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We consider miscible displacements in two-dimensional homogeneous porous media
where the displacing fluid is less viscous and has a different density than the displaced
fluid. We find that the dynamics evolve through nine possible regimes depending on the
viscosity ratio, strength of density variations and the strength of the background flow,
as characterized by the Péclet number. At early times the interface is dominated by
longitudinal diffusion before undergoing a transition to a slumping regime where vertical
flow is important. At intermediate times, vertical flow and diffusion can be neglected
and there are three different limiting solutions: a fingering limit; an injection-driven
gravity-current limit; and a density-driven gravity-current limit. Finally at late times,
transverse diffusion becomes important and there is a transition from an apparent
shutdown regime to a viscously enhanced Taylor-slumping regime. In each of the regimes,
the dominant scalings are identified and reduced-order models for the evolution of the
concentration field are developed. Lastly, three case studies are considered to illustrate
the dominant physical balances in the geophysically relevant setting of geological CO2
storage.
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1. Introduction

Gravity currents in porous media have been studied in a wide array of contexts including
the geological storage of carbon dioxide (Bickle et al. 2007; Boait et al. 2012), geothermal
power generation (Woods 1999), contaminant migration (Simmons, Fenstemaker & Sharp
2001) and coastal aquifer dynamics (Fleury, Bakalowicz & de Marsily 2007). When a
denser (lighter) fluid displaces a lighter (denser) fluid saturating a porous medium, the
density difference causes the displacing fluid to preferentially tilt and flow along the
bottom (top) boundary. Huppert & Woods (1995) studied this problem assuming the fluids
had constant viscosity, the flow was purely horizontal (vertical-flow equilibrium) and there
was no mixing between the fluids (sharp-interface limit). They found that the interface
between the two fluids tilted, leading to self-similar spreading of the fluids. More recently,
the effects of diffusion and vertical flow were considered by Szulczewski & Juanes (2013).
When the two fluids were fully miscible and vertical flow was accounted for, they found
that a series of different regimes arose depending on the dominant physical balances. At
intermediate times they found that diffusion and vertical flow could be neglected and the
flow reproduced the dynamics outlined by Huppert & Woods (1995); however, at early and
late times, diffusion played a dominant role in setting the spreading rate.

In addition to having different densities, the two fluids may also have different
viscosities, a complication neglected by Huppert & Woods (1995) and Szulczewski &
Juanes (2013). Hesse, Tchelepi & Cantwell (2007), Pegler, Huppert & Neufeld (2014) and
Zheng et al. (2015) extended the work of Huppert & Woods (1995) to study the effect
of differing viscosities and densities on the evolution of the displacement front in the
limit of sharp interfaces and vertical-flow equilibrium. They found that when the height
of the current was comparable to the height of the medium, the viscosity ratio played a
dominant role in setting the spreading rate of the gravity current, leading to significantly
enhanced spreading if the injected fluid was less viscous than the ambient fluid, or reduced
spreading if the injected fluid was more viscous than the ambient fluid. However, similar to
Huppert & Woods (1995), these works also omit the effects of diffusion and vertical flow.
Furthermore, these studies also assumed that the interface between the two fluids was
hydrodynamically stable. However, when a less-viscous fluid displaces a more-viscous
fluid, viscous fingering can develop and lead to the interpenetration of the two fluids and
a highly non-trivial interface (Homsy 1987). Thus far, the effect of viscous fingering on
spreading in depth-integrated gravity current models has not been well understood.

In a similar vein, a number of authors have looked at the effect of gravity on the
viscous-fingering instability: Rogerson & Meiburg (1993b) studied the onset of the
viscous-fingering instability with a gravitationally driven shear parallel to the interface
using linear stability analysis; Rogerson & Meiburg (1993a), Tchelepi et al. (2004),
Tchelepi & Orr (1994), Ruith & Meiburg (2000), Camhi, Meiburg & Ruith (2000) and Riaz
& Meiburg (2003) investigated the nonlinear evolution of the fingering instability using
numerical simulations; and Tchelepi & Orr (1994), Berg et al. (2010) and Suekane, Koe
& Barbancho (2019) examined the nonlinear evolution of the fingering instability using
laboratory experiments. While these studies highlight some of the interesting qualitative
behaviour that can be observed, they do not provide a full overview of the different
dynamical regimes, nor do they provide quantitative predictions for the evolution of
the concentration field. Furthermore, in all of the work discussed above, the long-time
asymptotic behaviour, where diffusion and mixing are important, is neglected.

The overarching aim of this work is to bridge the gap between these two different bodies
of work in order to develop a quantitative understanding of the full life-cycle of miscible
viscous fingering with gravitational segregation. This work is laid out as follows. In § 2,

935 A14-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1067


Interplay of viscous fingering and gravitational segregation

we formulate the problem and in § 3 consider the two limiting cases of uniform viscosity
and uniform density. In § 4 the effects of both density and viscosity differences are
examined and the flow phenomenology and dominant dynamical regimes are identified; in
§§ 4.1–4.3, these regimes are examined in more detail and reduced-order models for the
evolution of the concentration field are derived. Finally, in § 5, the results are summarized
and the implications of the results for carbon capture and geological storage are briefly
discussed.

2. Problem formulation

We consider a semi-infinite 2-D porous layer with a uniform permeability k (figure 1). A
fluid with density ρ1 and viscosity μ1 is injected, with a volume flux Q, into the medium,
which is saturated with an ambient fluid of density ρ2 and viscosity μ2. We assume that
the fluid flow obeys Darcy’s law, that the flow is incompressible, and that the concentration
c of the injected fluid evolves through the action of advection and diffusion:

u = − k
μ(c)

(∇p + ρgŷ
)
, (2.1)

∇ · u = 0, (2.2)

φ
∂c
∂t

+ u · ∇c = φD∇2c. (2.3)

Here u = (u, v) is the Darcy velocity, p the pressure and D an isotropic and constant
diffusion coefficient. Note that the injected concentration, Ci /= 1, and the ambient
concentration Ca /= 0, can be accounted for with a simple linear rescaling. Following the
convention of previous works (Tan & Homsy 1988; Camhi et al. 2000), we assume the
viscosity varies exponentially with the concentration

μ(c) = μ2e−Rc, (2.4)

where R = log(μ2/μ1) is the log-viscosity ratio. We employ the Boussinesq
approximation and assume a linear relationship between the concentration and the density
ρ,

ρ = ρ2 + (ρ1 − ρ2)c. (2.5)

2.1. Non-dimensionalization
We change to a reference frame moving with the average injection velocity with
transformed coordinate x̃ = x − Qt/a and velocity ũ = u − Q/a. We also incorporate
the hydrostatic contributions of the ambient fluid into the pressure field: p̃ = p + ρ2gy.
Non-dimensionalizing by the width of the medium a, velocity Q/a, advective time scale
φa2/Q, viscosity μ2 and pressure μ2Q/k, equation (2.1)–(2.5) become

−(ũ∗ + 1)μ∗ = ∂ p̃∗

∂ x̃∗ , −v∗μ∗ =
(

∂ p̃∗

∂y∗ + Gc
)

, (2.6a,b)

∂ ũ∗

∂ x̃∗ + ∂v∗

∂y∗ = 0, (2.7)
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Q

c = 1

g
y

x

μ = μ1

ρ = ρ1

c = 0

μ = μ2

ρ = ρ2

Figure 1. A schematic of the model geometry. The porous medium is infinite in the x̂ direction, and finite,
with width a, in the ŷ direction. The medium is initially saturated with a fluid of density ρ2 and viscosity μ2
and another fully miscible fluid, with density ρ1 and viscosity μ1 is injected at the left boundary. We assume
that the injected fluid is introduced in a purely horizontal manner and at a constant two-dimensional (2-D)
volumetric flow rate Q.

∂c
∂t∗

+ ũ∗ ∂c
∂ x̃∗ + v

∂c
∂y∗ = 1

Pe

(
∂2c
∂ x̃∗2 + ∂2c

∂y∗2

)
, (2.8)

μ∗ = e−Rc, (2.9)

where (∗) denotes a dimensionless quantity. For notational convenience we drop the tildes
and asterisks in all subsequent expressions.

There are three important non-dimensional parameters in this problem:

R = log(μ2/μ1), Pe = Q
D

, G = g (ρ1 − ρ2) ka
Qμ2

. (2.10a–c)

The log-viscosity ratio R, measures the strength of the viscosity variations. We will only
consider the case R > 0, that is, when the injected fluid is less viscous than the ambient
fluid. The Péclet number, Pe, measures the relative strength of advection to diffusion. In
this work, we will focus predominantly on the geologically relevant limit, Pe � 1. Note
that the Péclet number defined here is a macroscopic quantity that depends on the overall
size of the porous medium. It is much larger than the pore-scale Péclet number Pep =
Qb/aD which is calculated based on the intrinsic pore scale, b, of the porous medium.

Finally, the gravity number, G, measures the ratio of pressure gradients due to density
differences and those due to injection. Alternatively, it can be interpreted as a ratio of
the vertical rise/fall velocity due to gravity and the horizontal injection velocity. We
only consider G > 0, since G < 0 is equivalent to G > 0 with a vertical reflection of the
coordinate system y → −y. Note that the strength of the gravitational force is sometimes
defined in terms of a Rayleigh number, Ra = g(ρ2 − ρ1)ka/Dμ2 = G Pe.

2.2. Boundary conditions
The fluid is injected with a constant horizontal flux, and so in the moving frame

∂c
∂x

→ 0 as x → ±∞, (2.11)
∫ 1

0
u dy → 0 as x → ±∞, (2.12)
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v → 0 as x → ±∞. (2.13)

The last constraint is equivalent to a hydrostatic far-field pressure. There is no flux of
concentration through the impermeable upper and lower boundaries of the channel, and so

∂c
∂y

= 0 for y = 0, 1, (2.14)

v(x, 0, t) = v(x, 1, t) = 0. (2.15)

No-flux boundaries are critical to allow for the formation of currents that propagate along
the boundaries (Rogerson & Meiburg 1993a; Ruith & Meiburg 2000). We initialize the
concentration field to have a step jump,

c(x, t = 0) = c0(x) = H(−x), (2.16)

where H(x) is the Heaviside function.
At each time step the velocity field is found using a multigrid relaxation method (Adams

1999). The concentration field is advanced in time using a third-order Runge–Kutta
scheme, the advective term u · ∇c is discretized using a third-order upwinding scheme
and the diffusive term ∇2c/Pe is discretized using a sixth-order compact finite difference
method.

2.3. Diagnostic quantities
In order to investigate how the large-scale flow evolves, we focus on quantifying
and predicting the evolution of transversely averaged concentration c̄(x, t) = ∫ 1

0 c dy.
Correspondingly, the concentration deviations are defined as c′(x, y, t) = c(x, y, t) −
c̄(x, t). Integrating (2.8) over the depth of the porous strip and noting that the flow is
incompressible and there is no flux through the top and bottom boundaries yields

∂ c̄
∂t

+ ∂uc′

∂x
= 1

Pe
∂2c̄
∂x2 . (2.17)

Subtracting (2.17) from (2.8) gives the evolution equation for the deviations

∂c′

∂t
+ ∂

(
uc′)
∂x

+ ∂(uc̄)
∂x

−
∂
(

uc′
)

∂x
+ ∂(vc)

∂y
= 1

Pe

(
∂2c′

∂y2 + ∂2c′

∂x2

)
. (2.18)

We also examine two macroscopic quantities in time: the spreading length h(t) (also
referred to as the ‘mixing’ length) and the Nusselt number Nu. We define the spreading
length, which measures the length over which the two fluids have spread, as the second
spatial moment of the concentration about the initial condition c0(x) as defined in (2.16),

h(t) =

√√√√√√√
∫ ∞

−∞
x2(c̄ − c0)

2 dx∫ ∞

−∞
(c̄ − c0)

2 dx
(2.19)

(cf. Nijjer, Hewitt & Neufeld 2019). To quantify the rate at which the ambient and injected
fluids spread, we define the advective mass exchange through the midplane (travelling with
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the mean injection velocity),

Nu =
∫ 1

0
(uc)|x=0 dy, (2.20)

which represents the rate at which the concentration is advectively exchanged between
the two fluids. When Nu = 0, there is no advective exchange: the two fluids simply
advect to the right at the injection speed and the interface between the fluids only evolves
by diffusion. Larger values of Nu indicate more advective exchange across the moving
interface. Note that the Nusselt number is often used to quantify the total (advective plus
diffusive) transport but here we use it to quantify just the advective transport.

Although not used as a diagnostic quantity, it is useful to combine (2.6a,b), (2.7) and
(2.9) and write the velocity in terms of a stream function (u, v) = (∂Ψ/∂y, −∂Ψ/∂x), as
follows:

∂2Ψ

∂x2 + ∂2Ψ

∂y2 − R
∂Ψ

∂x
∂c
∂x

− R
∂Ψ

∂y
∂c
∂y

= R
∂c
∂y

+ G eRc ∂c
∂x

. (2.21)

3. Limiting cases

In this section, we consider two limiting cases: the uniform-viscosity case (log-viscosity
ratio R = 0) where the fluids differ only in density; and the uniform-density case (gravity
number G = 0) where the fluids differ only in viscosity.

3.1. Uniform viscosity, R = 0
When R = 0 the problem reduces to the uniform-viscosity gravity-current problem. This
situation was studied by Szulczewski & Juanes (2013) and we give a brief overview of
the dynamics here in order to frame our subsequent more general results. Snapshots of
the concentration field from a representative simulation are given in figure 2(a–e). In
general, the density difference between the two fluids causes the interface to tilt, with
the denser injected fluid travelling along the bottom boundary, which aids in spreading the
two fluids. To quantify this spreading, we plot the evolution of the spreading length h in
figure 2( f ) along with the corresponding theoretical predictions. In general, the spreading
length grows in time through five different regimes, each with different power-law growth
rates.

First, the concentration field is vertically homogeneous, and longitudinal diffusion
dominates, leading to h ∼ (t/Pe)1/2 (figure 2a, f ). Second, once longitudinal diffusion
becomes unimportant relative to advection, occurring at a time t ∼ O(1/G2Pe), the
interface slumps due to gravity. Vertical flow in this regime is important since the vertical
length scale of the spreading zone is initially larger than the horizontal scale. This
leads to so-called S-shaped slumping and linear growth of the spreading length, h ∼ Gt
(figure 2b, f ). Third, once the interface has become long and thin, that is the horizontal
extent of the spreading zone becomes much larger than the vertical extent, occurring at
a time t ∼ O(1/G), vertical flow becomes unimportant so that the flow is predominantly
horizontal. The interface continues to slump due to gravity and takes on a characteristic
straight-line profile (figure 2c). The spreading length grows sublinearly, h ∼ (Gt)1/2, since
the hydrostatic pressure gradient, which drives the flow, diminishes as the interface slumps
(figure 2f ). Fourth, once the interface has become even longer and thinner, occurring
at a time O(Pe), transverse diffusion becomes important. A balance between horizontal
advection and transverse diffusion results in net horizontal transport analogous to Taylor
dispersion (Taylor 1953). However, because the horizontal velocity is proportional to the
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Figure 2. Evolution of the concentration field for R = 0 and (G, Pe) = (3, 100). (a–e) Plots of the
concentration field versus x/h(t) and y at (a) t = 1 × 10−4, (b) t = 0.036, (c) t = 0.83, (d) t = 57 (e) t = 8000.
( f ) Evolution of the spreading length, h, as a function of time, t. The dots correspond to the snapshots in panels
(a–e) and the dashed lines correspond to the theoretical predictions from Szulczewski & Juanes (2013).

horizontal gradient in the concentration, the transport is subdiffusive, h ∼ (G2Pe t)1/4

(figure 2d, f ). Fifth, once the shear-enhanced dispersivity becomes small compared with
molecular diffusion, occurring at a time t ∼ O(G2Pe3), the interface grows diffusively
again, h ∼ (t/Pe)1/2 (figure 2e, f ). Note that in each case, the transition times are found by
determining the time at which the spreading lengths overlap.

3.2. Uniform density, G = 0
When G = 0, the problem reduces to the miscible viscous-fingering problem studied
by Nijjer et al. (2018). To review the results of the earlier work, at early times the
interface grows diffusively, h ∼ (t/Pe)1/2, while the instability grows exponentially
(figure 3a, f ). At intermediate times, the instability saturates and fingers elongate and
interact nonlinearly leading to coarsening and advective growth of the spreading length,
h ∼ Rt (figure 3b, f ). At late times, a single dominant finger is left in the centre of the
domain with counter-propagating fingers along the top and bottom boundaries (figure 3c)
that eventually slow, leaving a well-mixed interior with constant h → RPe (figure 3d, f ).
Over very long times, in the absence of any advection, the fluid interface evolves purely
through longitudinal diffusion and so the spreading length grows like h ∼ (t/Pe)1/2.

One subtle difference between the problem studied in Nijjer et al. (2018) and the one
studied here is that no-penetration conditions are imposed here along the top and bottom
boundaries instead of periodic boundary conditions. We find that up until the late-time
regime, this difference in boundary conditions has little effect on the dynamics. However,
at late times as the single-finger exchange-flow decays, a pair of wider counter-propagating
fingers manifest themselves along the boundaries (figure 3e, f ). This is because, in contrast
to the case with periodic boundaries, a half-wavelength mode is now permissible (Abdul
Hamid & Muggeridge 2020). Since this mode is wider, it decays more slowly and is still
unstable once the central propagating finger decays away. This mode decays four times
more slowly and spreads four times farther but also eventually decays away.
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Figure 3. Evolution of the concentration field for G = 0 and (R, Pe) = (2.5, 500). (a–e) Plots of the
concentration field versus x/h(t) and y at (a) t = 2 × 10−2, (b) t = 2.6, (c) t = 15, (d) t = 170 (e) t = 525.
( f )Evolution of the spreading length, h, as a function of time, t. The dots correspond to snapshots in panels
(a–e) and the dashed lines correspond to the theoretical predictions from Nijjer, Hewitt & Neufeld (2018).

The temporal scalings for the early- to intermediate-time transition and intermediate-
to late-time transitions are as before, occurring at times t ∼ O(1/R2Pe) and t ∼ O(Pe),
respectively, again calculated by determining the overlap of the spreading lengths. There is
an additional time transition to the half-wavelength mode which occurs at a time t ∼ O(Pe)
as well, but with a larger prefactor.

3.3. Comparison of the two limiting cases
There are a number of similarities between the two limiting cases discussed. In both
cases, the early-time dynamics are dominated by longitudinal diffusion. At intermediate
times diffusion becomes unimportant and spreading is dominated by advection. Initially,
vertical flow is important but, as the interface is stretched longitudinally, the flow becomes
predominantly horizontal. At late times, there is a balance between horizontal advection
and transverse diffusion leading to a slowdown in the flow.

Despite these similarities, the manner in which the systems evolve are very different.
In the uniform-viscosity case, there are no hydrodynamic instabilities and the dynamics
are insensitive to small changes in the initial conditions, while in the uniform-density
case, the interface fingers chaotically and the exact dynamics are highly sensitive to the
initial conditions. At intermediate times, in the uniform-viscosity case, the spreading
length first grows like h ∼ t then like h ∼ t1/2 while in the uniform-density case the
spreading length grows like h ∼ t. At late times, the spreading length grows like h ∼ t1/4

in the uniform-viscosity case but tends to a constant in the uniform-density case. In the
uniform-viscosity case, the dynamics are decoupled and independent of the injection flux,
whereas in the uniform-density case, injection is critical to the formation of fingers. The
aim of the remainder of this work is to outline how the aforementioned similarities and
differences evolve as both the viscosity and density are varied away from the limiting
cases.
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Figure 4. Colourmaps of the concentration field for (R, Pe) = (2, 500) and (a,c,e,g) G = 0.025, (b,d, f,h)
G = 2. The snapshots are taken at times (a,b) t = 0.05, (c,d) t = 2, (e, f ) t = 30 and (g,h) t = 500. Evolution
of (i) the spreading length, h and (j) the Nusselt number, Nu, for the same parameters as in (a–h).

4. Overall dynamics

Consider the case where both the density and viscosity vary (G /= 0, R /= 0). Depending
on the choice of parameters, a range of different behaviours are possible. In figure 4, we
show a series of snapshots in time of the concentration field for a large and a small value
of G, each showing a range of different dynamics. In both cases the interface is stretched
longitudinally and eventually becomes transversely well mixed, but the manner in which
the flows reach this final state depend on G.

At very early times, in both cases, molecular diffusion dominates the dynamics. The
interface then slumps due to gravity, forming a pair of tongues along the top and
bottom boundaries, with the effect being more pronounced for larger G (figure 4a,b).
The slumping is asymmetric, due to the viscosity difference, as the forward-propagating
tongue propagates much faster than the backward-propagating tongue (figure 4b). At
intermediate times, depending on the relative magnitudes of G and R (and Pe), the interface
may finger (figure 4c) or not finger (figure 4d). When the interface fingers, the fluid
spreads more slowly as compared with the non-fingered case (figure 4i,j). Eventually,
the fingered interface coarsens until a pair of counter-propagating currents remain which
resemble the non-fingered case (figure 4e, f ). At late times, in both cases, the interface
becomes vertically homogenized and the growth of the spreading length slows and tends
to the same value independent of G (figure 4g,h). This is analogous to the shutdown
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of the viscous fingering instability in the G = 0 limit. Eventually, horizontal advective
transport becomes dominated by Taylor dispersion, analogous to the R = 0 limit, driven by
horizontal gradients in c. This too becomes negligible over very long times and molecular
diffusion dominates again.

Figure 4(i) shows the evolution of the spreading length for large G, small G and zero
G. When G is large, the spreading length initially grows like t, in a manner analogous to
the slumping regime in the uniform-viscosity case. The spreading length then grows with
a scaling exponent less than unity before tending to a constant spreading length. When
G is small, the dynamics are similar to the uniform-density case G = 0: the spreading
length initially grows diffusively, then advectively, before tending to a constant. However,
the nonlinear regime is reached earlier, the prefactor in the fingering regime is larger, and
the fingers coarsen directly to the half-wavelength mode. In general, increasing G leads
initially to faster growth, but all three examples tend to nearly the same constant spreading
length. Over longer times the spreading length grows due to shear-enhanced dispersion and
h ∼ t1/4 (not shown), with a prefactor that increases with G and over even longer times the
spreading length grows due to longitudinal diffusion and h ∼ t1/2, independent of G.

Figure 4(j) shows the evolution of the advective flux through the midplane, Nu. When
G is large, the advective flux starts at a maximum and initially decays slowly. After
approximately t = 30, the decay rate increases, characteristic of exponential decay of the
flux, before tending to a constant. When G is small, the advective flux initially exhibits
power-law growth, then exponential growth, before saturating and fluctuating about a
constant value. Eventually the flux coincides with the large G case and decays in the
same manner, before tending to a smaller constant. The constant flux corresponds to the
shear-enhanced dispersive flux driven by density differences between the two fluids. Over
very long times (not shown), the advective flux decays to zero as the interface becomes
more stretched. For comparison we show the uniform-density case G = 0, which grows
exponentially, fluctuates about a constant and exponentially decays, before growing again
as the single finger state becomes unstable as discussed in § 3.2.

In the following sections we discuss the different regimes that are possible in more
detail.

4.1. Early-time slumping regime
Initially, the streamwise concentration gradient between the fluids is large and the
concentration is transversely homogeneous. In this case, diffusion across the interface
dominates and the concentration evolves diffusively:

c = c̄ = 1
2

+ 1
2

erf
(

− x√
4t/Pe

)
. (4.1)

Once advection begins to outpace diffusion, the interface slumps along the boundaries.
This leads to localized regions of fast flow but little motion away from the boundaries.
When G is small, small buoyancy-driven fingers, comparable to the fingering instability,
grow along the top and bottom boundaries while fingers along the rest of the interface
grow more slowly (figure 5a). This preference for fingering along the boundaries occurs
because the difference in density leads to slumping which preferentially perturbs the
instability along the boundaries. In this case the density difference perturbs the interface
but the growth of the fingers is still dominated by viscous effects. We therefore expect that
the spreading length grows in a manner analogous to the viscous fingering instability,
and so h ∼ Rt and a transition time from the diffusive regime at t ∼ (R2Pe)−1 (cf.
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Figure 5. Colourmaps of the concentration field in the slumping regime for (R, Pe) = (1, 4000) and (G, t) =
(a) (0.02, 0.6) and (b) (2, 0.07).
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Figure 6. Plots of h(t) for Pe = 100 and different G and R as labelled. The raw data is plotted in (a). In (b) the
spreading length is rescaled by the predicted scalings for the small-G slumping limit. The dotted lines denote
simulations with G = 0 and R = {0.5, 1, 2}. In (c) the spreading length is rescaled by the predicted scalings for
the large-G slumping limit. The dotted lines denote simulations with R = 0 and G = {1, 2, 4}.

Nijjer et al. 2018). This rescaling does a reasonable job of collapsing the data for G 
 1
(figure 6b) and the transition time only weakly depends on G. Note that even when G is
small, the initial growth of the spreading length is significantly enhanced when compared
with the uniform-density case (figure 6b).

When G is large, the interface slumps on a larger scale which is much faster than the
growth of the instability. This form of slumping is analogous to the S-shaped slumping
regime in the equal-viscosity case (§ 3.1); however, because the injected fluid is less
viscous, the forward-propagating tongue travels faster than the backward-propagating
tongue, leading to asymmetric slumping (figure 5b). Based on its similarity with the
uniform-viscosity case, we expect that in this regime the spreading length grows like
h ∼ Gt and a transition from the diffusive regime at t ∼ (G2Pe)−1. This rescaling does
a reasonable job of collapsing the data for G > O(1) (figure 6c) and the transition time
depends only weakly on R.

4.2. Intermediate-time gravity-current and fingering regimes
At intermediate times, depending on t and the size of G, there are three possible regimes
through which the dynamics evolve. These include a viscous-fingering regime where the
interface consists of a set of fine fingers and the spreading length grows linearly in time
(figure 4c,i), an injection-driven gravity-current regime where the interface is smooth and
the spreading length also grows linearly in time but with a larger prefactor (figure 4d,i),
and a density-driven gravity-current regime where the interface is also smooth but the
spreading length grows like h ∼ t1/2 (not shown). Depending on the magnitude of G only
a subset of these regimes are seen. For small G, the interface initially fingers, but over time
the fingers coalesce and combine to spread as an injection-driven gravity current. For large
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G, fingering is suppressed and the fluid spreads as a density-driven gravity current before
transitioning to an injection-driven one. In the following subsections we aim to delineate
these regimes and develop models for how the transversely averaged concentration evolves
in each case.

4.2.1. Concentration model
At intermediate times, in all cases, the interface becomes long and thin, h � 1 therefore
the flow is predominantly horizontal, and longitudinal diffusion is negligible. In this case
the flow is in ‘vertical flow equilibrium’ (Yortsos 1995). Neglecting horizontal gradients
in the stream function in (2.21) gives

du
dy

− R
∂c
∂y

u = R
∂c
∂y

+ G eRc ∂c
∂x

. (4.2)

Integrating with respect to y gives

u = eRc
∫

G
∂c(x, s, t)

∂x
ds + c1eRc, (4.3)

where c1 is a constant of integration. Integrating again over the transverse direction and
imposing no net horizontal flow in the moving frame of reference (

∫ 1
0 u dy = 0) yields

u =
eRc −

∫ 1

0
eRc dy∫ 1

0
eRc dy

+ G eRc

(∫ 1

0
eRc dy

)(∫
∂c(x, s, t)

∂x
ds
)

−
∫ 1

0
eRc
(∫

∂c(x, s, t)
∂x

ds
)

dy

∫ 1

0
eRc dy

. (4.4)

In this limit, there are two main contributions to the horizontal velocity: the first term
corresponds to the background pressure gradient due to injection and is driven by the
viscosity difference between the two fluids; and the second term corresponds to the
horizontal gradient in buoyancy. Multiplying (4.4) by c and integrating over the transverse
direction gives the advective flux uc′ = uc. Substituting this flux into (2.17) and neglecting
longitudinal diffusion yields a nonlinear advection–diffusion equation for the transversely
averaged concentration, as follows:

∂ c̄
∂t

+ ∂

∂x

⎡
⎢⎢⎢⎢⎣
∫ 1

0
c eRc dy∫ 1

0
eRc dy

− c̄ + G

(∫ 1

0
c eRc dy

)(∫ 1

0
c eRc

(∫
∂c(x, s, t)

∂x
ds
)

dy

)
∫ 1

0
eRc dy

⎤
⎥⎥⎥⎥⎦

− ∂

∂x

⎡
⎢⎢⎢⎢⎣G

(∫ 1

0
c eRc dy

)(∫ 1

0
eRc
(∫

∂c(x, s, t)
∂x

ds
)

dy

)
∫ 1

0
eRc dy

⎤
⎥⎥⎥⎥⎦ = 0. (4.5)
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Figure 7. Evolution of the transversely averaged concentration (or equivalently the height of the current above
the base) found by solving (4.7) for (a) small times, (R, G) = (2, 8) and t ranging logarithmically from 0.03 to
1 and (b) large times, (R, G) = (2, 2) and t ranging logarithmically from 1 to 32. The small-time asymptotic
limit found by solving (4.8) and large-time asymptotic limit (4.10) are given by dashed black lines.

This equation holds in each of the three identified regimes, since regardless of whether
gravity or injection dominates or whether the interface is stable or unstable, the spreading
zone always grows longitudinally while remaining transversely finite, leading to a
simplification of the velocity (4.4). However, the structure of the concentration field varies
and different terms dominate in each regime, resulting in different dynamics.

4.2.2. Density-driven and injection-driven gravity-current regimes
When G is sufficiently large, the interface does not finger and little mixing occurs. In
this limit we can make the simplifying assumption that the two fluids remain completely
segregated; that is, the concentration field is defined by a boundary of height Y(x, t) above
the base, such that

c =
{

1, 0 � y � Y(x, t),
0, Y(x, t) < y � 1.

(4.6)

Note that by transversely averaging, we find that c̄ = Y . Combining (4.4), (4.5) and
(4.6) yields a nonlinear advection–diffusion equation for the evolution of the transversely
averaged concentration,

∂ c̄
∂t

+ ∂

∂x

[
(M − 1)c̄(1 − c̄)

Mc̄ + (1 − c̄)
− MGc̄(1 − c̄)

Mc̄ + (1 − c̄)
∂ c̄
∂x

]
= 0, (4.7)

where M = eR is the ratio of the ambient to injected viscosity (cf. Pegler et al. 2014).
Representative solutions of (4.7) for small and large times are given in figures 7(a) and

7(b), respectively. In both cases the interface spreads asymmetrically and tends to two
different self-similar profiles in time. To understand these two different limits and their
transition, we note that the gravitational slumping term, that is, the convective flux that
is due to gradients in buoyancy, which is proportional to ∂ c̄/∂x, is initially very large but
decreases over time. This leads to two limiting cases of (4.7). In the small-time limit,
or equivalently the large G limit, the advective term may be neglected, whereas in the
large-time, or equivalently the small G limit, the gravitational slumping term may be
neglected. By taking the ratio of the gravitational slumping term to the advective term in
(4.7), that is the ratio of the buoyancy contribution to the flux to the viscous contribution,
we find that the latter can be neglected when −GM(∂ c̄/∂x)/(M − 1) � 1. For M � 1,
this corresponds to h 
 G and if h ∼ (Gt)1/2, a transition between regimes occurs at
t ∼ O(G).
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If t 
 O(G), the equations admit a similarity solution of the form c̄(ηd) with similarity
variable ηd = x/(Gt)1/2 where c̄ satisfies

−ηd

2
dc̄

dηd
= d

dηd

[
Mc̄(1 − c̄)

Mc̄ + (1 − c̄)
dc̄

dηd

]
. (4.8)

The solution of (4.8) with fixed c̄ in the far field is given in figure 7(a). The solution has
the same similarity variable as that of Huppert & Woods (1995) but a different shape.
It is asymmetric and depends on the viscosity ratio of the fluids owing to the fact that
the less-viscous injected fluid travels faster than the more viscous ambient fluid. Note
that Pegler et al. (2014) and Zheng et al. (2015) solve the same equation, (4.8), but with
different initial and boundary conditions, and find that the spreading length grows like
h ∼ t2/3.

If t � O(G), the buoyancy contribution to the flux can be neglected. In this case the
similarity solution, with similarity variable ηa = x/t, satisfies

ηa
dc̄

dηa
= d

dηa

[
(M − 1)c̄(1 − c̄)

Mc̄ + (1 − c̄)

]
. (4.9)

Solving, the concentration evolves self-similarly as

c̄(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x/t <
1
M

− 1,

1
M − 1

(√
M

x/t + 1
− 1
)

1
M

− 1 � x/t � M − 1,

0 x/t > M − 1.

(4.10)

This is exactly the sharp-interface confined gravity-current solution in Pegler et al. (2014)
and Zheng et al. (2015). This limit is given by the dashed black line in figure 7(b). In
figure 8(a,b) we compare the full 2-D numerical simulations with the full solutions of
(4.7) as well as the small- and large-time limits of (4.7) for two different values of G.
When t 
 G (figure 8a, with G = 14 and t = 1), both the sharp-interface model (4.7) and
the small-time limit (4.8) give good agreement with the full numerical solutions. When
t � G (figure 8b, with G = 0.5 and t = 10), the model (4.7) and the large-time limit (4.10)
give good agreement with the full solutions in the body of the current; however, the tips
tend to propagate slower than predicted. This was also observed in experiments by Pegler
et al. (2014), who suggested that diffusion was the cause of the slow spreading. In the
Appendix (A), we consider the effect of a diffuse region on the propagation of the gravity
current. We find that in both the large-time and small-time limits, the diffusive model
predicts a much slower tip and gives much better agreement with the 2-D simulations than
any of the other models (blue lines in figure 8a,b).

4.2.3. Fingering regime
In § 4.2.2 we considered stable displacements where the two fluids are separated by a
nearly sharp interface, which occurred when G was large. However, when G is small the
interface can be unstable to viscous fingering. We find that this interface morphology has
a pronounced effect on the rate of spreading of the fluids.

In figure 9(a), the spreading length for different values of G is plotted. When G � 0.25
(for the parameters in figure 9), the spreading length grows linearly in time at a rate
largely insensitive to G. This limit corresponds to the injection-driven gravity-current limit
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Figure 8. Plot of the transversely averaged concentration for (a) small times, (R, Pe, G, t) = (1, 4000, 14, 1)

and (b) large times (R, Pe, G, t) = (2, 4000, 0.5, 10) from the 2-D numerical simulations (black lines). The
coloured lines represent the four different model solutions: the full one-dimensional (1-D) sharp-interface
model (4.7); the small-time limit of the sharp-interface model (4.8); the large-time limit of the sharp-interface
model (4.10); and the diffuse-interface model (A 1) with (4.5). The size of the diffuse region l = 0.03 is chosen
to fit the full 2-D numerical simulations.
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Figure 9. Plot of h(t) for (R, Pe) = (1, 4000) and different values of G in the intermediate-time regime.
(b) Plot of the spreading rate ḣ calculated by least-squares fitting a function of the form h = h0 + ḣt to the
numerical results for t in the range 5 � t � 10, for Pe = 4000 and different G and R. The theoretical predictions
for (a) h and (b) ḣ are found from the solution (4.10) with either M = eR or M = eRerf(

√
R)/erfi(

√
R), given

by dashed and dot–dashed lines, respectively.

discussed in the previous section (dashed black line). When G is small (G � 0.01 for the
parameters in figure 9a), the interface is unstable to viscous fingering. In this limit, the
spreading length also grows linearly in time but at a much slower rate.

To model the evolution of the transversely averaged concentration field in the fingering
limit, we start by noting that since G is small, the buoyancy terms in (4.5) can be neglected,
resulting in exactly the same model discussed in Nijjer et al. (2018) for the uniform-density
case, that is

∂ c̄
∂t

+ ∂

∂x

⎡
⎢⎢⎢⎣
∫ 1

0
cμ(c) dy∫ 1

0
μ(c) dy

− c̄

⎤
⎥⎥⎥⎦ = 0. (4.11)

When the flow is unstable, the interface develops a set of fingers which elongate and
coarsen. Assuming that the spreading zone is composed of nf (x) forward-propagating
and nb(x) backward-propagating fingers of width wf (x) and wb(x), and transverse
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viscosity distributions, μf = exp(R(1 − y2/w2
f )) and μb = exp(R( y2/w2

f )), respectively,
(4.11) becomes

∂ c̄
∂t

+ ∂

∂x

⎛
⎜⎜⎜⎝

nf

∫ wf

−wf

exp(R(1 − y2/w2
f )) dy

nf

∫ wf

−wf

exp(R(1 − y2/w2
f )) dy + nb

∫ wb

−wb

exp(R( y2/w2
b)) dy

− c̄

⎞
⎟⎟⎟⎠ = 0.

(4.12)
Applying the areal constraint nf wf + nbwb = 1 and noting that the total concentration of
the forward propagating fingers is c̄, nf wf = c̄, the evolution of the transversely averaged
concentration is given by

ηa
dc̄

dηa
= d

dηa

[
(Me − 1)c̄(1 − c̄)

Mec̄ + (1 − c̄)

]
, (4.13)

where Me = eRerf(
√

R)/erfi(
√

R), erf(x) is the error function and erfi(x) is the imaginary
error function. Note that the average concentration has exactly the same functional form
as the injection-driven gravity-current (4.10) but with an effective viscosity contrast Me.
The starting equation (4.11) is the same in both cases, the only difference between the
fingering regime and the injection-driven gravity-current regime is the structure of the
concentration field. In the gravity-current limit, the fluids remain mostly segregated, while
in the fingering limit, there is significant mixing, resulting in a smaller effective viscosity
contrast between the ambient and injected fluids.

Figure 9(b) shows the spreading rate, defined as the rate of change of the spreading
length, ḣ, as a function of R and G. For both values of R, we find a distinct shift in ḣ from
the viscous fingering limit to the gravity current limit. This is in qualitative agreement
with the findings of Berg et al. (2010), who found an abrupt change in breakthrough times
(the time it takes for the injected fluid to transit a fixed length) as G was varied. The
theoretical predictions for the fingering and injection-driven gravity current regimes are
given by dashed and dot–dashed lines, respectively. The fingering limit shows excellent
agreement for both values of R and the gravity-current limit shows excellent agreement for
R = 1, but overestimates the spreading rate for R = 3, which is likely due to mixing at the
tip.

In addition to the morphology changing with G, it also changes in time. For example, in
figure 9(a), for G = 0.05, there is an abrupt change in the slope from the fingering limit to
the gravity-current limit. This is because as the fingers elongate, they are advected towards
the boundaries, coarsening until a single dominant finger remains. This transition occurs
at a time t ∼ O(1/G) (the time it takes for the fingers to rise or fall across a length O(1)),
and will occur so long as 1/G < O(Pe), that is, this change in morphology occurs before
the flow transitions to the late-time regime (§ 4.3).

If G is sufficiently large, such that the fingers coarsen faster than the instability can
grow, the instability can be suppressed altogether. Comparing the time scale of the growth
of the instability (O(1/R2Pe)) (Tan & Homsy 1986) with the rise/fall time of the fluid
(O(1/G)), suggests that when G > O(R2Pe), the interface will always spread as a gravity
current and will not finger. Figure 10 maps the stability boundary in G − R and G − Pe
phase spaces. We find the transition occurs when G ≈ 5 × 10−5R2Pe, in agreement with
this simple scaling argument, where the prefactor is determined by fitting the numerical
results.
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Figure 10. Stable versus unstable displacements for (a) Pe = 4000 and (b) R = 2. Filled circles denote
simulations where no fingers were observed during the entire length of the simulations, while unfilled circles
denote simulations where fingers were observed for at least some portion of the simulation. Dashed lines show
the stability boundary G = 5 × 10−5R2Pe.
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Figure 11. Colourmaps (with overlain contours) of the (a,b) concentration field, (c,d) concentration deviations
c′ and (e, f ) streamwise velocity, u for (a,c,e) (R, Pe, G, t) = (1.5, 1000, 0.1, 1000) (small G) and (b,d, f )
(R, Pe, G, t) = (1.5, 100, 10, 1000) (large G). Panels (a,c,e) correspond to flow in the shutdown regime and
(b,d, f ) correspond to flow in the viscously enhanced Taylor slumping regime. Note that the aspect ratio of the
figures is compressed, so variations in the x-direction seem more pronounced than they actually are.

4.3. Late-time shutdown and viscously enhanced Taylor slumping regimes
Over long times, diffusion in the transverse direction tends to homogenize the
concentration field vertically. The concentration gradient in this case is predominantly
in the streamwise direction, as is the fluid flow. In this late-time regime, the interface
evolves in two ways. First, in the same manner as the shutdown of the viscous fingering
instability, the concentration field is composed of a steady linear background gradient with
decaying deviations superimposed. The streamwise velocity closely tracks the deviations
and both are horizontally uniform (figure 11a,c,e). Second, the background concentration
evolves asymmetrically, with the slope being shallower upstream. The velocity no longer
tracks the deviations and neither the velocity nor the concentration is horizontally uniform
(figure 11b,d, f ).
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4.3.1. Concentration model
The late-time regime is characterized by a weak background concentration gradient
with small deviations superimposed. Assuming the flow is in vertical flow equilibrium,
the horizontal velocity is given by (4.4). Decomposing the concentration field into its
transverse average and deviations, and making the assumption that ∂ c̄/∂x � ∂c′/∂x, (4.4)
becomes

u =
eRc′ −

∫ 1

0
eRc′

dy∫ 1

0
eRc′

dy

+ G eRc̄ ∂ c̄
∂x

⎛
⎜⎜⎜⎜⎝

eRc′
(∫ 1

0
eRc′

dy

)
y − eRc′

∫ 1

0
eRc′

y dy

∫ 1

0
eRc′

dy

⎞
⎟⎟⎟⎟⎠ , (4.14)

where we have used the fact that
∫

∂ c̄/∂x dy = y∂ c̄/∂x. Next, assuming c′ 
 1 and
∂ c̄/∂x 
 1 and Taylor expanding, yields

u = Rc′ + G eRc̄ ∂ c̄
∂x

(
y − 1

2

)
+ O

(
c′ ∂ c̄

∂x

)
+ O(c′2). (4.15)

As before, there are two main contributions to the horizontal velocity. The first term, driven
by the viscosity difference between the two fluids is, to leading order, proportional to the
vertical deviations in the concentration. The second term, driven by the density difference
between the two fluids, is only dependent on the longitudinal gradient of the transversely
averaged concentration.

By substituting (4.15) into (2.18), and neglecting terms O(c′2), we find that the evolution
equation for the deviations is given by

∂c′

∂t
+ Rc′ ∂ c̄

∂x
+ G eRc̄

(
∂ c̄
∂x

)2 (
y − 1

2

)
= 1

Pe
∂2c′

∂y2 . (4.16)

Note that at late times, when the spreading length is sufficiently long, concentration is
transversely homogenized due to diffusion, faster than it is advected (h/u 
 Pe), and leads
to a decoupling of (2.18) and (2.17) (cf. Taylor 1953).

Solving (4.16) with no flux boundary conditions in the vertical direction gives

c′ =
∑
n�1

[
Kne−γnt + 2 − 2 cos(πn)

π2n2
G eRc̄

γn

(
∂ c̄
∂x

)2
]

cos(πny), (4.17)

where γn = R∂ c̄/∂x + n2π2/Pe, and Kn = 2
∫ 1

0 c′(x, y, 0) cos(πny) dy corresponds to the
initial conditions at the onset of the regime. When G = 0 this reduces to the late-time,
shutdown regime of the miscible viscous-fingering instability (cf. Nijjer et al. 2018). When
R = 0, this reduces to the Taylor-slumping regime described by Szulczewski & Juanes
(2013). In general, when both R /= 0 and G /= 0, the flow transitions from the shutdown
regime to a viscously enhanced Taylor-slumping regime.

In the shutdown regime, that is for ‘small’ t, the exponentially decaying term in (4.17),
which is O(1), dominates. The flow is dominated by the slowest decaying mode and c′ and
u can be approximated as

u ≈ Rc′ ≈ RK1 e−γ1t cos (πy) . (4.18)

The concentration deviations and streamwise velocity are horizontally uniform and decay
exponentially. This correspondence between the concentration deviations and the velocity
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Figure 12. (a) Evolution of c̄ for (R, Pe, G) = (1.5, 1000, 0.3) and t spaced evenly from 150 to 900. (b) Plot
of c̄(x) at t = 1000 for R ranging from 0.5 to 2.5, G ranging from 0.01 to 0.8 and Pe ranging from 300 to
1000. (c)Plot of Nu(t) for (R, Pe, G) = (1.5, 1000, 0.3). The solid and dashed black lines denote theoretical
predictions with K = 0.5 and K = 0.6, respectively.

can be seen in figure 11. Substituting (4.17) into (2.17), we find that the transversely
averaged concentration has the steady linear solution

c̄ = 1
2 − αx, (4.19)

and the fluid steadily fills in the linear profile over time (figure 12a). To determine α and
γ1 uniquely we neglect longitudinal diffusion and relate the time-integrated advective flux
through the midplane with the net change in concentration of the right-hand half of the
domain, namely

∞∫
0

1∫
0

uc′ dy dt ≈
∞∫

0

c̄(x) dx = 1
8α

. (4.20)

Substituting (4.18) into (4.20), and assuming that most of the advective exchange occurs
in the shutdown regime, γ1 = 2K2

1αR and so

αR = π2

(2K2
1 + 1)Pe

, γ1 = 2K2
1π2

(2K2
1 + 1)Pe

. (4.21a,b)

Recall that K1 = 2
∫ 1

0 c′(x, y, 0) cos(πy) dy is the magnitude of the deviations at the onset
of the shutdown regime and is in general unknown. Making the simple assumption that
the flow from t = 0 consists of a single sinusoidal mode that spans the width of the
channel, such that, the maximum concentration is one and the minimum concentration
is 0, then c′(x, y, 0) = cos(πy)/2 and K1 = 1/2. However, we find that using this value of
K1 underestimates the length of the spreading zone. By instead fitting K1 to the numerical
simulations, we find K1 � 0.6. This slightly larger value of K1 accounts for nonlinear
effects as well as the fact that the deviations are not sinusoidal and consist of many modes
from t = 0. With this value for K1 we find much better agreement with the numerical
simulations for a wide range of simulations (figure 12b,c).

In the viscously enhanced Taylor-slumping regime, i.e. for large t, the exponentially
decaying terms in (4.17) and (4.15) become negligible and the gravitational
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Figure 13. (a) The similarity solution of (4.25) for R = 0, 0.5, 1, 1.5, 2, 2.5, 3. The analytical solution for
R = 0 is given by the black line (Szulczewski & Juanes 2013). (b) The evolution of c̄ for (R, Pe, G) = (3, 10, 10)

at t = {1000, 2000, 4000}. The theoretical predictions, found by solving (4.24), are denoted by dotted lines.

terms dominate. Expanding c′ and u in powers of ∂ c̄/∂x we find that

c′ = G eRc̄Pe
(

∂ c̄
∂x

)2 (−1
24

+ y2

4
− y3

6

)
+ O

((
∂ c̄
∂x

)3
)

,

u = G eRc̄
(

∂ c̄
∂x

)(
y − 1

2

)
+ O

((
∂ c̄
∂x

)2
)

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.22)

Combining these expressions, the advective flux is

1∫
0

uc′ dy = PeG2e2Rc̄

120

(
∂ c̄
∂x

)3

+ O

((
∂ c̄
∂x

)5
)

. (4.23)

Substituting this flux into (2.17) yields a nonlinear diffusion equation for the evolution of
c̄,

∂ c̄
∂t

= ∂

∂x

[(
1
Pe

+ Pe
120

(
G eRc̄ ∂ c̄

∂x

)2
)

∂ c̄
∂x

]
. (4.24)

By neglecting the effects of molecular diffusion, (4.24) admits a similarity solution of the
form c̄(η) with similarity variable η = x/(G2Pe t/120)1/4, where c̄ satisfies the nonlinear
differential equation

d
dη

[
e2Rc̄

(
dc̄
dη

)3
]

= −η

4
dc̄
dη

. (4.25)

The solution of (4.25) for different values of R is given in figure 13(a). When R = 0, the
interface spreads symmetrically, whereas when R > 0, the interface slumps preferentially
upstream.

The solution to the full diffusion equation (4.24) along with the full numerical
simulations are plotted in figure 13(b). We find very good agreement between the
numerical simulations and the reduced model. Note that for the parameters in figure 13(b),
the similarity solution is not able to completely reproduce the full numerical simulations
because the effects of molecular diffusion are not negligible. For sufficiently large Pe,
molecular diffusion can be neglected; however, these sets of parameters are currently
beyond the scope of our numerical simulations.
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Figure 14. Representative plots of the scaling exponent of the spreading length, δ, found by locally fitting a
power law of the form h = Atδ , for R = 1.5 and (a) Pe = 100, (b) Pe = 1000. The regime boundaries (black
lines) divide the (I) early-time diffusive, (II) large-G slumping, (III) small-G slumping and viscous fingering,
(IV) density-driven gravity current, (V) injection-driven gravity current, (VI) shutdown, (VII) central-finger
and boundary-finger and (VIII) viscously enhanced Taylor-slumping regimes. Over long times, the interface
evolves through longitudinal diffusion (regime IX not shown).

The transition between the shutdown regime and the viscously enhanced Taylor-
slumping regime occurs when the two limiting solutions for c̄, (4.19) and the solution
of (4.25), overlap, that is at t ∼ R4Pe3/G2. In fact, if G is sufficiently large such that the
gravitational term in (4.17) is O(1), the shutdown regime may be skipped entirely, that
is, when G ∼ O(R2Pe). Note that this is the same scaling as the transition from stable to
unstable displacements described in § 4.2.3, but with a larger prefactor.

Finally, we end this discussion of the late-time dynamics by noting that over very
long times, the viscously enhanced Taylor-slumping term in (4.24) becomes negligible
compared with the molecular diffusion term, occurring at a time t ∼ O(G2Pe3), and the
interface evolves through longitudinal dispersion again.

5. Discussion and conclusions

5.1. Summary
In this work, the range of dynamics that are possible when a more viscous fluid is displaced
by a less-viscous fluid of a different density during horizontal miscible displacements, with
gravity acting perpendicular to the prevailing flow, are examined. Figure 14 delineates the
different possible regimes in G − t phase space for two different values of Pe. In each case
the instantaneous scaling exponent of the spreading length δ, where h = Atδ , is plotted
for representative simulations. In general, nine different regimes are possible. The limit
G � 1 (and R ∼ O(1)) corresponds to the limit where buoyancy dominates over viscous
effects and the limit G 
 1 (and R ∼ O(1)) corresponds to the limit where buoyancy is
negligible in comparison with viscous effects.

At very early times (regime I), the interface is very sharp and diffusion across it
dominates leading to t1/2 growth of the interface. Once advection outpaces diffusion the
interface begins to slump (regimes II,III; § 4.1). The dynamics are either dominated by
buoyancy differences leading to a transition at t ∼ O(1/G2Pe), or by viscosity differences
leading to a transition at t ∼ O(1/R2Pe). In either case, the interface is sharp and vertical
flow is important. Over time, the interface becomes long and thin and vertical flow
becomes unimportant. If fingers coarsen due to gravity faster than they can initially grow
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(G > O(R2Pe)) the interface is stabilized and does not finger. In this case, spreading
is initially dominated by gravitational slumping where the rate of spreading diminishes
with the buoyancy gradient leading to sublinear growth of the spreading zone h ∼ t1/2

(regime IV; § 4.2.1). After t ∼ O(G) the spreading rate becomes dominated by viscous
contributions arising from the background pressure gradient (regime V; § 4.2.1) leading
to linear growth of the spreading zone. If, however, G < O(R2Pe), the interface can
finger, which on average leads to linear growth of the spreading length in time (regime
III; § 4.2.1). Note that, because the dynamics are chaotic, the scaling exponent varies
over time (note the speckle in figure 14), but, on average, the interface spreads linearly.
If G < O(Pe), the fingers coalesce until a single dominant finger is left propagating
in the centre of the domain with counter-propagating fingers along the top and bottom
boundaries. As the single-finger exchange-flow decays, a pair of wider counter-propagating
fingers propagating along the boundaries manifest themselves (figure 3e, f ), which also
propagate and slow down leaving a well-mixed interior (regime VII; § 3.2). If G >

O(Pe), either the interface is stable or it fingers and the fingers coarsen along the
boundaries. Eventually, after t ∼ O(Pe), diffusion homogenizes the concentration field
transversely and the shutdown regime is reached (regime VI; § 4.3). In this regime, the
fluid flow slows over time as the spreading rate, proportional to the transverse variations
in viscosity, diffuse away leaving a linear background concentration gradient that is filled
in exponentially (i.e. δ → 0). After t ∼ O(R4Pe3/G2), the density difference between the
two fluids becomes important again and the interface evolves through viscously enhanced
Taylor-slumping (regime VIII; § 4.3). Over very long times, as the interface becomes
more diffuse, Taylor-slumping becomes negligible and the interface evolves through
longitudinal diffusion again with the same solution as in regime I (regime IX; not shown).

5.2. Implications for geological carbon sequestration
To highlight the different regimes through which the flow can evolve, given physically
motivated parameters, we consider the sequestration of CO2 at Sleipner (Bickle et al.
2007; Boait et al. 2012), In Salah (Vasco et al. 2010) and Salt Creek (Bickle et al.
2017). For illustrative purposes, we make a series of simplifying assumptions, namely
that the porous medium is 2-D and homogeneous even though the injection sites have
complex geometries and are heterogeneous, and that the two fluids are fully miscible,
even though the injected and ambient fluids are only partially miscible and the miscibility
varies across the three different scenarios. We take the properties of the fluids to be:
viscosity of the injected CO2, μ1 = 6 × 10−5 Pa s; viscosity of the ambient fluid, μ2 =
7 × 10−4 Pa s; density of the injected CO2, ρ1 = 7 × 102 kg m−3; density of the ambient
fluid (brine), ρ2 = 1 × 103 kg m−3 (Huppert & Neufeld 2014); diffusion coefficient
D = 2 × 10−9 m2 s−1 (Cadogan, Maitland & Trusler 2014). We make the simplifying
assumption that the diffusivity is a constant and equal to the molecular diffusivity of
carbon dioxide in brine. This is reasonable as long as the pore-scale Péclet number
Pep, defined in § 2, remains small. Simple scaling estimates of Pep indicate that this is
the case at In Salah, although Sleipner and Salt Creek may be closer to the limit of
validity of this assumption. Furthermore, although these properties will vary significantly
between these three case studies given the different depths, temperatures and ambient
fluid compositions (at Salt Creek and In Salah, CO2 is injected into depleted oil fields,
whereas at Sleipner CO2 is injected into a saline aquifer), for simplicity we will assume
they are the same in all three cases. We assume that the main differences between the three
injection scenarios are the injection rates, permeabilities and thicknesses of the formations.

935 A14-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1067


Interplay of viscous fingering and gravitational segregation

Sleipner In Salah Salt Creek

tdim = a2φ

Q
3.5 × 106 s 6 × 106 s 7 × 103 s

G = 
ρgka
Qμ2

5 0.08 0.02

Pe = Q
D

2 × 104 5 × 103 1.5 × 104

R = log
(

μ2

μ1

)
2.5 2.5 2.5

Table 1. Characteristic advective time scale tdim and dimensionless variables G, R, Pe for the three
carbon dioxide sequestration case studies.

The Utsira formation at Sleipner is 200 m thick and formed of nine distinct layers and so we
take our representative length scale to be thickness of one layer or a = 20 m. The formation
is relatively homogeneous and has a permeability of k = 2.5 × 10−12 m2 and porosity
φ = 0.35. Carbon dioxide is injected at a rate of approximately Q = 4 × 10−5 m2 s−1.
The Krechba formation at In Salah has a similar characteristic length scale a = 20 m,
however, it is less porous, φ = 0.15, less permeable, k = 1 × 10−14 m2, and injection is
slower, Q = 1 × 10−5 m2 s−1. The Frontier formation at Salt Creek is 20 m thick and
highly heterogeneous, and fluid flow is believed to be dominated by a few layers that are
1 m thick with φ = 0.2 and k = 1.5 × 10−13 m2. We estimate the injection velocity by
dividing the distance between the injection and production wells by the breakthrough time
of the bulk of the CO2, Q = 3 × 10−5 m2 s−1.

The relevant non-dimensional parameters for these three case studies are summarized
in table 1. Comparing the three scenarios, we find gravity to be relatively important at
Sleipner but unimportant at In Salah or Salt Creek. Comparing G with the critical Gcrit
for fingering, we expect that Sleipner is mostly stable to fingering (Gcrit ≈ 6), whereas at
In Salah (Gcrit ≈ 1) and Salt Creek (Gcrit ≈ 5) we expect that the interface is initially
dominated by fingering. We summarize the dimensional time scales for the different
regimes in each of the three cases in figure 15. Under our assumptions, we find that the
dynamics at Sleipner are currently dominated by the large-time gravity current limit, the
dynamics at In Salah, by the end of injections, were dominated by viscous fingering and
the large-time gravity current limits, while at Salt Creek, at the time of breakthrough, we
expect that the dynamics were dominated by the shutdown regime. Although our model
accounts for density and viscosity differences, a number of simplifying assumptions were
made that may not hold in these settings. For instance, the ambient and injected fluids were
assumed to be fully miscible, even though in reality they are only partially miscible, likely
resulting in an overestimation of dissolution rates. The diffusivity was also assumed to be
constant and equal to the molecular diffusivity of carbon dioxide in brine, even though
mechanical dispersion may not be negligible in these three scenarios, and the porous
media were assumed to be homogeneous, even though geological formations tend to be
heterogeneous on a range of scales from the pore scale to the reservoir scale. These latter
two assumptions likely result in an underestimation of dispersion. While some of these
factors have been studied in isolation (Golding et al. 2011; Nicolaides et al. 2015; Fu,
Cueto-Felgueroso & Juanes 2018; Nijjer et al. 2019), how these different factors combine
to effect spreading in porous media remains to be understood.
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Figure 15. Evolution of the displacement front in the three case studies. The black dots denote the time since
injection at Sleipner, the total injection time at In Salah, and time until breakthrough at Salt Creek.

Finally, one key assumption made in this work is that the flow within the porous media
may be treated as 2-D. In reality, in the case studies considered, and in porous media
in general, geometries are complex and three-dimensional, for which the exact details
of each regime, and the transitions between them, need to be determined. Nonetheless,
we expect that many of our analytical results can readily extended to three dimensions.
For instance, the intermediate-time gravity-current, late-time shutdown and late-time
viscously enhanced Taylor slumping regimes can be extended to three dimensions by
considering a finite third dimension or axisymmetry, i.e. flow from a localized source.
While the microscopic dynamics of the unstable fingering process may differ in three
dimensions from the 2-D case considered here, the overall spreading behaviour has
generally been found to be insensitive of the dimensionality of the nonlinear fingering
process (e.g. Zimmerman & Homsy 1992; Tchelepi & Orr 1994).

In summary, we have investigated the combined effects of viscous fingering and
gravitational segregation in miscible displacements through porous media. In doing so,
we have identified the different possible regimes through which the flow evolves and
demarcated the boundaries between these different regimes. In addition to being relevant
to the understanding of geological storage of carbon dioxide, these results are applicable
in a wide range of contexts including in enhanced oil recovery (Lake 1989), mantle
dynamics (Schoonman, White & Pritchard 2017), contaminant transport (Abriola 1987),
food processing (Hill 1952) and chromatography (Catchpoole et al. 2006).
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Interplay of viscous fingering and gravitational segregation

Appendix A. The effect of mixing on current propagation

In § 4.2.1 we assumed a sharp interface separated the two fluids. Here we consider
the effect of a diffuse interface on its evolution. In a given vertical slice, for a given
transversely averaged concentration c̄, the relative flow of the two fluids is maximized
when there is a binary distribution of concentration, and therefore mixing in general tends
to slow their relative velocities.

To identify the effect of diffusion and mixing on the shape and evolution of the
transversely averaged concentration field, we make the ansatz that

c = 1
2

+ 1
2

erf
(

c̄(x, t) − y
l

)
, (A1)

instead of (4.6), where l is the width of the diffuse region, which we expect depends
on the parameters in the problem. Substituting (A1) into (4.5), results in a nonlinear
advection–diffusion equation with one additional parameter l. With this model we now
include the effects of a diffuse boundary layer on the propagation of the gravity current;
however, we ignore any spatial variations in the thickness of the boundary layer and
any time dependence. We make this simplification assuming that the steepening of the
concentration gradient due to stretching at the interface balances diffusion leading to a
boundary layer that only varies slowly (see, for e.g. de Anna et al. 2014).
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