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Abstract. Rigorous results on Hill Stability for the classical N -body problem are in general
unknown for N � 3, due to the complex interactions that may occur between bodies and the
many different outcomes which may occur. However, the addition of finite density for the bodies
along with a rigidity assumption on their mass distribution allows for Hill stability to be easily
established. In this note we generalize results on Hill stability developed for the Full 3-body
problem and show that it can be applied to the Full N -body problem. Further, we find that Hill
Stability concepts can be applied to identify types of configurations which can escape and types
which cannot as a function of the system energy.

1. Introduction
The current paper further explores the model introduced in Scheeres (2012) for the

Full N -body problem, distinguished from the traditional N -body problem in that each
body has a finite density, and hence two bodies cannot come arbitrarily close to each
other. The finite-sized bodies are assumed to be rigid, and only exhibit contact forces
between each other of friction and coefficient of restitution. This means that relative
equilibria must also include resting configurations, with all relative motion between com-
ponents zeroed. This both results in new possible relative equilibrium configurations of an
N -body system, with components resting on each other, and also places lower limits on
the gravitational potential energy. This model has been developed to describe the rela-
tive mechanics and dynamics of self-gravitating rubble pile asteroids, where the relative
forces between components are weak enough for the rigidity of the components to not
be compromised. Scheeres (2012) shows how this simple change provides a drastic mod-
ification of the stable states of the 2 and 3 body problems, with the main focus on the
equal mass, spherical, Full N -body problem.

Using this model, in Scheeres (2014) it is shown that a rigorous constraint for Hill
Stability in the 3-body problem can be developed, which in general is unknown in the
classical point-mass 3-body problem. In the current paper this concept is extended to the
N -body problem as a function of system energy. In addition, we show that as a system’s
energy is raised from values that ensure Hill Stability, some configurations can escape
while others cannot. These limits are detailed for the N -body problem for N = 2, 3, 4, 5.
The analysis for higher values of N > 5 require more research into the resting equilibrium
of the Full N -body problem.

2. Problem Definition
The main results are established by using the minimum energy function defined in

Scheeres (2012), which can be derived from Sundman’s Inequality:

E =
1
2

H2

IH
+ U � E (2.1)
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where E and H are the total energy and angular momentum of the system, including
translational and rotational motion, IH is the total moment of inertia of the system
about the fixed total angular momentum vector of the system, and U is the gravitational
potential energy of the system. The function E is intimately related to Smale’s Amended
Potential (Smale 1970) and can be used to discover all of the previously mentioned
relative equilibria as outlined in Scheeres (2012).

If we assume that the N bodies are of equal mass and density (note that we do not
need to make this assumption, but that doing so makes the following discussion much
simpler and hence is adopted for this short note) the system can be normalized such
that

IH =
N
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1
N

N −1∑

i=1
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j=i+1
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U = −
N −1∑

i=1

N∑

j=i+1

1
rij

(2.3)

where rij denotes the distance between bodies i and j. For a finite density system made of
equal-sized spheres the distance between the bodies has a lower limit such that rij � 1.
This implies that the potential energy and moment of inertia have lower limits. For
N � 4 it is always possible to pack the grains so that they are all mutually equidistant
and touching. For N � 5, however, it is no longer possible for all of the grains to touch,
meaning that some of the distances must take on a value > 1. Still, by just evaluating
all of the grains at the mutually equal distance a conservative lower bound can be found.
We also note that for N bodies there are N(N − 1)/2 mutual distances that appear in
these expressions. Applying these observations we can find that

IH � N

10
+

N − 1
2

(2.4)

U � −1
2
N(N − 1) (2.5)

where we note that the inequalities are only sharp for N � 4.
For definiteness in the following we will sometimes denote the potential and moment

of inertia to be a function of the number of bodies, N , with the notation IH (N) and
U(N). In all cases we recall that the moment of inertia and potential energy are always
functions of the mutual distances between the bodies. We then introduce the notation
Um (N) = minri j

U(N), which denotes the potential energy configuration for N bodies
minimized over all possible relative configurations. As noted above, for N � 4 this lower
limit can be achieved with all of the grains resting on each other, with mutual distances
rij = 1. Thus, we find that Um (2) = −1, Um (3) = −3 and Um (4) = −6. For systems with
N � 5 a lower limit on the minimum potential is found to be Um (N) > − 1

2 N(N − 1), as
indicated above.

3. Hill Stability Definitions
We now define the concept of Hill Stability used in this paper.

Definition 1. An N -body system is Hill Stable if there exists a positive constant C
such that rij < C < ∞ for all indices and for all time, both future and past.
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Figure 1. All unique configurations of the equal mass and size N -body problem for N = 2, 3, 4, 5.
The number M denotes the number of unique configurations at each value of N . Also shown
is the minimum potential energy as a function of N . The information in this figure, combined
with the theorems, is sufficient to generate the following figures.

We also introduce a weaker form of Hill Stability, tied to certain configurations. First
we define what we mean by a configuration, and then we introduce a modified concept
we call Configuration Hill Stability.

Definition 2. A configuration of the N -body problem, denoted as Cj , is defined as
a unique grouping of the N bodies into P groups, with each group having a set number
of bodies q1 � q2 . . . � qP � 1 and

∑P
i=1 qi = N . We denote a given grouping as Cj =

{N,P,Q = (q1 , q2 , . . . , qP )}. We note that there can be several different configurations
as a function of N , or j = 1, 2, . . . ,M , where each will either have a different P or
different Q.

For example, every group of N bodies has a single, unique grouping into N groups,
with P = N and qi = 1. Each group of N bodies also has a single, unique grouping
into 1 group, with P = 1 and q1 = N . Figure 1 shows all possible configurations for
N = 2, 3, 4, 5.

Definition 3. A configuration Cj = {N,P,Q = (q1 , q2 , . . . , qP )} is called Configu-
ration Hill Stable if it is impossible for the groups in this particular configuration to
mutually escape from each other to infinity, either forwards or backwards in time, while
each sub-group qi remains bound.

4. Hill Stability Theorems
We first establish a general result on Hill Stability for the Full N -Body Problem.

Theorem 4.1. An equal size and density, spherical Full N -body system is Hill Stable
if E < Um (N − 1).

Proof. Assume that E < Um (N − 1) but that the system is not Hill Stable, and
escape of at least one particle can occur. If a body escapes, IH → ∞ and U(N) →
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Figure 2. Graph displaying transition from Hill Stability to non-Hill Stability for different
energy levels for the N = 2 and N = 3 problem.

U(N − 1), as the mutual distances involving the escaped body all go to ∞. However,
Sundman’s Inequality still holds, and after the escape gives E = U(N − 1) � E <
Um (N − 1). However, this cannot be true by definition, and thus the contention that the
system is not Hill Stable is untrue. Applying the converse, we see that the system is Hill
Stable.

Now, we introduce a second Theorem that allows us to determine whether a given
configuration Cj is Hill Stable.

Theorem 4.2. A given configuration of the Full N -Body Problem with equal sized bod-
ies, Cj = {N,P,Q = (q1 , q2 , . . . , qP )}, is Configuration Hill Stable if E <

∑P
i=1 Um (qi).

Proof. Assume that E <
∑P

i=1 Um (qi) but that the system is not Configuration Hill
Stable for these components. Thus we can assume that all of these components mutually
escape each other. As the distances between these components go to ∞, IH → ∞ and
U(N) →

∑P
i=1 U(qi). Applying the Sundman Inequality then gives us E =

∑P
i=1 U(qi) �

E <
∑P

i=1 Um (qi). This is a contradiction, meaning that the given configuration is Con-
figuration Hill Stable.

In this context, Configuration Hill Stability means that not all of the configurations
can mutually escape each other. If instead only some configurations escape, but others
are bound to each other, this is equivalent to a configuration with fewer components
being Hill Unstable, and corresponds to one of the configurations at a lower value of
energy in Figs. 2 and 3 being Hill Unstable.
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Figure 3. Graph displaying transition from Hill Stability to non-Hill Stability for different
energy levels for the N = 4 and N = 5 problem.

5. Configuration Hill Stability for N � 5
Using these theorems we can compute Hill Stability and Configuration Hill Stability

for systems up to N = 5. First, in Fig. 1 we show all possible configurations as a function
of N , also giving the minimum potential energy for each value of N . Using these results,
we can immediately develop the Configuration Hill Stability graphs in Figs. 2 - 3. These
graphs show the energy levels at which different configurations lose their Hill Stability,
and thus are able to mutually escape at higher levels of energy. A clear pattern is that
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as the energy increases the configurations that can escape involve more bodies. In the
limit, and for all cases, when the total energy is positive it is then possible for all of the
bodies to mutually escape from each other.

Similar results can be found if we relax the equal size and density and the spherical
assumptions. However, in these cases the number of possible outcomes increases signifi-
cantly and the analysis of these systems becomes more difficult.

6. Discussion
The Theorems proved above add an interesting aspect to the Full N -body problem.

They show that as the energy of an N -body system is increased that some configurations
are allowed to disrupt, but not others. Eventually, when the energy is positive, it always
allowed for the entire system to disperse. It is important that the energy used here is
due both to body rotation and to translational motion. Thus, a system could be made
initially motionless but be given an energy due to rotation of the individual bodies only
– yet the outcome and Hill Stability is unchanged.

Another interesting result is the discrete level of the energy values when new con-
figurations lose their Hill Stability. This is solely due to the ability of the grains to
mutually touch for N � 4. For bodies with N � 6 the energies at which Configuration
Hill Stability is lost will not take on integer values for configurations that involve more
than 5 bodies. We do not consider them here, but will explore these systems in the
future.

It is physically relevant to compare these energy levels with the energy levels at which
stable resting configurations fission. These are discussed for the equal mass case in
Scheeres (2016) for N = 2, 3, 4. In it we find that the N = 2 and N = 3 minimum
energy resting configurations both fission at energies less than 0 for N = 2 and less than
-1 for N = 3. This means that once these systems fission they are still Hill Stable for all
of their possible configurations. The same is not true for the N = 4 case, as 3 different
minimum energy resting configurations fission at energies above -3 but below -2. Thus in
this case fission can lead to mutual escape of a single body, leaving the remaining three
bound into orbit about each other. A test calculation with a particle type of resting
configuration for N = 5 shows that fission for this body occurs at an energy greater than
-3, meaning that three different types of configurations do not have Hill Stability here.
More research on this case will occur in the future.

Another question for future study is what the possible levels of energy and angular
momentum of the separated components are following such an escape. This will neces-
sitate an estimate of the angular momentum left in the different components, high-
lighting the interesting fact that the angular momentum does not enter any of the
computations given here for Hill Stability. Developing such limits and constraints will
be of interest for tying these results to the observed dynamics of rubble pile asteroid
systems.
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