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COMBINATORIAL MATRICES
WITH SMALL DETERMINANTS

MORRIS NEWMAN

1. Introduction. In this paper we will be concerned with the determinants
of matrices whose elements are 0, 1 or —1, 1. Accordingly, let S, ; be the set of
n X n 0, 1 matrices with exactly k ones in each row and column; and let H,
be the set of # X # —1, 1 matrices. Let J = J, denote (as usual) the n X n
matrix all of whose elements are one. Then J is the only element of S, ,, J also
belongs to H,, and the elements of S, ;x may be characterized as those n X n
0, 1 matrices 4 such that AJ = J4 = kJ.

Let
(1) m,; = min|det (4)], A4 € S,;, det (4) 0,

(2) M, = max|det (4)|, 4 € S,

We will show below that m,, . is well-defined except when n = & > 1, and
n = 4, k = 2. These are the only values such that every element of S, ; is
singular, and will be tacitly excluded from all discussions involving m,, .

The Hadamard bound for determinants shows that M, , < k*/2. Further-

more it is clear that det (4) = 0 mod & for every A € S, ;, so that m, , = k.
Thus we have the crude bounds

kR<m, = M, < k2

The Hadamard bound is exact for an orthogonal matrix; and if 4 is ‘‘close’’ to
an orthogonal matrix, it can be expected to have a large determinant. Thus if
k=q+ 1, n=q>+ ¢+ 1, where ¢ is a prime power, then there is a finite
projective plane of order ¢; and if 4 is the incidence matrix of this plane, 4 is
“close’” to an orthogonal matrix, and

|det (4)] = ¢+ (g4 1) = (& — 1)""D /2%,
Thus
(b — 1)=D 72k < M, , < k"2,

when 2 = ¢+ 1, n = ¢> + ¢ + 1, and ¢ is a prime power. This question is
treated in detail and essentially solved completely by H. J. Ryser in his paper
[1]. Accordingly we will confine ourselves to the study of m, ,, and also to the
easier question of the behavior of m,, defined below:

(3) m, = min|det (4)|, A4 € H,, det (4) # 0.
It is not difficult to show that m, = 2"1,
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2. The behavior of m, . We first prove a preliminary lemma.
LeEMMA 1. Let A be an n X n matrix such that AJ = sJ,s # 0. Then
4) det (J + 4) = ((n + s)/s) det (4).
In particular, if A € Sy, then
(5) det(J — A) = (—1)~'((n — k)/k) det (4).

Proof. The following argument uses the multilinearity of the determinant.
Write A as the matrix of its column vectors:

A = [41, 4o, ..., 4,].

Let 6 be the n X 1 vector all of whose entries are one. Then
A1+ A+ ...+ 4, = 56,

and
J4+A=1[4,+68 As+6, ..., 4,+ .

If we subtract the first column of J + A4 from all the other columns, we find
that

det <]+A) = det[A1+6,A2 — A],...,An —Al]
The multilinearity now implies that

det (J + 4) = det (4) +det[5, 4, — Ay, ..., 4, — 44].

Furthermore,
det (4) = det [41, As, ..., A,] = det[4), As — A1, ..., 4, — A41]
=det[sd — (n — 1)A1, As — Ay, ..., 4, — 41],
as may be seen by adding columns 2, 3, . . . , n to column 1. This readily implies
that
det [6, As — A1, ..., 4, — 41] = (n/s) det (4)

and it follows that
det (J + 4) = det (4) + (n/s)det (4) = ((n + s5)/s) det (4).

Hence (4) is proved, and (5) is an immediate corollary. This completes the
proof.

Formula (4) also holds when s = 0, in the form

where A is the product of the eigenvalues of 4 other than 0.
We now prove the fact mentioned previously:
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THEOREM 1. Let n, k be integers such that n = k = 1. Then S, ;. always con-

tains a nonsingular matrix, except when n =k > 1, and n = 4, k = 2.

Proof. It is clear that if # = k, then S, ; consists of the J matrix alone, which
is singular for n > 1. Furthermore every element of S;. is permutation
equivalent to

1100 1100
1100 1010
001 1| %% 010 1]
00 1 1 0011

and each of these is singular. The cases noted are thus genuine exceptions.
Let P = P, denote the n X % full cycle

010 ... 0
0 01 0
P:
000 ... 1
1.0 0 ... OJ
Then I + P + P2+ ... 4 P*' = J, so that the powers of P are disjoint.

Put
Co=T4+P+ P4 Ps ...+ P¥3 k< (n/2) + 1.

Then C, € S, ;. Furthermore, C, is singular if and only if there is a { such that
¢ =1, and

6) 1+++0+ .+ =0

If ¢ = 1, then (6) becomes k = 0, which is impossible. If { = —1, then (6)
becomes # — 2 = 0. Let us assume that 2 > 2. Then (6) does not hold for
¢ = +1, and is equivalent to

1 — 2k—2
1 _g‘g_g* = 0.

Take complex conjugates in (7) and equate the results. We find that
¢%=2 = 1. But this is impossible, as is evident from (7). It follows that C, is
nonsingular for 3 = k = (»/2) + 1.

Now set D,y = J — Cy. Then D, € S, s, and (n/2) — 1 =n — k £
n — 3. Furthermore, Lemma 1 implies that

det (D) = (=1)""1((n — k)/k) det (Cy),

(7 1+¢

so that D,_; is also nonsingular. We are left with the cases £k = 1, 2, n — 2,
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n — 1. Now S, 1 consists of the permutation matrices, and all of these are
nonsingular; and every element of S, ,_; is permutation equivalent to J — 1,
which is nonsingular for n > 1. We are thus left with the cases ¥ = 2, n — 2.

Suppose first that £ = 2. Note that if # is odd and >1, then I 4+ P, € S, »,
is nonsingular, and has determinant 2. If n is even and >4, then n = m + 3,
where m is odd and >1. Furthermore, Q = I + (P; + P,,) belongs to S, s,
is nonsingular, and has determinant 4. This disposes of & = 2.

Now suppose that & = n — 2. Then if # is odd and >1, J — I — P, €
Sun2and Lemma 1 implies that det (J — [ — P,) = n — 2. [f n is even and
>4, then / — Q € S, ,—2 and Lemma 1 implies that det (J — Q) = 4 — 2.
Thus all cases are covered and the proof is complete.

The next result supplies a lower bound for m, ; and determines it exactly
when (n, k) = 1.

THEOREM 2. Let d = (n, k) denote the greatest common divisor of n and k. Let A
be any matrix of S, . Then det (4) = 0 mod kd, so that m, ; = kd. Furthermore,
My = kifandonlyifd = 1.

Proof. Let A be any matrix of S, ;. We perform the following elementary
operations on 4 (which do not change the determinant):

i) add rows 2, 3, ..., n torow 1;
it) add columns 2, 3, ..., n to column 1.

The first row of the resulting matrix is o = [nk, k, k, ..., k] and the first
column is 7. It follows at once that det (4) is divisible by kd, so that m, , =
kd. Thus the first part of the theorem is proved. To prove the second part,
we note first that if m,, = k, then d = 1. Suppose then that d = 1, and
consider the matrix

8) E=E,,=1+P+P+...+ Pl
Then E € S, ;, and

_ k
det (8) = TT (4 c+¢+. 4" = T1 1=¢

Since (k, n) = 1, {* runs over all nth roots of unity other than 1 once and once
only as { does. Hence

II (l—f’”>=§H§#1(1—r)¢o,

{n=1,{1

and it follows that det (£) = k. This completes the proof.

There is another case when m, ; can be determined completely, which rep-
resents the other extreme. We have

THEOREM 3. Suppose that k divides n, and n > 2k. Then m, , = k>
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Proof. We have n = kt, t > 2. Put
n=n+n, m=0¢—0Dk—1 n=%k+1

Then (ny, k) = 1, ny >k, (ns, k) = 1, na > k. Put A = E,,  + E,, . (see
formula (8)). Then 4 € S, and det (4) = k2. Thus m,; < k% But also
My r = k%, by Theorem 2. It follows that m, ; = k2, and the proof is complete.

We note that if k£ is odd, then m., , may be shown to be k2, by consideration of
the matrix

P+ P>+ ...+ P14 P

These results prompt the reasonable conjecture that m, ; = kd = k(n, k).
We are going to get further information on the size of m, ;. The following
lemma, which is of independent interest, will be useful for this purpose.

LEMMA 2. Let m be a postitve inieger, ¢ any integer. Then if m is odd, or if m is
even and ¢ 15 even, the congruence

9) ¢c=x+4+vy modm
has a solution such that
(x,m) = (y,m) = 1.

Proof. Suppose first that m,, m. are relatively prime positive integers, and
that xi, ¥1, X2, ¥ may be found such that

c=x1+y1 modmi, ¢=x:-+ 1y, mod m,,
(xlv ml) = (ylvml) = ly (ny m?) = (y% m2) = 1.

Determine x, y by the Chinese Remainder Theorem so that
x=x1 modm;, x=x, modms y=1y modm;, y=7y modm.,.

Then it is readily verified that ¢ = x + vy mod mm., and that (x, mm,) =
(v, myms) = 1. It follows that it is only necessary to prove the lemma when
m = p¢, p prime. Here we proceed as follows: if (p, ¢ — 1) = 1, take x =
¢c— 1,y = 1. If p divides ¢ — 1, take x = ¢ — 2, vy = 2 (notice that p # 2
in this case). This completes the proof.

The case when ¢ is odd and m is even is a genuine exception, since x and y
cannot then both be odd in (9).
We now prove the following result.

THEOREM 4. Suppose that k is odd, or that n and k are even, and that n >
3k — 2. Then m, ; < k2

Proof. By Lemma 2 we may determine ki, k2 so that 0 < ky, k2 < k& — 1,
(ky, k) = (ks, k) = 1, and n = k; + k2 mod k. Put n = k; + k; + tk. Then

3k —2<n="Fr +k+th =2k -2+ tk
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so thatt > 1. Thus¢ = 2,and we may writen = n, + 7., wheren; = (¢ — 1)k
+k1, '}12=k+k2, and (111, k) = 1, 'I’ll>k, (ng, k) = 1, n2>k Put 4 =
Epi + Ep Then 4 € S, and det (4) = k2, so that m, , < k2 This com-
pletes the proof.

Similar bounds may be derived when & > (2n — 2)/3, and » and & are of
opposite parity, by consideration of the matrix J — 4.
Finally, we prove the following in this section:

TarEOREM 5. The number m, ;. is bounded above by a number which depends
only on k.

Proof. We may assume that £ > 2, since the examples given in Theorem 1
together with Theorem 2 show that

m __{2 nodd,n > 1,
m2 7 |4 meven,n > 4.

Write
n=qk+r, 0=5r=k—1
Suppose first that ¢ > 3. Put
m=1(q—3)k+1, no=k+1, n3=2k~+r— 2,
so that # = n; + n. + n;. Then
(n, k) =1,y >k, (no, k) =1, na> %k, k<mny<3k—3.

It follows by the method of Theorem 4 and by the Hadamard bound for
determinants that

mn,k é k . k . kn?,/f'. é k(3k+l)/2_
Next suppose that ¢ < 3. Then n < 4k — 1, and so
My s é pr/2 é k(4k—1)/2.
These inequalities clearly imply the result.
3. The behavior of m,. We now consider the easier question of the determi-
nation of m,, defined by (3). We shall prove
TuEOREM 6. The number m, defined by (3) is equal to 2.

Proof. Let 4 be any matrix of H,. Add the first row of 4 to all the other rows.
In the resulting matrix, all elements other than those in the first row are even.
It follows that det (4) = 0 mod 2*~'. Now let 4 = (ay;) be the matrix of H,
such that

_{1 i<
“= =1 i>].
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Add the first row of A to all the other rows. The resulting matrix is upper tri-
angular with diagonal elements 1, 2, 2, ..., 2 and so has determinant 2"~
It follows that m, = 2"~ and the proof is complete.
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