introduction. In this paper we will be concerned with the determinants of matrices whose elements are 0,1 or $-1,1$. Accordingly, let $S_{n, k}$ be the set of $n \times n 0,1$ matrices with exactly k ones in each row and column; and let H_{n} be the set of $n \times n-1,1$ matrices. Let $J=J_{n}$ denote (as usual) the $n \times n$ matrix all of whose elements are one. Then J is the only element of $S_{n, n}, J$ also belongs to H_{n}, and the elements of $S_{n, k}$ may be characterized as those $n \times n$ 0,1 matrices A such that $A J=J A=k J$.

Let
(1) $\quad m_{n, k}=\min |\operatorname{det}(A)|, \quad A \in S_{n, k}$, $\operatorname{det}(A) \neq 0$,
(2) $\quad M_{n, k}=\max |\operatorname{det}(A)|, \quad A \in S_{n, k}$.

We will show below that $m_{n, k}$ is well-defined except when $n=k>1$, and $n=4, k=2$. These are the only values such that every element of $S_{n, k}$ is singular, and will be tacitly excluded from all discussions involving $m_{n, k}$.

The Hadamard bound for determinants shows that $M_{n, k} \leqq k^{n / 2}$. Furthermore it is clear that $\operatorname{det}(A) \equiv 0 \bmod k$ for every $A \in S_{n, k}$, so that $m_{n, k} \geqq k$. Thus we have the crude bounds

$$
k \leqq m_{n, k} \leqq M_{n, k} \leqq k^{n / 2}
$$

The Hadamard bound is exact for an orthogonal matrix; and if A is "close" to an orthogonal matrix, it can be expected to have a large determinant. Thus if $k=q+1, n=q^{2}+q+1$, where q is a prime power, then there is a finite projective plane of order q; and if A is the incidence matrix of this plane, A is "close" to an orthogonal matrix, and

$$
|\operatorname{det}(A)|=q^{\left(4^{2}+q\right) / 2}(q+1)=(k-1)^{(n-1) / 2} k .
$$

Thus

$$
(k-1)^{(n-1) / 2} k \leqq M_{n, k} \leqq k^{n / 2},
$$

when $k=q+1, n=q^{2}+q+1$, and q is a prime power. This question is treated in detail and essentially solved completely by H. J. Ryser in his paper [1]. Accordingly we will confine ourselves to the study of $m_{n, k}$, and also to the easier question of the behavior of m_{n}, defined below:
(3) $\quad m_{n}=\min |\operatorname{det}(A)|, \quad A \in H_{n}, \operatorname{det}(A) \neq 0$.

It is not difficult to show that $m_{n}=2^{n-1}$.

[^0]2. The behavior of $m_{n, k}$. We first prove a preliminary lemma.

Lemma 1. Let A be an $n \times n$ matrix such that $A J=s J, s \neq 0$. Then
(4) $\operatorname{det}(J+A)=((n+s) / s) \operatorname{det}(A)$.

In particular, if $A \in S_{n, k}$, then
(5) $\operatorname{det}(J-A)=(-1)^{n-1}((n-k) / k) \operatorname{det}(A)$.

Proof. The following argument uses the multilinearity of the determinant. Write A as the matrix of its column vectors:

$$
A=\left[A_{1}, A_{2}, \ldots, A_{n}\right]
$$

Let δ be the $n \times 1$ vector all of whose entries are one. Then

$$
A_{1}+A_{2}+\ldots+A_{n}=s \delta,
$$

and

$$
J+A=\left[A_{1}+\delta, A_{2}+\delta, \ldots, A_{n}+\delta\right] .
$$

If we subtract the first column of $J+A$ from all the other columns, we find that

$$
\operatorname{det}(J+A)=\operatorname{det}\left[A_{1}+\delta, A_{2}-A_{1}, \ldots, A_{n}-A_{1}\right] .
$$

The multilinearity now implies that

$$
\operatorname{det}(J+A)=\operatorname{det}(A)+\operatorname{det}\left[\delta, A_{2}-A_{1}, \ldots, A_{n}-A_{1}\right] .
$$

Furthermore,

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left[A_{1}, A_{2}, \ldots, A_{n}\right]=\operatorname{det}\left[A_{1}, A_{2}-A_{1}, \ldots, A_{n}-A_{1}\right] \\
& =\operatorname{det}\left[s \delta-(n-1) A_{1}, A_{2}-A_{1}, \ldots, A_{n}-A_{1}\right],
\end{aligned}
$$

as may be seen by adding columns $2,3, \ldots, n$ to column 1 . This readily implies that

$$
\operatorname{det}\left[\delta, A_{2}-A_{1}, \ldots, A_{n}-A_{1}\right]=(n / s) \operatorname{det}(A)
$$

and it follows that

$$
\operatorname{det}(J+A)=\operatorname{det}(A)+(n / s) \operatorname{det}(A)=((n+s) / s) \operatorname{det}(A) .
$$

Hence (4) is proved, and (5) is an immediate corollary. This completes the proof.

Formula (4) also holds when $s=0$, in the form

$$
\operatorname{det}(J+A)=n \Lambda,
$$

where Λ is the product of the eigenvalues of A other than 0 .
We now prove the fact mentioned previously:

Theorem 1. Let n, k be integers such that $n \geqq k \geqq 1$. Then $S_{n, k}$ always contains a nonsingular matrix, except when $n=k>1$, and $n=4, k=2$.

Proof. It is clear that if $n=k$, then $S_{n, k}$ consists of the J matrix alone, which is singular for $n>1$. Furthermore every element of $S_{4,2}$ is permutation equivalent to

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \text { or to }\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

and each of these is singular. The cases noted are thus genuine exceptions.
Let $P=P_{n}$ denote the $n \times n$ full cycle

$$
P=\left[\begin{array}{lllll}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\cdot & & & & \\
. & & & & \\
\cdot & & & & \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right] .
$$

Then $I+P+P^{2}+\ldots+P^{n-1}=J$, so that the powers of P are disjoint. Put

$$
C_{k}=I+P+P^{3}+P^{5}+\ldots+P^{2 k-3}, \quad k \leqq(n / 2)+1 .
$$

Then $C_{k} \in S_{n, k}$. Furthermore, C_{k} is singular if and only if there is a ζ such that $\zeta^{n}=1$, and
(6) $1+\zeta+\zeta^{3}+\zeta^{5}+\ldots+\zeta^{2 k-3}=0$.

If $\zeta=1$, then (6) becomes $k=0$, which is impossible. If $\zeta=-1$, then (6) becomes $k-2=0$. Let us assume that $k>2$. Then (6) does not hold for $\zeta= \pm 1$, and is equivalent to

$$
\begin{equation*}
1+\zeta \frac{1-\zeta^{2 k-2}}{1-\zeta^{2}}=0 \tag{7}
\end{equation*}
$$

Take complex conjugates in (7) and equate the results. We find that $\zeta^{2 k-2}=1$. But this is impossible, as is evident from (7). It follows that C_{k} is nonsingular for $3 \leqq k \leqq(n / 2)+1$.

Now set $D_{n-k}=J-C_{k}$. Then $D_{n-k} \in S_{n, n-k}$, and ($n / 2$) $-1 \leqq n-k \leqq$ $n-3$. Furthermore, Lemma 1 implies that

$$
\operatorname{det}\left(D_{n-k}\right)=(-1)^{n-1}((n-k) / k) \operatorname{det}\left(C_{k}\right),
$$

so that D_{n-k} is also nonsingular. We are left with the cases $k=1,2, n-2$,
$n-1$. Now $S_{n, 1}$ consists of the permutation matrices, and all of these are nonsingular; and every element of $S_{n, n-1}$ is permutation equivalent to $J-I$, which is nonsingular for $n>1$. We are thus left with the cases $k=2, n-2$.
Suppose first that $k=2$. Note that if n is odd and >1, then $I+P_{n} \in S_{n, 2}$, is nonsingular, and has determinant 2 . If n is even and >4, then $n=m+3$, where m is odd and >1. Furthermore, $Q=I+\left(P_{3} \dot{+} P_{m}\right)$ belongs to $S_{n, 2}$, is nonsingular, and has determinant 4. This disposes of $k=2$.

Now suppose that $k=n-2$. Then if n is odd and $>1, J-I-P_{n} \in$ $S_{n, n-2}$ and Lemma 1 implies that $\operatorname{det}\left(J-I-P_{n}\right)=n-2$. If n is even and >4, then $J-Q \in S_{n, n-2}$ and Lemma 1 implies that $\operatorname{det}(J-Q)=4-2 n$. Thus all cases are covered and the proof is complete.

The next result supplies a lower bound for $m_{n, k}$ and determines it exactly when $(n, k)=1$.

Theorem 2. Let $d=(n, k)$ denote the greatest common divisor of n and k. Let A be any matrix of $S_{n, k}$. Then $\operatorname{det}(A) \equiv 0 \bmod k d$, so that $m_{n, k} \geqq k d$. Furthermore, $m_{n, k}=k$ if and only if $d=1$.

Proof. Let A be any matrix of $S_{n, k}$. We perform the following elementary operations on A (which do not change the determinant):
i) add rows $2,3, \ldots, n$ to row 1 ;
ii) add columns $2,3, \ldots, n$ to column 1 .

The first row of the resulting matrix is $\alpha=[n k, k, k, \ldots, k]$ and the first column is α^{T}. It follows at once that $\operatorname{det}(A)$ is divisible by $k d$, so that $m_{n, k} \geqq$ $k d$. Thus the first part of the theorem is proved. To prove the second part, we note first that if $m_{n, k}=k$, then $d=1$. Suppose then that $d=1$, and consider the matrix
(8) $E=E_{n, k}=I+P+P^{2}+\ldots+P^{k-1}$.

Then $E \in S_{n, k}$, and

$$
\operatorname{det}(E)=\prod_{\zeta^{n}=1}\left(1+\zeta+\zeta^{2}+\ldots+\zeta^{k+1}\right)=k \prod_{\zeta^{n}=1, \zeta \neq 1} \frac{1-\zeta^{k}}{1-\zeta} .
$$

Since $(k, n)=1, \zeta^{k}$ runs over all nth roots of unity other than 1 once and once only as ζ does. Hence

$$
\prod_{\zeta^{n}=1, \zeta \neq 1}\left(1-\zeta^{k}\right)=\prod_{\zeta^{n}=1, \zeta \neq 1}(1-\zeta) \neq 0
$$

and it follows that $\operatorname{det}(E)=k$. This completes the proof.
There is another case when $m_{n, k}$ can be determined completely, which represents the other extreme. We have

Theorem 3. Suppose that k divides n, and $n>2 k$. Then $m_{n, k}=k^{2}$.

Proof. We have $n=k t, t>2$. Put

$$
n=n_{1}+n_{2}, \quad n_{1}=(t-1) k-1, \quad n_{2}=k+1
$$

Then $\left(n_{1}, k\right)=1, n_{1}>k,\left(n_{2}, k\right)=1, n_{2}>k$. Put $A=E_{n 1, k} \dot{+} E_{n 2, k}$ (see formula (8)). Then $A \in S_{n, k}$ and $\operatorname{det}(A)=k^{2}$. Thus $m_{n, k} \leqq k^{2}$. But also $m_{n, k} \geqq k^{2}$, by Theorem 2. It follows that $m_{n, k}=k^{2}$, and the proof is complete.

We note that if k is odd, then $m_{2 k, k}$ may be shown to be k^{2}, by consideration of the matrix

$$
P+P^{2}+\ldots+P^{k-1}+P^{k+1}
$$

These results prompt the reasonable conjecture that $m_{n, k}=k d=k(n, k)$. We are going to get further information on the size of $m_{n, k}$. The following lemma, which is of independent interest, will be useful for this purpose.

Lemma 2. Let m be a positive integer, c any integer. Then if m is odd, or if m is even and c is even, the congruence
(9) $c \equiv x+y \quad \bmod m$
has a solution such that

$$
(x, m)=(y, m)=1
$$

Proof. Suppose first that m_{1}, m_{2} are relatively prime positive integers, and that $x_{1}, y_{1}, x_{2}, y_{2}$ may be found such that

$$
\begin{aligned}
& c \equiv x_{1}+y_{1} \quad \bmod m_{1}, \quad c \equiv x_{2}+y_{2} \quad \bmod m_{2} \\
& \left(x_{1}, m_{1}\right)=\left(y_{1}, m_{1}\right)=1, \quad\left(x_{2}, m_{2}\right)=\left(y_{2}, m_{2}\right)=1
\end{aligned}
$$

Determine x, y by the Chinese Remainder Theorem so that

$$
x \equiv x_{1} \quad \bmod m_{1}, \quad x \equiv x_{2} \quad \bmod m_{2}, \quad y \equiv y_{1} \quad \bmod m_{1}, \quad y \equiv y_{2} \bmod m_{2}
$$

Then it is readily verified that $c \equiv x+y \bmod m_{1} m_{2}$, and that $\left(x, m_{1} m_{2}\right)=$ $\left(y, m_{1} m_{2}\right)=1$. It follows that it is only necessary to prove the lemma when $m=p^{e}, p$ prime. Here we proceed as follows: if $(p, c-1)=1$, take $x=$ $c-1, y=1$. If p divides $c-1$, take $x=c-2, y=2$ (notice that $p \neq 2$ in this case). This completes the proof.

The case when c is odd and m is even is a genuine exception, since x and y cannot then both be odd in (9).

We now prove the following result.
Theorem 4. Suppose that k is odd, or that n and k are even, and that $n>$ $3 k-2$. Then $m_{n, k} \leqq k^{2}$.

Proof. By Lemma 2 we may determine k_{1}, k_{2} so that $0 \leqq k_{1}, k_{2} \leqq k-1$, $\left(k_{1}, k\right)=\left(k_{2}, k\right)=1$, and $n \equiv k_{1}+k_{2} \bmod k$. Put $n=k_{1}+k_{2}+t k$. Then

$$
3 k-2<n=k_{1}+k_{2}+t k \leqq 2 k-2+t k
$$

so that $t>1$. Thus $t \geqq 2$, and we may write $n=n_{1}+n_{2}$, where $n_{1}=(t-1) k$ $+k_{1}, n_{2}=k+k_{2}$, and $\left(n_{1}, k\right)=1, n_{1}>k,\left(n_{2}, k\right)=1, n_{2}>k$. Put $A=$ $E_{n 1, k}+E_{n 2, k}$. Then $A \in S_{n, k}$ and $\operatorname{det}(A)=k^{2}$, so that $m_{n, k} \leqq k^{2}$. This completes the proof.

Similar bounds may be derived when $k>(2 n-2) / 3$, and n and k are of opposite parity, by consideration of the matrix $J-A$.

Finally, we prove the following in this section:
Theorem 5. The number $m_{n, k}$ is bounded above by a number which depends only on k.

Proof. We may assume that $k>2$, since the examples given in Theorem 1 together with Theorem 2 show that

$$
m_{n, 2}= \begin{cases}2 & n \text { odd, } n>1 \\ 4 & n \text { even, } n>4\end{cases}
$$

Write

$$
n=q k+r, \quad 0 \leqq r \leqq k-1 .
$$

Suppose first that $q>3$. Put

$$
n_{1}=(q-3) k+1, \quad n_{2}=k+1, \quad n_{3}=2 k+r-2
$$

so that $n=n_{1}+n_{2}+n_{3}$. Then

$$
\left(n_{1}, k\right)=1, n_{1}>k, \quad\left(n_{2}, k\right)=1, \quad n_{2}>k, \quad k<n_{3} \leqq 3 k-3 .
$$

It follows by the method of Theorem 4 and by the Hadamard bound for determinants that

$$
m_{n, k} \leqq k \cdot k \cdot k^{n_{3} / 2} \leqq k^{(3 k+1) / 2} .
$$

Next suppose that $q \leqq 3$. Then $n \leqq 4 k-1$, and so

$$
m_{n, k} \leqq k^{n / 2} \leqq k^{(4 k-1) / 2}
$$

These inequalities clearly imply the result.
3. The behavior of m_{n}. We now consider the easier question of the determination of m_{n}, defined by (3). We shall prove

Theorem 6. The number m_{n} defined by (3) is equal to 2^{n-1}.
Proof. Let A be any matrix of H_{n}. Add the first row of A to all the other rows. In the resulting matrix, all elements other than those in the first row are even. It follows that $\operatorname{det}(A) \equiv 0 \bmod 2^{n-1}$. Now let $A=\left(a_{i j}\right)$ be the matrix of H_{n} such that

$$
a_{i j}= \begin{cases}1 & i \leqq j \\ -1 & i>j .\end{cases}
$$

Add the first row of A to all the other rows. The resulting matrix is upper triangular with diagonal elements $1,2,2, \ldots, 2$ and so has determinant 2^{n-1}. It follows that $m_{n}=2^{n-1}$, and the proof is complete.

Reference

1. H. J. Ryser, Maximal determinants in combinatorial iniestigations, Can. J. Math. 8 (1956), 245-249.

University of California, Santa Barbara, California 93106

[^0]: Received April 8, 1977. This work was supported by NSF Grant MCS 76-82923.

