Symposium on ‘Plants as animal foods: a case of catch 22?’*

Biochemistry of plant secondary metabolites and their effects in animals

T. Acamovic† and J. D. Brooker
Avian Science Research Centre, Animal Health Group, Scottish Agricultural College, West Mains Road, Edinburgh EH9 3JG and Avian Science Research Centre, Animal Health Group, Scottish Agricultural College, Ayr KA6 5HW, UK

Plant secondary metabolites, which include a wide variety of phytochemicals, have always been constituents of the diets of man and other animals. Although a high proportion of these phytochemicals have been considered to be of little value in plants (although this view is changing), they have frequently been shown to have adverse effects on animals when ingested. The effects depend to a great extent on the chemistry of the compounds, their concentration in the diet and the amount consumed, and are further dependent on the health status of the animals. Traditionally, most studies of the effects of these compounds on animals have focused on their adverse effects and how to alleviate them. However, recent public concern about the use of synthetic compounds in animal diets to enhance performance and health and welfare issues, coupled with changes in regulations on the use of synthetic medicaments, has stimulated interest and research in the use and effects of phytochemicals in the diets of farmed animals. Phytochemicals vary in their chemistry but can be divided into hydrophilic and hydrophobic compounds, of which a wide variety of polyphenolic and terpenoid compounds, as well as alkaloids, carbohydrates and non-protein amino acids, invoke special interest. The chemistry, biochemistry and mechanisms of action of these compounds in plants and their effects in animals when ingested will be explored.

Phytochemicals: Effects in animals

As plant secondary metabolites (PSM) are an extremely large group of compounds, a comprehensive overview of their biochemistry, bioactivity and chemistry is not possible in a relatively short review paper. The importance of PSM in ecology, human foods and animal feeds, and as pharmaceuticals with chemical and biochemical attributes has already been described in some detail (D’Mello & Devendra, 1995; D’Mello, 1997; Brooker, 2000; Harborne, 2001; Pfannhauser et al., 2001; Acamovic et al., 2004; Nash, 2004). The present paper will discuss some aspects of the biochemistry and chemistry of PSM, referring to some specific compounds in more detail, in particular their occurrence and effects in animal feedstuffs.

PSM, also known as phytochemicals, represent a diverse group of natural products (Harborne, 2001; Wink, 2004), some of which may be nutritionally valuable but many of which have no nutritional value or antinutritional properties. Although precise numbers are at best an estimate, of the ≥100,000 different compounds of natural origin that have been described, ≥80,000 are derived from plants. Many of these compounds have been isolated and their structures have been elucidated using GC, GC–MS, HPLC, HPLC–MS, NMR or X-ray diffraction methods (Harborne, 1993; Wink, 1999a,b). However, it is likely that in the future many more compounds derived from well-known plant species as well as from more novel plant species will be isolated and identified.

Abbreviations: CT, condensed tannins; GIT, gastrointestinal tract; PSM, plant secondary metabolites.

*Other papers from this symposium have been published in Proceedings of the Nutrition Society (2004), 63, 621–639 and Proceedings of the Nutrition Society (2005), 64, 123–131.

†Corresponding author: Dr T. Acamovic, fax +44 1292 525 098, email thomas.acamovic@sac.ac.uk
The increased interest in phytochemicals in animal diets has been prompted by the disapproval and decline in the use of ‘in feed’ antibiotics, the removal of animal proteins from the diet and thus the increased variety and inclusion levels of vegetable protein sources. Furthermore, PSM in the diets of man could potentially have both beneficial and detrimental effects (Farhan & Cross, 2001; Hollis & Wargovich, 2001; Nash, 2004). Thus, there are increasing numbers of novel plant species and by-products that are being identified and studied for their potential use in the pharmacological, medical and agricultural industries.

A general overview of the range of PSM is shown in Fig. 1 (from Wink, 2004), which includes an estimate of the number of natural products. Gluc, glucose; R, alkyl group. (Adapted from Wink 2004.)

![Fig. 1. Estimated range of plant secondary metabolites. Gluc, glucose; R, alkyl group. (Adapted from Wink 2004.).](https://www.cambridge.org/core/terms)

With N
1. Alkaloids 12 000
2. Non-protein amino acids 600
3. Amines 100
4. Cyanogenic glycosides 100
5. Glucosinolates 100

Without N
6. Monoterpenes 1 000
7. Sesquiterpenes 3 000
8. Diterpenes 2 000
9. Triterpenes, Saponins, Steroids 4 000
10. Tetraterpenes 350
11. Flavonoids 2 000
12. Polycyclics 750
13. Phenylpropanes 1 000

Biosynthesis and storage of plant secondary metabolites

Biosynthesis of PSM is organ-, cell- or development-specific in almost all higher plant species. In most cases the pathways, and indeed the genes involved in their synthesis, are tightly regulated and may be linked to environmental, seasonal or external triggers. Cellular sites of synthesis are compartmentalised in the plant cell, with the majority of pathways being at least partially active in the cytoplasm. However, there is some evidence that compounds such as alkaloids, quinolizidines, caffeine and some terpenes are synthesised in the chloroplast (Roberts, 1981; Wink & Hartmann, 1982). The biosynthesis of...
Protoberberine occurs in cell vesicles (Amann et al. 1986) and colnine and some amines are synthesised in mitochondria (Roberts, 1981; Wink & Hartmann, 1981). The synthesis of lipophilic compounds is usually associated with the endoplasmic reticulum, as are many of the post-synthetic modifications such as hydroxylation.

Although PSM are often detected throughout the plant, their initial site of synthesis is often restricted to a single organ such as roots, fruits or leaves. Thereafter, they can be transported around the plant via the phloem or xylem or by symplastic or apoplastic transport and stored in a number of different tissues. The site of storage often depends on the polarity of the compounds, with hydrophilic compounds such as alkaloids, glucosinolates and tannins being stored in vacuoles or idioblasts, whilst lipophilic compounds such as the terpene-based essential oils are stored in trichomes, glandular hairs, resin ducts, thylakoid membranes or on the cuticle (Wiermann, 1981). For some compounds that are present in the plant as defence barriers, e.g. alkaloids, flavonoids, cyanogenic glycosides, coumarins, storage may be in the epidermis itself (Wiermann, 1981; Wink, 1993; Wink & Roberts, 1998; Harborne, 2001). Storage may be tissue- or cell-specific (Guen et al. 1987), with flowers, fruits and seeds being rich sources of many PSM, especially in annual plants. In perennial species PSM are present in high levels in bulbs, roots, rhizomes and bark of the roots and stems.

PSM may not be the end products of metabolism, but may have a regular rate of turn over (Barz & Koster, 1981). N-containing PSM such as alkaloids, cyanogenic glycosides, non-protein amino acids, NSP and protease inhibitors are stored by the plant and are metabolised at germination to serve as N or C sources for the developing seedlings (Wink & Witte, 1985). There is also a turnover of carbohydrates (e.g. oligosaccharides) and lipids during germination. The concentration of some PSM, such as quinolizidine alkaloids and some monoterpenes, have also been shown to vary in a diurnal fashion, suggesting an interplay between synthesis and turnover, and active transcription of the genes involved.

Although PSM have been used for thousands of years in human medicine, for flavouring, as stimulants and hallucinogens, as fragrances in cosmetics and household fresheners and as therapeutic agents, their native function in plants remains contentious (Harborne, 2001). The primary use of many PSM is probably for plant defence. Whereas animals and birds can evade predation by relatively rapid movement, plants do not have this capability, and so have evolved elaborate mechanisms of protection. PSM are generally thought to be present in plants primarily for defence purposes and this view has been extended on the basis of some convincing evidence (Fraenkel, 1959; Erlich & Raven, 1969; Levin, 1976; Harborne, 1993, 2001; Ralphs et al. 2004). The proposed functions include: defence against grazing herbivores and insects; defence against micro-organisms, including bacteria, fungi and viruses; defence against other plants competing for nutrients and light; protection against the damaging effect of UV light.

However, PSM perform other roles including: acting as volatile attractants to promote pollination by birds and insects; colouring for the purpose of either camouflage or attraction; signals to promote colonisation by beneficial symbiotic micro-organisms such as mycorrhizal fungi and N-fixing rhizobia. They may also have a possible nutritional role, particularly the N-containing PSM, during germination of seeds. Interestingly, plants also regulate the synthesis and storage of PSM so that the more vulnerable tissues such as fruits and young leaves contain higher concentrations of PSM than senescing tissues (Wink, 2004). The physical location of structures such as trichomes, which serve as the sites of synthesis and storage of essential oils, also provides support for a defence role for these compounds. Trichomes are located on the surfaces of leaves, and are usually the first point of contact for browsers or insect predators. Tannins are usually located in leaf vacuoles beneath the epidermal surface. The volatile nature of the essential oils or the astringent and bitter taste of tannins and alkaloids respectively can be a clear deterrent to predators (Saunders & Conn, 1978; Harborne, 2001; Ralphs et al. 2004).

Bioactivity of plant secondary metabolites

The bioactivity of PSM has been described extensively in the literature (Wink, 1993, 1998, 2000; Colegate & Dorling, 1994; D’Mello, 1997; Cheeke, 1998; Garland & Barr, 1998; Acamovic et al. 2004). Furthermore, paradoxically, the very evolution of bioactive defence compounds in plants has produced compounds that may have many other beneficial effects in biotechnology, pharmacy and medicine. The structures of many PSM have been shaped to interact with many different molecular and cellular targets, including enzymes, hormone receptors, neurotransmitter receptors and transmembrane transporters, and can thus mimic a response at the corresponding molecular target (Fig. 2). There is hardly any cellular target that some PSM cannot modulate. Thus, plants produce a wide range of bioactive substances, and many of these substances are already in widespread use in the

Fig. 2. Summary of potential cellular targets for plant secondary metabolites. Mito, mitochondrion. (Adapted from Wink, 2004.)
Fig. 3. Interactions between plant secondary metabolites (PSM) and components within animals.

pharmacological, medical and agricultural industries, while others are under development. In many cases PSM, e.g. the terpenoid essential oils, can be more effective than chemically-synthesised pure compounds because they are a complex mixture of components. Their complexity enables the PSM to interact with multiple molecular targets and, thus, it is more difficult for target micro-organisms or herbivores to develop any effective response because resistance at different targets would be required.

Defence against herbivores or pathogens is not necessarily constitutive. Wounding and infection can trigger several events in plants (e.g. the release of glucosinolates or cyanogenic glycosides), which can work together with secreted enzymes (e.g. β-glycosidasases) to assist in protecting the plant from attack. Many antibacterial and antifungal compounds (phytoalexins) are produced in plants as a result of infection, and tannins are often produced in response to browsing by herbivores (Baldwin, 1994). However, just as plants have evolved defence mechanisms for their protection, many animals, microorganisms and parasites have evolved parallel mechanisms to overcome these defences (Hartmann & Witte, 1995). There is considerable interaction between ingested PSM and tissues, enzymes and other compounds within the animal (Fig. 3). The interaction during absorption, deposition and metabolism, and excretion are highly dependent on the physico-chemical attributes of the compounds involved and their susceptibility to transformation. When ingested the relevant PSM can pass through the animal unchanged or combine with bile salts and be excreted in the faeces. They can also interact with tissue and other compounds within the GIT, pass through and be excreted. The original compound can also be either absorbed directly or transformed within the GIT and then absorbed and deposited. If absorbed, the compounds can undergo further transformation, usually to increase hydrophilicity, and then excretion via the kidneys in the urine. This process has been clearly demonstrated for glucosinolates, which are transformed and excreted as mercapturic acids after degradation by myrosinase and conjugation with glycine, cystine and glutamic acid under the influence of the relevant amino acid transferases (Timbrell, 1992).

Physico-chemical factors that are extremely influential in PSM when ingested are: molecular size and architecture; pH of the environment; hydrophilicity; lipophilicity; charge and polarity; ability to form micelles; solubility. Aspects of these factors have been well described and discussed (Timbrell, 1992; Cheeke, 1998; Harborne, 2001); however, it is appropriate to give an overview with some relevant examples. In general, the smaller the molecule and the greater the hydrophilicity, the greater is the likelihood of absorption of the compound from the GIT when ingested.

Cellulose and NSP are well utilised by ruminants (after degradation by fungi and bacteria) but not by poultry. The molecules are too large to be absorbed through the GIT and, in the case of ruminants, are degraded by microorganisms within the rumen before absorption of the metabolites. The degradation or lack of degradation of such large molecules may alter the microflora within the GIT and may be advantageous or disadvantageous (Spring, 2004; Apajalahti et al. 2004). For example, the presence of NSP within the lower GIT of poultry and pigs has been shown to be disadvantageous and can cause gastrointestinal problems by altering the profile of micro-organisms in the GIT. These effects may include changes in the immune response of the animals, which may be productively disadvantageous (Boros et al. 2002; Apajalahti et al. 2004; Humphrey & Klasing, 2004; Kelly, 2004). Similarly, when poultry are fed different diets with or without extracted Camelina sativa meal or with different lupin (Lupinus spp.)-seed meals and cereals the microbial ecology of the GIT changes (Cowieson et al. 2000; Gilbert et al. 2000; Apajalahti et al. 2004), as measured by differences in the cytosine:guanidine of the different bacteria. (Apajalahti et al. 1998, 2004). In some instances the presence of fructo-oligosaccharides and manano-oligosaccharides, which may be produced within the GIT, has proved to be beneficial in reducing the presence of pathogenic bacteria and improving the health of the GIT. This outcome may be a result of alteration of the pH and/or interference with the ability of micro-organisms to attach to the epithelial tissue within the GIT (Spring et al. 2000; Houdijk et al. 2002; Chen et al. 2003; Spring, 2004).

Proanthocyanidins, although hydrophilic and water soluble, are not absorbed from the GIT and with other tannins they can alter microflora populations, reduce attachment of fungi and bacteria to substrates, increase endogenous losses and damage the GIT in animals (Mansoori & Acamovic, 1998a,b; McSweeney et al. 2001; Bento et al. 2005). They have also been shown to interact with parasites within the GIT (Athanasiadou & Kyriazakis, 2004). Hydrolysable tannins undergo ready degradation because of ester linkages to the glucose moiety, and the degradation products are absorbed from the GIT and cause toxicity (Cheeke, 1998). Similarly saponins, which are highly hydrophilic and surface active, can be absorbed either directly or as micelles. These compounds can affect intestinal parasites as well as the epithelial tissue within the GIT (Johnson et al. 1986). Amino acids are amphoteric and thus their solubility in aqueous solvents is highly pH dependent; their effects on animals therefore depend on the pH of the environment in
which they exist. Similarly, alkaloids tend to have high acid dissociation constants (>7) and their solubility and thus toxicity (or otherwise) is therefore highly dependent on the pH within the GIT. Amino acids such as mimosine and canavanine, which are toxic to animals and man and can influence microbial activity, may be incorporated into protein (Ferraz de Oliveira et al. 1994; Harborne, 2001) or degraded (in the case of mimosine) to a more toxic compound. Similarly, pyrizolidine and other alkaloids, as well as glucosinolates and cyanogenic glycosides, are also metabolised to more toxic compounds within the animal (Cheeke, 1998; Acamovic et al. 2004). Compounds such as gossypol from cottonseed and erucic acid from rapeseed, and sapogenins from saponin degradation, are lipophilic and thus must be absorbed after micelle formation and by active transport (Oakenfull & Sidhu, 1983; Oakenfull, 1986; Timbrell, 1992; Cheeke, 1998).

After absorption most compounds are transformed in the liver into compounds with more hydrophilic properties and then they are excreted, primarily in the urine (Timbrell, 1992; Cheeke, 1998). Often the more hydrophilic compounds are conjugated with glucose, glucuronic acid or S-containing compounds via glutathione and then excreted (Timbrell, 1992; Cheeke, 1998). The loss of energy and essential nutrients such as the S amino acids and a potential compromise of their antioxidant defences are extremely costly to the animals and result in greater susceptibility to disease (Timbrell, 1992; Bladeren et al. 1993; Cheeke, 1998; Humphrey & Klasing, 2004; Kelly, 2004). Tannins and inositol phosphate esters have also been shown to increase endogenous losses from animals, including mineral losses. These losses are likely to occur by chelation of the minerals within the GIT of the animal (Mansoori & Acamovic, 1998a; Cowieson et al. 2004).

Tannins, which are produced by many woody plants (e.g. Acacia aneura), deter browsing by ruminants because of their astringent taste and antinutritive properties (Harborne, 2001). However, in animals adapted to these plants (e.g. feral goats), tannin-binding salivary proteins are secreted by the animal (Landau et al. 2000), and many micro-organisms in the intestinal tract are either resistant to the inhibitory effects of tannins or metabolise the tannins and utilise the energy derived for their own growth. Microbial enzymes such as gallate decarboxylase and tannin acyl hydrolase have been reported to be synthesised in many tannin-tolerant micro-organisms in response to exposure to tannins (Skene & Brooker, 1995; O’Donovan & Brooker, 2001). Thus, it would appear that PSM are not inactive waste products of plant metabolism, but are compounds that are bioactive, are produced in response to specific signals and provide an important link between the plant, its potential predators and the environment in which they both live.

The effects seen in animals when PSM are ingested are frequently a result of the structural similarity between the PSM and molecules that occur naturally within the animal, e.g. mimosine and 3,4-dihydroxyphenylalanine, and canavanine and arginine (Fig. 4). Such similarities in structure allow the PSM to interfere in enzyme function and in the synthesis of protein and other essential compounds (Harborne, 2001).

Tannins

Tannins derive their main biochemical properties from an ability to interact with and precipitate protein at neutral pH. They are a complex group of water-soluble polyphenolic compounds that have similar physical and chemical properties, and thus react similarly, but to varying extents, with other compounds. Their chemical similarity and susceptibility to O₂ can lead to difficulties in their analytical measurement (Makkar, 2003), which can frequently impede the understanding of their effects in animals.

There are two biosynthetically-distinct classes of tannins, hydrolysable tannins (esters of gallic or ellagic acid and glucose) and condensed tannins (CT; proanthocyanidins), both of which can have antinutritional and toxic properties when consumed by animals (Mansoori & Acamovic, 1998a; Bader et al. 2000, 2003; Harborne, 2001; McSweeney et al. 2001; Min et al. 2003). Tannins have been observed to have effects within the GIT, but the degradation products of hydrolysable tannins can be absorbed and cause toxicity. However, CT, when present in forages in moderate concentrations (20–40 g/kg DM) can exert beneficial effects on protein metabolism in ruminants, by slowing the rapid microbial degradation of dietary protein and increasing protein outflow from the rumen, thus increasing the absorption of amino acids in the small intestine of the animal. It is clear that the digestibility of the amino acids in the lower gut of ruminants is reduced by the presence of tannins; an effect also seen in single-stomach animals. The improvement in overall digestibility of amino acids is almost entirely a result of the increased flow of protein to the duodenum despite a reduced digestibility coefficient.
(Salawu et al. 1999; Mupangwa et al. 2003). Thus, potentially there could be an increase in lactation, wool growth, reproductive performance and live-weight gain without changing voluntary feed intake (Min et al. 2001, 2003). Dietary CT may also contribute to animal health by reducing the detrimental effects of internal parasites in sheep and the risk of bloat in cattle (Niezen et al. 1998). In contrast, high dietary CT concentrations (>50 g/kg DM) depress voluntary feed intake, digestive efficiency and animal productivity (Aerts et al. 1999).

Plants of the same species can vary in CT content (Koupai-Abyasani et al. 1993; Douglas et al. 1995; Heering et al. 1996; Hedqvist et al. 2000) and composition (Foo et al. 1982) depending on region and season of growth. Calliandra calothyrsus is a shrub legume that occurs throughout the tropics and sub-tropics, and is potentially a valuable livestock forage because of its high digestibility.

There is a negative correlation between oligomers, flavonols and digestibility (Rakhmani & Brooker, 2005). There is a positive correlation between the polymeric proanthocyanidins and DM digestibility in vitro, and a positive correlation between the polymeric proanthocyanidins and DM digestibility in vitro. Since these results refer particularly to in sacco digestibility of calliandra, they relate mainly to microbial activity in the rumen. Interaction between flavonols and protein is not necessarily excluded because flavonols and oligomers are not associated with the insoluble fraction. However, the interaction is likely to be weak or the complexes are of low molecular size and remain in solution, and may be subject to microbial and enzymic attack in the digestive tract. Nevertheless, it is clear that considerations of CT bioactivity and predictions of forage digestibility should not take account only of total proanthocyanidin levels.

Among non-ruminants some resistance to low-to-moderate concentrations of tannins has been developed, e.g. some insects have thicker peritrophic membranes in the intestinal tract and mice, rats and deer show hyper-trophy of the salivary gland, including secretion of tannin-binding proline-rich proteins (Makkar & Becker, 1998). In some feral ruminants, particularly goats and camels, tannin-resistant rumen microbial populations have been described (Brooker et al. 1994), with the ability of feral goats and camels to digest tannin-containing forages being ascribed, at least in part, to the action of these micro-organisms. Several tannin-tolerant or tannin-degrading bacterial species have now been isolated from a variety of sources worldwide (McSweeney et al. 2001), and the existence of these micro-organisms appears to be a general phenomenon in animals adapted to a diet containing high levels of tannins.

The sensitivity of domesticated ruminants to tannins has been variously described as being a result of the formation of protein–tannin complexes, the inhibition of microbial action in the rumen, the sequestration of minerals in insoluble complexes, or potentially damaging effects on intestinal function (Makkar et al. 1995). Decreased voluntary feed intake may be associated with astrigency caused by the formation of tannin–salivary protein complexes in the mouth or signals of gut distension resulting from tannin interactions with proteins of the gut wall (D’Mello & Devendra, 1995). Tannins may also inhibit gut enzyme activity and affect gut permeability, causing decreased passage of nutrients through the gut wall (Walton et al. 2001). N balance studies have demonstrated an increase in faecal N, often ascribed to undigested complexes between tannins and feed or microbial N. However, in some cases faecal N content is greater than N availability in the feed, and Barry (1989) has suggested a compensatory tannin-induced increase in microbial growth. It has been demonstrated that when tannins or tannin-containing materials are administered orally to chickens endogenous losses are increased substantially, presumably a result of interaction between the tannin and the epithelial tissue within the GIT and also the microflora within the GIT (Muhammed et al. 1994; Mansoori & Acamovic, 1998a,b; Acamovic & Stewart, 2000; Bento et al. 2005). This interaction is likely to account, at least in part, for the invariable reduction in apparent digestibility coefficients of N and amino acids, and metabolisable energy found in animals that consume tannins. Increased loss of endogenous material from animals is extremely costly in terms of the energy associated with the synthesis of the compounds that are excreted. However, no studies with ruminants have clearly demonstrated whether faecal N, present in tannin complexes, is derived from forage, micro-organisms or is from endogenous sources.

Tannin–protein interactions are pH dependent and it has been proposed that tannin–protein complexes formed in the rumen are hydrolysed in the abomasum (Hagerman & Carlson, 1998). However, it is not clear whether the hydrolytic products can recomplex with the protein in the neutral–alkaline conditions of the lower gut. If the proteins are not bound, the tannins may have important antinutritive effects by causing changes in intestinal structure and inhibiting nutrient digestion and absorption in the small intestine. While there may be free reactive tannins in the lower GIT that may bind to endogenous proteins, it is clear that there must be some interaction between proteins and tannins in the lower GIT because it is well demonstrated that N digestibility is reduced in the presence of tannin (Salawu et al. 1997; Mansoori & Acamovic, 1998b; Mupangwa et al. 2003; Bento, 2004). When intestinal structure and brush-border enzyme production was
investigated in sheep fed a diet of mulga (Acacia aneura), striking structural and functional changes were found in the abomasum and small intestine of these animals as compared with animals on control diets (Robins & Brooker, 2005). These data demonstrate the multifunctional effect of tannins, i.e. protein binding by the larger polymers and histopathological effects of the smaller flavonols and flavonol glycosides, while histochemical and biochemical measurements of enzyme activity in the intestine demonstrate a tannin-dependent inhibition of activity.

Essential oils

Aromatic essential oils have been known since antiquity to possess biological activity, including antibacterial, antifungal, antiviral and anti-inflammatory effects. These oils can also be active against higher organisms such as nematodes, helminthes, insects etc. Generally, they have terpenoid structures and their effect is the result of the combination of all their constituents, which in some oils may number >100 compounds. Some constituents in themselves are bioactive, while others may affect physical variables such as absorption rates or bioavailability. In addition, the enantiomeric composition of various terpenes in different plant species can complicate the biological activity of particular oils.

One of the well-established properties of plant essential oils is their antimicrobial activity. They are active against a wide range of organisms, including food-spoilage organisms, potentially-pathogenic microbes of human, environmental or animal origin and some micro-organisms in the GIT of animals. Deans & Ritchie (1987) have tested fifty different plant essential oils against twenty-five genera of bacteria. More than thirty oils were found to be inhibitory to ten or more of the test organisms. Similar studies carried out with essential oils from various aromatic plant species (Piccaglia et al. 1993), have shown that the most active components of the oils are thymol, carvacrol, p-cymene, γ-terpinene, 1,8-cineole, cis-ocimene, camphor, linalool, terpinene-4-ol, thujone, limonene, α-bisabolol and chamazulene. Antifungal and antioxidant activities of essential oils have also been established (Svoboda & Greenaway, 2003). Thymol has been shown to reduce the numbers of coliforms within the digesta from chickens from about 1×10^{10}/g to about 1×10^{8}/g (Cross et al. 2004). Thymol has also been demonstrated to reduce fermentation by micro-organisms from the GIT in chickens (Shannugavelu et al. 2004), although other work has demonstrated little effect of a mixture of essential oil components (Lee et al. 2004), although other work has demonstrated little effect of a mixture of essential oil components (Lee et al. 2004). The variability of the effects of such supplements may be highly dependent on the environmental conditions in which animals are maintained.

Many essential oils have been tested for pharmacological and toxicological properties, and many are used as human medicaments. However, there is increasing interest in the potential agricultural importance of these compounds as possible alternatives for the antibiotics that have been used prophylactically in livestock feeds for several decades. Many essential oils have a bacteriocidal effect and could be used to control the digestive microbial ecosystem. Essential oils can affect rumen fermentation and decrease both the rate of deamination of amino acids and the degradation of protein supplements in Dacron bags; the latter effect may be associated with a decrease in the colonisation of substrates by rumen bacteria (Castillejos et al. 2005). However, although the essential oils look promising as alternatives to antibiotics, little information is available on the effective dose that can be used in animals without inducing toxic effects or imparting unwanted taints to meat or milk products. More research is needed in this area.

Potential for the use of plant secondary metabolites in agriculture

The present paper describes aspects of the biochemistry and chemistry as well as some of the disadvantages and advantages of PSM. It is obvious from their biochemistry that PSM have a wide range of biological activities and enormous potential for uses in agriculture that requires in-depth investigation and evaluation in the context of domesticated livestock production, particularly now that the use of conventional antibiotics is being reduced or eliminated from the diets of food and fibre-producing livestock. The complexity and breadth of the bioactivity of PSM have the potential to reduce the likelihood that micro-organisms or parasites will develop resistance, and their effectiveness is such that concentrations as low as 0·1 g/kg feed may be sufficient. In some cases they may already be components of feedstuffs that animals eat or can eat. Nevertheless, issues such as toxicity, photosensitivity, residues, taint, allergenicity and cost effectiveness still need to be addressed before these compounds will gain widespread acceptance in the agricultural industries. Furthermore their use as prepared compounds will need to be agreed by the registration authorities within the countries in which they will be used or in which the products from livestock will be sold and consumed.

References

