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Abstract. The paper presents the existence result for positive solutions of
the differential equation (g(x))′′ = f (t, x, (g(x))′) satisfying the nonlocal boundary
conditions x(0) = x(T), min{x(t) : t ∈ J} = 0. Here the positive function f satisfies
local Carathéodory conditions on [0, T ] × (0,∞) × (R\{0}) and f may be singular at
the value 0 of both its phase variables. Existence results are proved by Leray-Schauder
degree theory and Vitali’s convergence theorem.
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1. Introduction. Let T be a positive number, J = [0, T ] and R0 = R\{0}. We
shall discuss the singular differential equation

(g(x(t)))′′ = f (t, x(t), (g(x(t))′), (1.1)

where g ∈ C0([0,∞)) and the positive function f satisfies local Carathéodory
conditions on J × (0,∞) × R0 ( f ∈ Car(J × (0,∞) × R0)) and f may be singular
at the value 0 of both its phase variables.

Furthermore we shall deal with the nonlocal boundary conditions

x(0) = x(T), min{x(t) : t ∈ J} = 0. (1.2)

We say that x ∈ C0(J) is a solution of the boundary value problem (BVP for short)
(1.1), (1.2) if g(x) ∈ AC1(J) (functions having absolutely continuous derivative on J),
x satisfies the boundary conditions (1.2) and (1.1) holds a.e. on J.

In this paper we are interested in finding conditions on the functions g and f in
(1.1) that guarantee the existence of positive solutions to BVP (1.1), (1.2). The existence
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result is proved by regularization and sequential techniques. Any positive solution x
and (g(x))′ for BVP (1.1), (1.2) ‘go through’ singularities of f somewhere inside of J.

We show that our existence result for BVP (1.1), (1.2) can be applied to obtain
solutions of BVP (1.3), (1.2), where

(g(x(t))x′(t))′ = f (t, x(t), g(x(t))x′(t)). (1.3)

By a solution of BVP (1.3), (1.2) we understand a function x ∈ C1(J) satisfying
(1.2), g(x)x′ ∈ AC(J) and (1.3) is true almost everywhere on J.

We note that only a few papers in the literature are devoted to the study of BVPs
for differential equations of the form (1.1) (see [1], [7] and references therein). In
[1] the authors consider via the method of lower and upper functions the Dirichlet
problem with the differential equation (P(x))′′ + f1(t, x) = 0 where P(z) = ∫ z

0 r(x) dx,
r is a continuous function and f1 satisfies local Carathéodory conditions. Existence
results for solutions of (P(x))′′ = q(t)f2(t, x, x′) with continuous f2 satisfying the
Dirichlet boundary conditions are given in [7]. Differential equations of the form
(g(x)x′)′ = f3(t, x, x′) and two-point boundary conditions were considered (in the
regular case also) in [7]. The Dirichlet problem for differential equations of the form
(r(x)x′)′ = µq(t)f4(t, x) where f4 is singular at the value 0 of its phase variable x was
studied in [8]–[10]. In [2] the authors give conditions for the existence of positive
solutions of a more general equation (g(x)(x′)α)′ = µq(t)f5(t, x)(x′)β with α ∈ (0,∞)
and β ∈ {0, 1} satisfying the Dirichlet boundary conditions. Existence results for a
functional differential equation with a nonlinear functional left hand side and nonlocal
boundary conditions are presented in [4]. In all the papers above, BVPs are considered
only for local boundary conditions and, in the case that differential equations are
singular at their phase variables solutions ‘start’ and/or ‘finish’, at singular points
(with the exception of [4] and [9]).

In this paper the following assumptions will be used.
(H1) g ∈ C0([0,∞)) is increasing, g(0) = 0 and limu→∞ g(u) = ∞.
(H2) g ∈ C0([0,∞)) is positive and limu→∞ G(u) = ∞, where

G(u) =
∫ u

0
g(s) ds, u ∈ [0,∞). (1.4)

(H3) f ∈ Car(J × (0,∞) × R0) and there exists a positive constant a ≤ 1/2
such that

a ≤ f (t, x, y) for a.e. t ∈ J and each (x, y) ∈ (0,∞) × R0.

(H4) For a.e. t ∈ J and each (x, y) ∈ (0,∞) × R0,

f (t, x, y) ≤ (h1(x) + h2(x))(ω1(|y|) + ω2(|y|)),

where h1, ω1 ∈ C0([0,∞)) are non-negative and non-decreasing, h2, ω2 ∈ C0((0,∞))
are positive and non-increasing.

(H5)
∫ 1

0
h2(g−1(s2))ω2(s) ds < ∞ and

lim
u→∞

∫ u

0

1
K−1(H1(s))

ds >
T
2

,
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where

K(u) =
∫ u

0

s
ω1(s + 1) + ω2(s)

ds, u ∈ [0,∞), (1.5)

H1(u) =
∫ u

0
[h1(g−1(s) + 1) + h2(g−1(s))] ds, u ∈ [0,∞). (1.6)

(H6)
∫ 1

0
h2(G−1(s2))ω2(s) ds < ∞ and

lim
u→∞

∫ u

0

1
K−1(H2(s))

ds >
T
2

,

where

H2(u) =
∫ u

0
[h1(G−1(s) + 1) + h2(G−1(s))] ds, u ∈ [0,∞). (1.7)

REMARK 1.1. Let assumptions (H4) and (H5) be satisfied. We show that the integral∫ u
0 (1/K−1(H1(s))) ds is convergent for all u > 0. Since h1(g−1(u) + 1) + h2(g−1(u)) ≥

h2(g−1(1)) and ω1(u + 1) + ω2(u) ≥ ω2(1) for u ∈ [0, 1], we have H1(u) ≥ h2(g−1(1))u
and K(u) ≤ u2/(2ω2(1)) for these u. Hence K−1(H1(u)) ≥

√
2h2(g−1(1))ω2(1)u for

u ∈ [0, τ ] with a τ > 0 and since K−1(H1) is positive and continuous on (0,∞),
we see that

∫ u
0 (1/K−1(H1(s))) ds < ∞ for all u > 0. Analogously we can verify that∫ u

0 (1/K−1(H2(s))) ds < ∞ for u > 0 if assumptions (H4) and (H6) are satisfied.

The paper is organized as follows. In Section 2 we prove that the solvability of
BVP (1.1), (1.2) is equivalent to that of BVP (2.1), (1.2) (Lemma 2.1). Section 3 deals
with a sequence of auxiliary regular BVPs to BVP (2.1), (1.2) where the nonlinearities
fn in the differential equations are regular functions on J × R

2. We give a priori
bounds for their solutions xn (Lemma 3.3) and prove their existence (Lemma 3.4)
using Leray-Schauder degree theory (see, for example, [5]). In addition, we show that the
sequence {fn(t, g−1(xn(t)), x′

n(t))} is uniformly absolutely continuous on J (Lemma 3.5).
In Section 4 we present our main results: the existence of a positive solution to BVP
(1.1), (1.2) (Theorem 4.1) and to BVP (1.3), (1.2) (Corollary 4.2). In limiting processes
we use the Vitali’s convergence theorem (see, for example, [3], [6]) since it is impossible to
find a Lebesgue integrable majorant function for the sequence {fn(t, g−1(xn(t)), x′

n(t))}
which is necessary for applying the Lebesgue dominated convergence theorem. We
include also two examples (Examples 4.3 and 4.4) to illustrate our theory.

2. Lemma. Let assumptions (H1) and (H3) be satisfied. Together with the
differential equation (1.1) we consider the differential equation

x′′(t) = f (t, g−1(x(t)), x′(t)). (2.1)

We say that x is a solution of equation (2.1) if x ∈ AC1(J) and x satisfies (2.1) a.e.
on J.

In the next lemma we give relations between solutions of BVP (1.1), (1.2) and BVP
(2.1), (1.2).
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LEMMA 2.1. Let assumptions (H1) and (H3) be satisfied. If x(t) is a solution of BVP
(1.1), (1.2), then the function u(t) = g(x(t)), t ∈ J, is a solution of BVP (2.1), (1.2) and
also conversely, if x(t) is a solution of BVP (2.1), (1.2), then the function u(t) = g−1(x(t)),
t ∈ J, is a solution of BVP (1.1), (1.2).

Proof. Let x be a solution of BVP (1.1), (1.2). Then x ∈ C0(J), g(x) ∈ AC1(J) and
x satisfies (1.2). Set u(t) = g(x(t)) for t ∈ J. Then u(0) = u(T), min{u(t) : t ∈ J} = 0,
u ∈ AC1(J) and u′′(t) = (g(x(t)))′′ = f (t, x(t), (g(x(t))′) = f (t, g−1(u(t)), u′(t)) a.e. on J.
Hence u is a solution of BVP (2.1), (1.2).

Let x be a solution of BVP (2.1), (1.2). Then x satisfies (1.2) and x ∈ AC1(J).
Let u(t) = g−1(x(t)), t ∈ J. Then (1.2) holds with u instead of x, u ∈ C0(J), g(u) =
x ∈ AC1(J) and (g(u(t)))′′ = x′′(t) = f (t, g−1(x(t)), x′(t)) = f (t, u(t), (g(u(t))′) a.e. on J.
Thus u is a solution of BVP (1.1), (1.2). �

REMARK 2.2. From Lemma 2.1 we see that solving BVP (1.1), (1.2) is equivalent
to solving BVP (2.1), (1.2).

3. Auxiliary regular BVPs. For each n ∈ �, define fn ∈ Car(J × R
2) by

fn(t, x, y) =




f (t, x, y) for t ∈ J, x ≥ 1
n , |y| ≥ 1

n ,

f
(
t, 1

n , y
)

for t ∈ J, x < 1
n , |y| ≥ 1

n ,
n
2

[
fn

(
t, x, 1

n

)(
y + 1

n

) − fn
(
t, x,− 1

n

)(
y − 1

n

)]
for t ∈ J, x ∈ R, y ∈ (− 1

n , 1
n

)
.

Then (H3) and (H4) yield (for n ∈ �)

a ≤ fn(t, x, y) for a.e. t ∈ J and each (x, y) ∈ R
2 (3.1)

and

fn(t, x, y) ≤ (h1(x + 1) + h2(x))(ω1(|y| + 1) + ω2(|y|)) (3.2)

for a.e. t ∈ J and each (x, y) ∈ (0,∞) × R0.
Also define ĝ ∈ C0(R) by

ĝ(u) =
{

g(u) for u ∈ [0,∞),

−g(−u) + 2g(0) for u ∈ (−∞, 0).

If g satisfies assumption (H1), then ĝ is increasing on R, which is the domain of the
inverse function ĝ−1 to ĝ.

Consider the family of regular differential equations

x′′(t) = λ fn(t, ĝ−1(x(t)), x′(t)) + (1 − λ)a (E)λn

depending on the parameters λ ∈ [0, 1] and n ∈ �, where a appears in (H3).

LEMMA 3.1. Let assumptions (H1) and (H3) be satisfied and let x be a solution of
BVP (E)λn, (1.2). Then there exists a unique ξ ∈ (0, T) such that

(a) x(ξ ) = 0 and x(t) > 0 for t ∈ [0, ξ ) ∪ (ξ, T ],
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(b) x′ is increasing on J, x′(ξ ) = 0 and |x′(t)| ≥ a|ξ − t| for t ∈ J,
(c) x(t) ≥ a

2
(t − ξ )2 for t ∈ J.

Proof. By (3.1),

x′′(t) ≥ a for a.e. t ∈ J. (3.3)

From (3.3) it follows that x′ is increasing on J and then x(0) = x(T) implies that
x′ vanishes at a unique point ξ ∈ (0, T) and x is decreasing on [0, ξ ] and increasing
on [ξ, T ]. Hence the condition min{x(t) : t ∈ J} = 0 yields x(ξ ) = 0 and x > 0 on
[0, ξ ) ∪ (ξ, T ]. The validity of the inequalities in (b) and (c) follows immediately by
integration of (3.3) and using x(ξ ) = x′(ξ ) = 0. �

REMARK 3.2. Lemma 3.1 shows that any solution x of BVP (E)λn, (1.2) with λ ∈
[0, 1] and n ∈ � satisfies the inequality x(t) > 0 for t ∈ [0, ξ ) ∪ (ξ, T ] where ξ ∈ (0, T)
is the unique zero of x. Hence ĝ−1(x(t)) = g−1(x(t)) for t ∈ J.

LEMMA 3.3. Let assumptions (H1) and (H3) − (H5) be satisfied. Let x be a solution
of BVP (E)λn, (1.2). Then there exists a positive constant P independent of λ ∈ [0, 1] and
n ∈ � such that

‖x‖ = sup
t∈J

|x(t)| < P, ‖x′‖ < P. (3.4)

Proof. By Lemma 3.1, there exists a unique ξ ∈ (0, T) such that x(ξ ) = x′(ξ ) = 0,
x(t) > 0 on [0, ξ ) ∪ (ξ, T ] and x′ is increasing on J. Hence

‖x‖ = x(0) (= x(T)), ‖x′‖ = max{|x′(0)|, x′(T)}. (3.5)

In addition (see (3.2) and Remark 3.2)

x′′(t) ≤ [h1(g−1(x(t)) + 1) + h2(g−1(x(t)))][ω1(|x′(t)| + 1) + ω2(|x′(t)|)] (3.6)

for a.e. t ∈ J. Integrating the inequality (for a.e. t ∈ [0, ξ ))

x′′(t)x′(t)
ω1(−x′(t) + 1) + ω2(−x′(t))

≥ [h1(g−1(x(t)) + 1) + h2(g−1(x(t)))]x′(t)

from t ∈ [0, ξ ) to ξ , we get

∫ −x′(t)

0

s
ω1(s + 1) + ω2(s)

ds ≤
∫ x(t)

0
[h1(g−1(s) + 1) + h2(g−1(s))] ds.

Hence K(−x′(t)) ≤ H1(x(t)), where K and H1 are defined by (1.5) and (1.6), respectively.
Then

−x′(t) ≤ K−1(H1(x(t))) for t ∈ [0, ξ ], (3.7)

and integrating

− x′(t)
K−1(H1(x(t)))

≤ 1 (where 0 ≤ t < ξ ),
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over [0, ξ ], we have ∫ x(0)

0

1
K−1(H1(s))

ds ≤ ξ. (3.8)

Arguing as above on the inequality (for a.e. t ∈ [ξ, T ])

x′′(t)x′(t)
ω1(x′(t) + 1) + ω2(x′(t))

≤ [h1(g−1(x(t)) + 1) + h2(g−1(x(t)))]x′(t)

now on the interval [ξ, T ], we get

x′(t) ≤ K−1(H1(x(t))) for t ∈ [ξ, T ] (3.9)

and ∫ x(T)

0

1
K−1(H1(s))

ds ≤ T − ξ. (3.10)

Then (3.5), (3.8) and (3.10) imply∫ ‖x‖

0

1
K−1(H1(s))

ds ≤ T
2

. (3.11)

By (H5), there is a positive constant V such that∫ u

0

1
K−1(H1(s))

ds >
T
2

,

for all u ≥ V . Hence (3.11) yields ‖x‖ < V . Letting t = 0 in (3.7), t = T in (3.9) and
using the last inequality, we get −x′(0) < K−1(H1(V )) and x′(T) < K−1(H1(V )). Then
(see (3.5)) ‖x′‖ < K−1(H1(V )) and so (3.4) is true with P = max{V, K−1(H1(V ))}. �

LEMMA 3.4. Let assumptions (H1) and (H3) − (H5) be satisfied. Then BVP
(E)1

n, (1.2) has a solution x for each n ∈ � and (3.4) is true with a positive constant
P given by Lemma 3.3.

Proof. Fix n ∈ �. Let

� =
{

(x, A) : (x, A) ∈ C1(J) × R, ‖x‖ < max
{

P,
aT2

4

}
,

‖x′‖ < max
{

P,
aT
2

}
, |A| < max

{
P,

aT2

8

}}

and the operator S : � → C1(J) × R be defined by the formula

S(x, A) =
(

A +
∫ T

0
S(t, s)fn(s, ĝ−1(x(s)), x′(s)) ds, A + min{x(t) : t ∈ J}

)
, (3.12)

where

S(t, s) =
{

s
( t

T − 1
)

for 0 ≤ s ≤ t ≤ T,

t
( s

T − 1
)

for 0 ≤ t < s ≤ T .
(3.13)
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We see that S ∈ C0(J × J) and

S(t, s) < 0 for (t, s) ∈ (0, T) × (0, T).

Assume that (x0, A0) ∈ � is a fixed point of S; that is S(x0, A0) = (x0, A0). Then

x0(t) = A0 +
∫ T

0
S(t, s)fn(s, ĝ−1(x0(s)), x′

0(s)) ds, t ∈ J, (3.14)

min{x0(t) : t ∈ J} = 0. (3.15)

From (3.14) we deduce that x0(0) = x0(T) (= A0), x0 ∈ AC1(J) and x′′
0(t) =

fn(t, ĝ−1(x0(t)), x′
0(t)) for a.e. t ∈ J. Hence x0 is a solution of BVP (E)1

n, (1.2). Therefore,
to prove the existence of a solution of BVP (E)1

n, (1.2) it is sufficient to verify that

D(I − S,�, 0) �= 0, (3.16)

where “D ” stands for the Leray-Schauder degree and I is the identity operator on
C1(J) × R. The validity of (3.16) will be proved by the homotopy property. We first
define the operator L : � × [0, 1] → C1(J) × R by

L(x, A, λ) =
(

A + a
2

t(t − T), A + (1 − λ)x
(

T
2

)
+ λ min{x(t) : t ∈ J}

)
. (3.17)

Then L is a continuous operator and also L(� × [0, 1]) is relatively compact in
C1(J) × R. Set V = I − L(·, ·, 0). Then V(x, A) = (x(t) − A − at(t − T)/2, −x(T/2))
for (x, A) ∈ �. We claim that V(−x,−A) �= νV(x, A), for all (x, A) ∈ ∂� and ν ∈
[1,∞), so that

D(I − L(·, ·, 0),�, 0) �= 0, (3.18)

by Theorem 8.3 in [5]. If not, there exist (x∗, A∗) ∈ ∂� and ν∗ ∈ [1,∞) such that
V(−x∗,−A∗) = ν∗V(x∗, A∗), we then have

−x∗(t) + A∗ − a
2

t(t − T) = ν∗

(
x∗(t) − A∗ − a

2
t(t − T)

)
, t ∈ J, (3.19)

x∗

(
T
2

)
= −ν∗x∗

(
T
2

)
. (3.20)

From (3.20) we obtain that x∗(T/2) = 0 and then (3.19) with t = T/2 gives A∗ =
ν∗ − 1
ν∗ + 1

aT2

8 . Hence 0 ≤ A∗ < aT2/8, and so (see (3.19))

|x∗(t)| =
∣∣∣∣A∗ + a(ν∗ − 1)

2(ν∗ + 1)
t(t − T)

∣∣∣∣ <
aT2

4
, |x′

∗(t)| =
∣∣∣∣a(ν∗ − 1)
2(ν∗ + 1)

(2t − T)

∣∣∣∣ <
aT
2

.

We have proved that (x∗, A∗) �∈ ∂� and so (3.18) is true. Assume now that L(x̂, Â, λ̂) =
(x̂, Â), for some (x̂, Â) ∈ � and λ̂ ∈ [0, 1]. Then

x̂(t) = Â + a
2

t(t − T), t ∈ J, (3.21)

(1 − λ̂)x̂
(

T
2

)
+ λ̂ min{x̂(t) : t ∈ J} = 0. (3.22)
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From (3.21) we conclude that x̂ is a solution of equation (E)0
n, x̂(0) = x̂(T) (= Â)

and min{x̂(t) : t ∈ J} = x̂(T/2). Then (3.22) gives min{x̂(t) : t ∈ J} = 0, and so x̂ is a
solution of BVP (E)0

n, (1.2). By Lemma 3.3, ‖x̂‖ < P, ‖x̂′‖ < P and then |Â| = |x̂(0)| <

P. Hence (x̂, Â) �∈ ∂�. Thus (3.18) and the homotopy property yield

D(I − L(·, ·, 1),�, 0) = D(I − L(·, ·, 0),�, 0) �= 0. (3.23)

Finally, define K : � × [0, 1] → C1(J) ×R by

K(x, A, λ) =
(

A +
∫ T

0
S(t, s)(λ fn(s, ĝ−1(x(s)), x′(s)) + (1 − λ)a) ds,

A + min{x(t) : t ∈ J}
)

.

Then K(·, ·, 0) = L(·, ·, 1) and K(·, ·, 1) = S. If we verify that
(i) K is a compact operator and

(ii) K(x, A, λ) �= (x, A) for (x, A) ∈ ∂� and λ ∈ [0, 1],
then (3.23) guarantees the validity of (3.16). Since fn ∈ Car(J × R

2), standard
arguments show that K is a compact operator. To verify (ii), assume that
K(x∗, A∗, λ∗) = (x∗, A∗), for some (x∗, A∗) ∈ � and λ∗ ∈ [0, 1]. Then x∗ is a solution of
BVP (E)λ∗

n , (1.2) and x∗(0) = A∗. According to Lemma 3.3, ‖x∗‖ < P, ‖x′
∗‖ < P and

then |A∗| = |x∗(0)| < P. Therefore (x∗, A∗) �∈ ∂� and K has property (ii). �
LEMMA 3.5. Let assumptions (H1) and (H3) − (H5) be satisfied and let xn be a

solution of BVP (E)1
n, (1.2). Then the sequence

{ fn(t, g−1(xn(t)), x′
n(t))} ⊂ L1(J) (3.24)

is uniformly absolutely continuous (UAC ) on J; that is for each ε > 0 there exists δ > 0
such that ∫

M
fn(t, g−1(xn(t)), x′

n(t)) ds < ε (n ∈ N),

whenever M ⊂ J is measurable and µ(M) < δ, where µ(M) denotes the Lebesgue
measure of M.

Proof. By Lemmas 3.1 and 3.3,

xn(t) ≥ a
2

(ξn − t)2, |x′
n(t)| ≥ a|ξn − t| for t ∈ J and n ∈ N, (3.25)

where ξn ∈ (0, T), xn(ξn) = x′
n(ξn) = 0 and

‖xn‖ < P, ‖x′
n‖ < P for n ∈ N, (3.26)

where P is a positive constant. Then g−1(xn(t)) < g−1(P) for t ∈ J, n ∈ � and (see (3.1)
and (3.2))

a ≤ fn(t, g−1(xn(t)), x′
n(t))

≤ [h1(g−1(P) + 1) + h2(g−1(xn(t)))][ω1(P + 1) + ω2(|x′
n(t))],

(3.27)
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for a.e. t ∈ J and for n ∈ �. Now, from (3.27) and the inequalities

h2(g−1(xn(t)))ω2(|x′
n(t)|) ≥ h2(g−1(P))ω2(|x′

n(t)|),
h2(g−1(xn(t)))ω2(|x′

n(t)|) ≥ h2(g−1(xn(t)))ω2(P),

we see that the sequence (3.24) is UAC on J if {h2(g−1(xn(t)))ω2(|x′
n(t)|)} is.

From the structure of the measurable set on J we deduce that the sequence
{h2(g−1(xn(t)))ω2(|x′

n(t)|)} is UAC on J if for each ε > 0 there exists δ > 0 such that
for any at most countable set {(aj, bj)}j∈J of mutually disjoint intervals (aj, bj) ⊂ J,∑

j∈J(bj − aj) < δ, we have

∑
j∈J

∫ bj

aj

h2(g−1(xn(t)))ω2(|x′
n(t)|) dt < ε (n ∈ N).

Therefore, let {(aj, bj)}j∈J be an at most countable set of mutually disjoint intervals
(aj, bj) ⊂ J and set

J
1
n = { j : j ∈ J, (aj, bj) ⊂ (0, ξn)}, J

2
n = { j : j ∈ J, (aj, bj) ⊂ (ξn, T)}.

Then for i ∈ J
1
n and j ∈ J

2
n we have (see (3.25))

∫ bi

ai

h2(g−1(xn(t)))ω2(|x′
n(t)|) ds ≤

∫ bi

ai

h2

(
g−1

(
a
2

(ξn − t)2
))

ω2(a(ξn − t)) dt

= 1
a

∫ a(ξn−ai)

a(ξn−bi)
h2

(
g−1

(
s2

2a

))
ω2(s) ds,

∫ bj

aj

h2(g−1(xn(t)))ω2(|x′
n(t)|) ds ≤

∫ bj

aj

h2

(
g−1

(
a
2

(ξn − t)2
))

ω2(a(t − ξn)) dt

= 1
a

∫ a(bj−ξn)

a(aj−ξn)
h2

(
g−1

(
s2

2a

))
ω2(s) ds.

If ajn < ξn < bjn for some jn ∈ J, then

∫ bjn

ajn

h2(g−1(xn(t)))ω2(|x′
n(t)|) dt ≤

∫ ξn

ajn

h2

(
g−1

(
a
2

(ξn − t)2
))

ω2(a(ξn − t)) dt

+
∫ bjn

ξn

h2

(
g−1

(
a
2

(ξn − t)2
))

ω2(a(t − ξn)) dt

= 1
a

[ ∫ a(ξn−ajn )

0
h2

(
g−1

(
s2

2a

))
ω2(s) ds

+
∫ a(bjn−ξn)

0
h2

(
g−1

(
s2

2a

))
ω2(s) ds

]
.
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Set

M1
n = E1

n ∪
⋃
i∈J

1
n

(a(ξn − bi), a(ξn − ai)), M2
n = E2

n ∪
⋃
j∈J

2
n

(a(aj − ξn), a(bj − ξn)),

where

E1
n =




∅ if J = J
1
n ∪ J

2
n,(

0, a
(
ξn − ajn

))
if { jn} = J

∖(
J

1
n ∪ J

2
n

)
,

E2
n =




∅ if J = J
1
n ∪ J

2
n,(

0, a
(
bjn − ξn

))
if { jn} = J

∖(
J

1
n ∪ J

2
n

)
.

Then

∑
j∈J

∫ bj

aj

h2(g−1(xn(t)))ω2(|x′
n(t)|) dt

≤
∫
M1

n

h2

(
g−1

(
s2

2a

))
ω2(s) ds +

∫
M1

n

h2

(
g−1

(
s2

2a

))
ω2(s) ds.

By (H5), h2(g−1(s2/(2a)))ω2(s) ∈ L1([0, aT ]) and, since µ(Mk
n) ≤ a

∑
j∈J(bj − aj) for

n ∈ � and k = 1, 2, we see that {h2(g−1(xn(t)))ω2(|x′
n(t)|)} is UAC on J which finishes

the proof. �
4. Existence results and examples.

THEOREM 4.1. Let assumptions (H1) and (H3) − (H5) be satisfied. Then BVP
(1.1), (1.2) has a solution.

Proof. By Lemma 2.1 (see also Remark 2.2), the solvability of BVP (1.1), (1.2) is
equivalent to that of BVP (2.1), (1.2). Theorem 4.1 will be proved if BVP (2.1), (1.2)
has a solution.

By Lemma 3.4, BVP (E)1
n, (1.2) has a solution xn for each n ∈ N. Also Lemmas 3.1

and 3.3 guarantee the validity of inequalities (3.25) and (3.26), where P is a
positive constant and ξn ∈ (0, T), xn(ξn) = x′

n(ξn) = 0. In addition (see Lemma 3.5),
{ fn(t, g−1(xn(t)), x′

n(t))} is UAC on J and therefore {x′
n(t)} is equicontinuous on J.

Going if necessary to a subsequence, we can assume, by the Arzelà-Ascoli theorem
and the compactness principle, that {xn} is convergent in C1(J) and {ξn} in R. Let
limn→∞ xn = x and limn → ∞ ξn = ξ . Then x satisfies the boundary conditions (1.2) and
(see (3.25)) x(t) ≥ (a/2)(ξ − t)2, |x′(t)| ≥ a|ξ − t| for t ∈ J. Thus x(t) > 0 and |x′(t)| > 0
for t ∈ J\{ξ}, and f (t, g−1(x(t)), x′(t)) is defined almost everywhere. Also

lim
n→∞ fn(t, g−1(xn(t)), x′

n(t)) = f (t, g−1(x(t)), x′(t)) for a.e. t ∈ J.

Now, by the Vitali’s convergence theorem, f (t, g−1(x(t)), x′(t)) ∈ L1(J) and

lim
n→∞

∫ t

0
fn(s, g−1(xn(s)), x′

n(s)) ds =
∫ t

0
f (s, g−1(x(s)), x′(s)) ds (t ∈ J).
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Letting n → ∞ in the equalities

x′
n(t) = x′

n(0) +
∫ t

0
fn(s, g−1(xn(s)), x′

n(s)) ds (t ∈ J, n ∈ N),

we get

x′(t) = x′(0) +
∫ t

0
f (s, g−1(x(s)), x′(s)) ds (t ∈ J).

Hence x ∈ AC1(J) and x is a solution of BVP (2.1), (1.2). �

COROLLARY 4.2. Let assumptions (H2) − (H4) and (H6) be satisfied. Then BVP
(1.3), (1.2) has a solution.

Proof. Using the function G defined in (1.4) we can write equation (1.3) in the
form

(G(x(t))′′ = f (t, x(t), (G(x(t))′), (4.1)

which is equation (1.1) with G instead of g. Since assumption (H6) is obtained from
assumption (H5) with G instead of g, we see that BVP (4.1), (1.2) has a solution x,
by Theorem 4.1, such that x ∈ C0(J) and G(x) ∈ AC1(J). Set y(t) = G(x(t)) for t ∈ J.
Then y ∈ AC1(J) and from x(t) = G−1(y(t)) we see that x ∈ C1(J) by (H2), and so
g(x)x′ = (G(x))′ ∈ AC(J). Consequently, x is a solution of BVP (1.3), (1.2). �

EXAMPLE 4.3. Consider the differential equation

(xp)′′ = c0

(
1 + c1xα + c2

xβ

)(
1 + c3|(xp)′|γ + c4

|(xp)′|δ
)

, (4.2)

where p ∈ (0,∞), c0, c2, c4 ∈ (0,∞), c1, c3 ∈ [0,∞), α, β, γ ∈ (0,∞), δ ∈ (0, 1) and
2β < p(1 − δ). Equation (4.2) is the special case of (1.1) with g(u) = up satisfying (H1),
and

f (t, x, y) = c0

(
1 + c1xα + c2

xβ

)(
1 + c3|y|γ + c4

|y|δ
)

. (4.3)

We see that (H3) is true with a = min{1/2, c0} and (H4) with

h1(u) = c0(1 + c1uα), h2(u) = c0c2

uβ
, ω1(u) = 1 + c3uγ , ω2(u) = c4

uδ
.

We now verify (H5). Notice that

∫ 1

0
h2(g−1(s2))ω2(s) ds = c0c2c4

∫ 1

0
s−(δ+ 2β

p ) ds = pc0c2c4

(1 − δ)p − 2β
< ∞

and by a calculation we can show that there exist positive constants A, B and u0 ∈
(0,∞) such that for u ≥ u0 we have

H1(u) =
∫ u

0
[h1(g−1(s) + 1) + h2(g−1(s))] ds <

{
Au

p + α

p if c1 > 0,

Au if c1 = 0,
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K(u) =
∫ u

0

s
ω1(s + 1) + ω2(s)

ds >

{
Bu2−γ if c3 > 0,

Bu2 if c3 = 0.

Hence there exists u1 ≥ u0 such that for u ≥ u1 we have

K−1(H1(u)) <




√
A
B u

p + α

2p if c1 > 0, c3 = 0,√
A
B u if c1 = 0, c3 = 0,

2−γ

√
A
B u

p + α

p(2−γ ) if c1 > 0, c3 > 0,

2−γ

√
A
B u

1
2 − γ if c1 = 0, c3 > 0.

Finally, from the last inequalities we deduce that if one of the cases
(a) α < p if c1 > 0, c3 = 0,
(b) c1 = c3 = 0,
(c) α < p(1 − γ ) if c1 > 0, c3 > 0,
(d) γ ∈ (0, 1) if c1 = 0 and c3 > 0

occurs, we have

lim
u →∞

∫ u

0

1
K−1(H1(s))

ds = ∞.

Applying Theorem 4.1, BVP (4.2), (1.2) has a solution if one of the cases (a)–(d) is
satisfied.

EXAMPLE 4.4. Consider the differential equation(
x′(t)

(max{1, x(t)}) p

)′
= c0(x(t))α + c1

(x(t))β
+ c2

|x′(t)|γ , (4.4)

where p ∈ (0, 1), α, β, γ, ci are positive constants (i = 0, 1, 2) and

2β + γ < 1, α < 1 − p. (4.5)

Equation (4.4) is the special case of (1.3) with g(u) = 1/(max{1, u}) p satisfying (H2)
since

G(u) =
∫ u

0
g(s) ds =




u for u ∈ [0, 1],

u1−p − p
1 − p for u ∈ (1,∞),

and

f (t, x, y) = c0xα + c1

xβ
+ c2

(max{1, x}) pγ |y|γ .

We can see that (H3) is satisfied with a = min{1/2, c0, c1} and (H4) with

h1(u) = cuα, h2(u) = c
(

1
uβ

+ 1
(max{1, u}) pγ

)
, ω1(u) = 1, ω2(u) = 1

uγ
,
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where c = max{c0, c1, c2}. We shall show that (4.5) guarantees the validity of (H6).
Since

G−1(u) =
{

u for u ∈ [0, 1],

1−p
√

(1 − p)u + p for u ∈ (1,∞),

we have ∫ 1

0
h2(G−1(s2))ω2(s) ds = c

∫ 1

0

(
1

s2β+γ
+ 1

sγ

)
ds < ∞.

Further for u ≥ 1,

H2(u) =
∫ u

0
[h1(G−1(s) + 1) + h2(G−1(s))] ds = c

∫ 1

0

[
(s + 1)α + 1

sβ
+ 1

]
ds

+ c
∫ u

1

[
( 1−p

√
(1 − p)s + p + 1)α + 1

( 1−p
√

(1 − p)s + p )β

+ 1

( 1−p
√

(1 − p)s + p )pγ

]
ds

and, for u ≥ 0, we have

K(u) =
∫ u

0

s
ω1(s + 1) + ω2(s)

ds =
∫ u

0

s1+γ

1 + sγ
ds.

Thus there exist a positive constant A and u1 ∈ (1,∞) such that

H2(u) < Au1+ α
1−p , K(u) > Au2 for u ≥ u1. (4.6)

Now from (4.6) we deduce that

K−1(H2(u)) <

√
u1+ α

1−p (u ≥ u2), (4.7)

where u2 (≥ u1) is a sufficiently large number. Since α < 1 − p by (4.5), we see that

lim
u→∞

∫ u

0

1
K−1(H2(s))

ds = ∞.

We have verified that (H6) is true. Applying Theorem 4.1, BVP (4.4), (1.2) has a
solution.
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