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Classification of Reducing Subspaces of a
Class of Multiplication Operators on the
Bergman Space via the Hardy Space
of the Bidisk

Shunhua Sun, Dechao Zheng, and Changyong Zhong

Abstract. In this paper we obtain a complete description of nontrivial minimal reducing subspaces of

the multiplication operator by a Blaschke product with four zeros on the Bergman space of the unit

disk via the Hardy space of the bidisk.

Let D be the open unit disk in C. Let dA denote Lebesgue area measure on the

unit disk D, normalized so that the measure of D equals 1. The Bergman space L2
a is

the Hilbert space consisting of the analytic functions on D that are also in the space

L2(D, dA) of square integrable functions on D. For a bounded analytic function φ
on the unit disk, the multiplication operator Mφ with symbol φ is defined on the

Bergman space L2
a given by Mφh = φh for h ∈ L2

a. On the basis {en}∞n=0, where en is

equal to
√

n + 1zn, the multiplication operator Mz by z is a weighted shift operator,

said to be the Bergman shift

Mzen =

√

n + 1

n + 2
en+1.

A reducing subspace M for an operator T on a Hilbert space H is a subspace M of

H such that TM ⊂ M and T∗M ⊂ M. A reducing subspace M of T is called minimal

if M does not have any nontrivial subspaces which are reducing subspaces. The goal

of this paper is to classify reducing subspaces of Mφ for the Blaschke product φ with

four zeros by identifying its minimal reducing subspaces. Our main idea is to lift

the Bergman shift up as a compression of a commuting pair of isometries on a nice

subspace of the Hardy space of the bidisk. This idea was used in studying the Hilbert

modules by R. Douglas and V. Paulsen [5], operator theory in the Hardy space over

the bidisk by R. Douglas and R. Yang [6, 18–20], the higher order hankel forms by

S. Ferguson and R. Rochberg [7, 8], and the lattice of the invariant subspaces of the

Bergman shift by S. Richter [12].

On the Hardy space of the unit disk, for an inner function φ, the multiplication

operator by φ is a pure isometry. So its reducing subspaces are in one-to-one corre-

spondence with the closed subspaces of H2 ⊖ φH2 [4, 10]. Therefore, it has infinitely
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many reducing subspaces provided that φ is any inner function other than a Möbius

function. Many people have studied the problem of determining reducing subspaces

of a multiplication operator on the Hardy space of the unit circle [1, 2, 11].

The multiplication operators on the Bergman space possess a very rich structure

theory. Even the lattice of the invariant subspaces of the Bergman shift Mz is huge

[3]. But the lattice of reducing subspaces of the multiplication operator by a finite

Blaschke on the Bergman space seems to be simple. On the Bergman space, Zhu [21]

showed that for a Blaschke product φ with two zeros, the multiplication operator Mφ

has exactly two nontrivial reducing subspaces M0 and M⊥
0 . In fact, the restriction of

the multiplication operator on M0 is unitarily equivalent to the Bergman shift. Using

the Hardy space of the bidisk in [9], we show that the multiplication operator with

a finite Blaschke product φ has a unique reducing subspace M0(φ), on which the

restriction of Mφ is unitarily equivalent to the Bergman shift and if a multiplication

operator has such a reducing subspace, then its symbol must be a finite Blaschke

product. The space M0(φ) is called the distinguished reducing subspace of Mφ and is

equal to
∨{φ ′φn : n = 0, 1, . . . , m, . . . }

if φ vanishes at 0 in [15], i.e,

φ(z) = cz
n
∏

k=1

z − αk

1 − αkz
,

for some points {αk} in the unit disk and a unimodular constant c. The space has

played an important role in classifying reducing subspaces of Mφ. In [9], we have

shown that for a Blaschke product φ of the third order, except for a scalar multiple

of the third power of a Möbius transform, Mφ has exactly two nontrivial minimal

reducing subspaces M0(φ) and M0(φ)⊥. This paper continues our study on reducing

subspaces of the multiplication operators Mφ on the Bergman space in [9] by using

the Hardy space of the bidisk. We will obtain a complete description of nontrivial

minimal reducing subspaces of Mφ for the fourth order Blaschke product φ.

This paper is organized as follows. In Section 1 we introduce some notation to

lift the Bergman shift as the compression of some isometry on a subspace of the

Hardy space of the bidisk and state some theorems in [9] which will be used later. In

Section 2 we state the main result and present its proof. Since the proof is long, two

difficult cases in the proof are considered in the last two sections.

1 Bergman Space via Hardy Space

Let T denote the unit circle. The torus T
2 is the Cartesian product T × T. Let dσ be

the rotation invariant Lebesgue measure on T
2. The Hardy space H2(T

2) is the sub-

space of L2(T
2, dσ), where functions in H2(T

2) can be identified with the bound-

ary value of the function holomorphic in the bidisc D
2 with the square summable

Fourier coefficients. The Toeplitz operator on H2(T
2) with symbol f in L∞(T

2, dσ)

is defined by T f (h) = P( f h), for h ∈ H2(T
2), where P is the orthogonal projection

from L2(T
2, dσ) onto H2(T

2).
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For each integer n ≥ 0, let pn(z, w) =
∑n

i=0 ziwn−i . Let H be the subspace of

H2(T
2) spanned by functions {pn}∞n=0. Thus

H2(T
2) = H ⊕ cl{(z − w)H2(T

2)}.

Let B = PHTz|H = PHTw|H, where PH is the orthogonal projection from

L2(T
2, dσ) onto H. So B is unitarily equivalent to the Bergman shift Mz on the

Bergman space L2
a via the following unitary operator U : L2

a(D) → H,

U zn
=

pn(z, w)

n + 1
.

This implies that the Bergman shift is lifted up as the compression of an isometry

on a nice subspace of H2(T
2). Indeed, for each finite Blaschke product φ(z), the

multiplication operator Mφ on the Bergman space is unitarily equivalent to φ(B)

on H.

Let L0 be ker T∗
φ(z) ∩ ker T∗

φ(w) ∩H. In [9], for each e ∈ L0, we construct functions

{dk
e} and d0

e such that for each l ≥ 1,

pl(φ(z), φ(w))e +

l−1
∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ H

and

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))d0
e ∈ H.

On one hand, we have a precise formula of d0
e :

(1.1) d0
e (z, w) = we(0, w)e0(z, w) − wφ0(w)e(z, w),

where e0 is the function φ(z)−φ(w)
z−w

. On the other hand, dk
e is orthogonal to

ker T∗
φ(z) ∩ ker T∗

φ(w) ∩ H,

and for a reducing subspace M and e ∈ M,

pl(φ(z), φ(w))e +

l−1
∑

k=0

pk(φ(z), φ(w))dl−k
e ∈ M.

Moreover, the relation between d1
e and d0

e is given by [9, Theorem 1] as follows.

Theorem 1.1 If M is a reducing subspace of φ(B) orthogonal to the distinguished

reducing subspace M0, for each e ∈ M ∩ L0, then there is an element ẽ ∈ M ∩ L0 and a

number λ such that

(1.2) d1
e = d0

e + ẽ + λe0.
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Since it is not difficult to calculate ẽ and λ precisely for Blaschke products with

smaller order, we are able to classify minimal reducing subspaces of a multiplication

operator by a Blaschke product of the fourth order. The main ideas in the proofs of

Theorems 3.1 and 4.1 are that by complicated computations we use (1.2) to derive

conditions on zeros of the Blaschke product of the fourth order.

In this paper we often use Theorem 1.1 and Theorems 1 and 25 in [9] stated as

follows.

Theorem 1.2 There is a unique reducing subspace M0 for φ(B) such that φ(B)|M0
is

unitarily equivalent to the Bergman shift. In fact,

M0 =
∨

l≥0

{pl(φ(z), φ(w))e0 and
{ pl(φ(z), φ(w))e0√

l + 1‖e0‖

}∞

0

form an orthonormal basis of M0.

Let M0 be the distinguished reducing subspace for φ(B). Then M0 is unitarily

equivalent to a reducing subspace of Mφ contained in the Bergman space, denoted

by M0(φ). The space plays an important role in classifying the minimal reducing

subspaces of Mφ in Theorem 2.1.

In [9] we showed that for a nontrivial minimal reducing subspace Ω for φ(B),

either Ω equals M0 or Ω is a subspace of M⊥
0 . The condition in the following theorem

is natural.

Theorem 1.3 Suppose that Ω, M, and N are three distinct nontrivial minimal reduc-

ing subspaces for φ(B) and Ω ⊂ M ⊕ N. If they are contained in M⊥
0 , then there is a

unitary operator U : M → N such that U commutes with φ(B) and φ(B)∗.

2 Main Result

Let φ be a Blaschke product with four zeros. In this section we will obtain a complete

description of minimal reducing subspaces of the multiplication operator Mφ. First

observe that the multiplication operator Mz4 is a weighted shift with multiplicity 4:

Mz4 en =

√

n + 1

n + 5
en+4,

where en equals
√

n + 1zn. By [14, Theorem B], Mz4 has exactly four nontrivial min-

imal reducing subspaces:

M j =
∨

{zn : n ≡ j mod 4}, j = 1, 2, 3, 4.

Before stating the main result of this paper we need some notation. It is not diffi-

cult to see that the set of finite Blaschke products forms a semigroup under composi-

tion of two functions. For a finite Blaschke product φ we say that φ is decomposable

if there are two Blaschke products ψ1 and ψ2 with orders greater than 1 such that

φ(z) = ψ1 ◦ ψ2(z).
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For each λ in D, let φλ denote the Möbius transform:

φλ(z) =
λ − z

1 − λ̄z
.

Define the operator Uλ on the Bergman space as follows: Uλ f = f ◦ φλkλ for f

in L2
a where kλ is the normalized reproducing kernel

(1−|λ|2)
(1−λz)2 . Clearly, Uλ is a self-

adjoint unitary operator on the Bergman space. Using the unitary operator Uλ we

have M0(φ) = UλM0(φ◦φλ), where λ is a zero of the finite Blaschke product φ. This

easily follows from that φ ◦ φλ vanishes at 0 and U ∗
λ MφUλ = Mφ◦φλ

.

We say that two Blaschke products φ1 and φ2 are equivalent if there is a complex

number λ in D such that φ1 = φλ ◦ φ2. For two equivalent Blaschke products φ1

and φ2, Mφ1
and Mφ2

are mutually analytic function calculi of each other and hence

share reducing subspaces. The following main result of this paper gives a complete

description of minimal reducing subspaces.

Theorem 2.1 Let φ be a Blaschke product with four zeros. One of the following holds.

(i) If φ is equivalent to z4, i.e., φ is a scalar multiple of the fourth power φ4
c of the

Möbius transform φc for some complex number c in the unit disk, Mφ has exactly

four nontrivial minimal reducing subspaces

{UcM1,UcM2,UcM3,UcM4}.

(ii) If φ is is decomposable but not equivalent to z4, i.e, φ = ψ1 ◦ ψ2 for two Blaschke

products ψ1 and ψ2 with orders 2 but not both of ψ1 and ψ2 are a scalar multiple

of z2, then Mφ has exactly three nontrivial minimal reducing subspaces

{M0(φ),M0(ψ2) ⊖ M0(φ),M0(ψ2)⊥}.

(iii) If φ is not decomposable, then Mφ has exactly two nontrivial minimal reducing

subspaces

{M0(φ),M0(φ)⊥}.

To prove the above theorem we need the following two lemmas, which tell us when

a Blaschke product with order 4 is decomposable.

Lemma 2.2 If a Blaschke product φ with order four is decomposable, then the numer-

ator of the rational function φ(z) − φ(w) has at least three irreducible factors.

Proof Suppose that φ is the Blaschke product with order four. Let f (z, w) be the

numerator of the rational function φ(z) − φ(w). If φ is decomposable, then φ =

ψ1 ◦ ψ2 for two Blaschke products ψ1 and ψ2 with order two. Let g(z, w) be the

numerator of the rational function ψ1(z)−ψ1(w). Clearly, z−w is a factor of g(z, w).

Thus we can write g(z, w) = (z − w)p(z, w) for some polynomial p(z, w) of z and w

to get

g(ψ2(z), ψ2(w)) = (ψ2(z) − ψ2(w))p(ψ2(z), ψ2(w)).
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On the other hand, we also have

ψ2(z) − ψ2(w) =
(z − w)p2(z, w)

q2(z, w)

for two polynomials p2(z, w) and q2(z, w) with no common factor. In fact, q2(z, w)

and the numerator of the rational function

p(ψ2(z), ψ2(w))

do not have a common factor also. So we obtain

g(ψ2(z), ψ2(w)) =
(z − w)p2(z, w)

q2(z, w)
p(ψ2(z), ψ2(w)).

Since f (z, w) is the numerator of the rational function g(ψ2(z), ψ2(w)), this gives that

f (z, w) has at least three factors.

For α, β ∈ D, define

fα,β(w, z) = w2(w−α)(w−β)(1− ᾱz)(1− β̄z)−z2(z−α)(z−β)(1− ᾱw)(1− β̄w).

It is easy to see that fα,β(w, z) is the numerator of z2φα(z)φβ(z) − w2φα(w)φβ(w).

The following lemma gives a criterion for when the Blaschke product z2φα(z)φβ(z)

is decomposable.

Lemma 2.3 For α and β in D, one of the following holds.

(i) If both α and β equal zero, then

fα,β(w, z) = (w − z)(w + z)(w − iz)(w + iz).

(ii) If α does not equal either β or −β, then fα,β(w, z) = (w − z)p(w, z) for some

irreducible polynomial p(w, z).
(iii) If α equals either β or −β, but does not equal zero, then

fα,β(w, z) = (w − z)p(w, z)q(w, z)

for two irreducible distinct polynomials p(w, z) and q(w, z).

Proof Clearly, (i) holds.

To prove (ii), by the example in [13, p. 6] we may assume that neither α nor β
equals 0. First observe that (w − z) is a factor of the polynomial fα,β(w, z). Taking a

long division gives fα,β(w, z) = (w − z)gα,β(w, z), where

gα,β(w, z) = (1 − ᾱz)(1 − β̄z)w3 + (z − (α + β))(1 − ᾱz)(1 − β̄z)w2

+ (z − α)(z − β)(1 − (ᾱ + β̄)z)w + z(z − α)(z − β).
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Next we will show that gα,β(w, z) is irreducible. To do this, we assume that gα,β(w, z)

is reducible to derive a contradiction.

Assuming that gα,β(w, z) is reducible, we can factor gα,β(w, z) as the product of

two polynomials p(w, z) and q(w, z) of z and w with degree of w greater than or equal

to one. Write

p(w, z) = a1(z)w + a0(z), q(w, z) = b2(z)w2 + b1(z)w + b0(z),

where a j(z) and b j(z) are polynomials of z. Since gα,β(w, z) equals the product of

p(w, z) and q(w, z), taking the product and comparing coefficients of wk give

a1(z)b2(z) = (1 − ᾱz)(1 − β̄z),(2.1)

a1(z)b1(z) + a0(z)b2(z) = (z − (α + β))(1 − ᾱz)(1 − β̄z),(2.2)

a1(z)b0(z) + a0(z)b1(z) = (z − α)(z − β)(1 − (ᾱ + β̄)z),(2.3)

a0(z)b0(z) = z(z − α)(z − β).(2.4)

Equation (2.1) gives that one of

• a1(z) = (1 − ᾱz),
• a1(z) = (1 − ᾱz)(1 − β̄z),
• a1(z) = 1.

In the first case that a1(z) = (1 − ᾱz), (2.1) gives b2(z) = (1 − β̄z). Thus by

equation (2.2) we have

a0(z)(1 − β̄z) = (1 − ᾱz)[(z − (α + β))(1 − β̄z) − b1(z)],

to get that (1 − ᾱz) is a factor of a0(z), and hence is also a factor of a factor

z(z − α)(z − β) by (2.4). This implies that α must equal 0. It is a contradiction.

In the second case that a1(z) = (1 − ᾱz)(1 − β̄z), we have that b2(z) = 1 to get

that either the degree of b1(z) or the degree of b0(z) must be one while the degrees of

b1(z) and b0(z) are at most one. So the degree of a0(z) is at most two. Also a0(z) does

not equal zero. Equation (2.2) gives

(1 − ᾱz)(1 − β̄z)b1(z) + a0(z) = (z − (α + β))(1 − ᾱz)(1 − β̄z).

Thus a0(z) = c1(1 − ᾱz)(1 − β̄z) for some constant c1. But equation (2.4) gives

c1(1 − ᾱz)(1 − β̄z)b0(z) = z(z − α)(z − β).

Either c1 = 0 or (1 − ᾱz)(1 − β̄z) is a factor of z(z − α)(z − β). This is impossible.

In the third case that a1(z) = 1, then b2(z) = (1 − ᾱz)(1 − β̄z). Since the root

w of fα,β(w, z) is a nonconstant function of z, the degree of a0(z) must be one. Thus

the degrees of b1(z) and b0(z) are at most two. By equation (2.2) we have

(1 − ᾱz)(1 − β̄z)a0(z) + b1(z) = (z − (α + β))(1 − ᾱz)(1 − β̄z),
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to get b1(z) = (1 − ᾱz)(1 − β̄z)[(z − (α + β)) − a0(z)]. Since the degree of b1(z) is

at most two, we have

a0(z) = (z − (α + β)) − c0, b1(z) = c0(1 − ᾱz)(1 − β̄z).

Equations (2.4) and (2.3) give

[(z − (α + β)) − c0]b0(z) = z(z − α)(z − β)

and

b1(z)[(z − (α + β)) − c0] + b0(z) = (z − α)(z − β)(1 − (ᾱ + β̄)z).

Multiplying both sides of the last equality by [(z − (α + β)) − c0] gives

b1(z)[(z − (α + β)) − c0]2 + z(z − α)(z − β)

= [(z − (α + β)) − c0](z − α)(z − β)(1 − (ᾱ + β̄)z).

This leads to

c0(1 − ᾱz)(1 − β̄z)[(z − (α + β)) − c0]2 + z(z − α)(z − β)

= [(z − (α + β)) − c0](z − α)(z − β)(1 − (ᾱ + β̄)z).

If c0 6= 0, then the above equality gives that (z − α)(z − β) is a factor of

[(z − (α + β)) − c0]2. This is impossible.

If c0 = 0, then we have

z(z − α)(z − β) = [(z − (α + β))](z − α)(z − β)(1 − (ᾱ + β̄)z),

to get ᾱ + β̄ = 0 and hence α = −β. It is also a contradiction. This completes the

proof that gα,β(w, z) is irreducible.

To prove (iii), we note that if α equals β, an easy computation gives

fα,β(w, z) = (w − z)[(1 − ᾱz)w + (z − α)]

× [w(w − α)(1 − ᾱz) + z(z − α)(1 − ᾱw)].

If α = −β, we also have

fα,β(w, z) = (w − z)(w + z)[(1 − ᾱ2z2)w2 + (z2 − α2)].

Proof of Theorem 2.1 Assume that φ is a Blaschke product with the fourth order.

By the Bochner Theorem [17], φ has a critical point c in the unit disk. Let λ = φ(c)

be the critical value of φ. Then there are two points α and β in the unit disk such that

φλ ◦ φ ◦ φc(z) = ηz2φαφβ ,
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where η is a unimodule constant. Let ψ be z2φαφβ . Since φ ◦ φc and ψ are mu-

tually analytic function calculus of each other, both Mφ◦φc
and Mψ share reducing

subspaces.

(i) If φ is equivalent to z4, then ψ must equal a scalar multiple of z4. By [14, The-

orem B], Mψ has exactly four nontrivial minimal reducing subspaces

{M1,M2,M3,M4}

where M j =
∨{zn : n ≡ j mod 4} for j = 1, 2, 3, 4. The four spaces above are also

reducing subspaces for Mφ◦φc
. Noting U ∗

c Mφ◦φc
Uc = Mφ, we have that Mφ has exact

four nontrivial minimal reducing subspaces

{UcM1,UcM2,UcM3,UcM4}.

(ii) If φ is decomposable but not equivalent to z4, i.e., φ = ψ1◦ψ2 for two Blaschke

products ψ1 and ψ2 with degree two and not both ψ1 and ψ2 are scalar multiples of z2,

by Lemmas 2.2 and 2.3, then α equals either β or −β but does not equal 0. By Theo-

rem 1.2, the restriction of Mψ2
on M0(ψ2) is unitarily equivalent to the Bergman shift.

Thus M0(ψ2) is also a reducing subspace of Mφ and the restriction of Mφ = Mψ1◦ψ2

on M0(ψ2) is unitarily equivalent to Mψ1
on the Bergman space. By Theorem 1.2

again, there is a unique reducing subspace M0(ψ1) on which the restriction Mψ1
is

unitarily equivalent to the Bergman shift. Thus there is a subspace of M0(ψ2) on

which the restriction of Mφ is unitarily equivalent to the Bergman shift. Theorem 1.2

implies that M0(φ) is contained in M0(ψ2). Therefore M0(ψ2) ⊖ M0(φ) is also a

minimal reducing subspace of Mφ and

L2
a = M0(φ) ⊕ [M0(ψ2) ⊖ M0(φ)] ⊕ [M0(ψ2)]⊥.

By [16, Theorem 3.1], {M0(φ), [M0(ψ2)⊖M0(φ)], [M0(ψ2)]⊥} are nontrivial min-

imal reducing subspaces of Mφ. We will show that they are exact nontrivial minimal

reducing subspaces of Mφ. If this is not true, then there is another minimal reducing

subspace Ω of Mφ. By [9, Theorem 38], we have

Ω ⊂ [M0(ψ2) ⊖ M0(φ)] ⊕ [M0(ψ2)]⊥.

By Theorem 1.3, there is a unitary operator U : [M0(ψ2) ⊖ M0(φ)] → [M0(ψ2)]⊥

which commutes with both Mφ and M∗
φ . But dim ker M∗

φ ∩ [M0(ψ2) ⊖ M0(φ)] = 1

and dim ker M∗
φ ∩ [M0(ψ2)]⊥ = 2. This is a contradiction. Thus

{M0(φ), [M0(ψ2) ⊖ M0(φ)], [M0(ψ2)]⊥}

are exact nontrivial minimal reducing subspaces of Mφ.

(iii) If φ is not decomposable, by Lemma 2.3, then φ equals z3φα or z2φαφβ for

two nonzero points α β in D and α does not equal β or −β. The difficult cases

will be dealt with in Sections 3 and 4. By Theorems 3.1 and 4.1, Mφ has exactly two

nontrivial minimal reducing subspaces {M0(φ),M0(φ)⊥}.
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3 Reducing Subspaces of Mz3φα

In this section we will study reducing subspaces of Mz3φα
for a nonzero point α ∈ D.

Recall that M0 is the distinguished reducing subspace of φ(B) as in Theorem 1.2.

Theorem 3.1 Let φ = z3φα for a nonzero point α ∈ D. Then φ(B) has exactly two

nontrivial reducing subspaces {M0,M
⊥
0 }.

Proof Let M0 be the distinguished reducing subspace of φ(B) as in Theorem 1.2.

By Theorem 1.3, we only need to show that M⊥
0 is a minimal reducing subspace for

φ(B).

Assume that M⊥
0 is not a minimal reducing subspace for φ(B). Then by [16, The-

orem 3.1] we may assume H =
⊕2

i=0 Mi such that each Mi is a nontrivial reducing

subspace for φ(B), M0 = M0 is the distinguished reducing subspace for φ(B), and

M⊥
0 = M1 ⊕ M2. Recall that

φ0 = z2φα, L0 = span{1, p1, p2, kα(z)kα(w)},
L0 = (L0 ∩ M0) ⊕ (L0 ∩ M1) ⊕ (L0 ∩ M2).

We further assume that

dim(M1 ∩ L0) = 1 and dim(M2 ∩ L0) = 2.

Take 0 6= e1 ∈ M1 ∩ L0, e2, e3 ∈ M2 ∩ L0 such that {e2, e3} are a basis for M2 ∩ L0.

Then L0 = span{e0, e1, e2, e3}.

By (1.1), we have d0
e j

= we j(0, w)e0 − φ(w)e j and direct computations show that

〈d0
e j
, pk〉 = 〈we j(0, w)e0 − φ(w)e j , pk〉

= 〈we j(0, w)e0, pk〉 (by T∗
φ(w) pk = 0)

= 〈we j(0, w)e0(w, w), pk(0, w)〉

= 〈we j(0, w)φ ′(w), wk〉

= 〈w3e j(0, w)(wφ ′
α(w) + 3φα(w)), wk〉

= 〈w3−ke j(0, w)(wφ ′
α(w) + 3φα(w)), 1〉

= 0

for 0 ≤ k ≤ 2, and

〈d0
e j
, kα(z)kα(w)〉 = αe j(0, α)e0(α, α) = αe j(0, α)

α3

1 − |α|2 .

This implies that those functions d0
e j

are orthogonal to {1, p1, p2}.

Simple calculations give 〈e0, pk〉 = 0 for 0 ≤ k ≤ 1,

〈e0, p2〉 =
〈

e0(0, w), p2(w, w)
〉

=
3

2
φ

′ ′

0 (0) = −3α 6= 0
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and

〈e0, kα(z)kα(w)〉 = e0(α, α) = φ
′

(α) =
α3

1 − |α|2 6= 0.

By Theorem 1.1, there are numbers µ, λ j such that

d1
e1

= d0
e1

+ µe1 + λ1e0,

d1
e2

= d0
e2

+ ẽ2 + λ2e0,

d1
e3

= d0
e3

+ ẽ3 + λ3e0,

where ẽ2, ẽ3 ∈ M2 ∩ L0.

Now we consider two cases. In each case we will derive a contradiction.

Case 1: µ 6= 0. In this case, we get that e1 is orthogonal to {1, p1}. So {1, p1, e0, e1}
form an orthogonal basis for L0.

First we show that ẽ2 = 0. If ẽ2 6= 0, then we get that {1, p1, e0, ẽ2} are also an

orthogonal basis for L0. Thus ẽ2 = ce1 for some nonzero number c. However, ẽ2 is

orthogonal to e1, since ẽ2 ∈ M2 and e1 ∈ M1. This is a contradiction. Thus

d1
e2

= d0
e2

+ λ2e0.

Since both d1
e2

and d0
e2

are orthogonal to p2 and 〈e0, p2〉 = −3α 6= 0, we have that

λ2 = 0 to get that d0
e2

= d1
e2

is orthogonal to L0. On the other hand,

〈d0
e2
, kα(z)kα(w)〉 = αe2(0, α)

α3

1 − |α|2 .

Thus e2(0, α) = 0. Similarly we get that e3(0, α) = 0.

Moreover, since e2 and e3 are orthogonal to {e0, e1}, write e2 = c11 + c12 p1 and

e3 = c21 + c22 p1. Thus we have

e2(0, α) = c11 + c12α = 0, e3(0, α) = c21 + c22α = 0

to get that e2 and e3 are linearly dependent. This leads to a contradiction in this case.

Case 2: µ = 0. In this case we have d1
e1

= d0
e1

+λ1e0. Similarly to the proof in Case 1,

we get that λ1 = 0,

(3.1) d1
e1

= d0
e1
⊥ L0

and

e1(0, α) = 0.

Theorem 2.2 in [16] gives that at least one ẽ j , say ẽ2, does not equal 0. Assume that

ẽ2 6= 0, write ẽ2 = d1
e2
− d0

e2
− λ2e0. Note that we have shown above that both d0

e2
and

e0 are orthogonal to both 1 and p1. Thus ẽ2 ⊥ {1, p1} and L0 = span{1, p1, e0, ẽ2}.
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Since e1 is orthogonal to {e0, ẽ2}, we have e1 = c1 + c2 p1. Noting that e1(0, α) =

c1 + c2α = 0, we get e1 = c2(−α + p1).

Without loss of generality we assume that

(3.2) e1 = −α + p1.

Letting e be in M2 ∩ L0 such that e is a nonzero function orthogonal to ẽ2, we have

that e is orthogonal to {e0, ẽ2}. Thus e must be in the subspace span{1, p1}. So there

are two constants b1 and b2 such that e = b1 +b2 p1. Noting 0 = 〈e, e1〉 = −b1ᾱ+2b2,

we have e = b1/2(2 + ᾱp1). Hence we may assume that

(3.3) e = 2 + ᾱp1.

By Theorem 1.1 we have d1
e = d0

e + ẽ +λe0 for some number λ and ẽ ∈ M2 ∩L0. Thus

0 = 〈d1
e1
, d1

e 〉 = 〈d1
e1
, d0

e + ẽ + λe0〉 = 〈d1
e1
, d0

e 〉

= 〈d0
e1
, d0

e 〉 (by (3.1)).

However, a simple computation gives

〈d0
e1
, d0

e 〉 = 〈d0
e1
, we(0, w)e0 − φ(w)e〉

= 〈d0
e1
, we(0, w)e0〉 (by T∗

φ(w)d
0
e1

= 0)

= 〈we1(0, w)e0 − φ(w)e1, we(0, w)e0〉
= 〈we1(0, w)e0, we(0, w)e0〉 − 〈φ(w)e1, we(0, w)e0〉.

We need to calculate two terms in the right-hand side of the above equality. By (3.2)

and (3.3), the first term becomes

〈we1(0, w)e0, we(0, w)e0〉 = 〈w(−α + w)e0, w(2 + ᾱw)e0〉
= 〈(−α + w)e0, (2 + ᾱw)e0〉
= 〈−αe0, 2e0〉 + 〈we0, 2e0〉 + 〈−αe0, ᾱwe0〉 + 〈we0, ᾱwe0〉

= −α〈e0, e0〉 + 2〈we0, e0〉 − α2〈e0, we0〉.

The first term in the right-hand side of the last equality is

〈e0, e0〉 = 〈e0(w, w), e0(0, w)〉 = 〈wφ ′
0 + φ0, φ0〉

= 〈w(2wφα + w2φ ′
α), w2φα〉 + 〈φ0, φ0〉 = 2 + 〈wφ ′

α, φα〉 + 1

= 4.

The last equality follows from

φα = − 1

ᾱ
+

1
ᾱ − α

1 − ᾱw
= − 1

ᾱ
+

( 1

ᾱ
− α

)

Kα(w).
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Similarly, we have

〈we0, e0〉 = 〈we0(w, w), e0(0, w)〉 = 〈w(wφ ′
0 + φ0), φ0〉 = α.

This gives

〈we1(0, w)e0, we(0, w)e0〉 = 〈e1(0, w)e0, e(0, w)e0〉
= 〈(−α + w)e0, (2 + ᾱw)e0〉

= −2α〈e0, e0〉 − α2〈e0, we0〉 + 2〈we0, e0〉 + α〈we0, we0〉

= −8α − α|α|2 + 2α + 4α

= −2α − α|α|2.

A simple calculation gives that the second term becomes

〈φ(w)e1, we(0, w)e0〉 = 〈φ0(w)e1, (2 + ᾱw)e0〉
= 〈φ0(w)e1, 2e0〉 + 〈φ0(w)e1, ᾱwe0〉
= 2〈φ0(w)e1(w, w), e0(0, w)〉 + α〈φ0(w)e1(w, w), we0(0, w)〉
= 2〈e1(w, w), 1〉 + α〈e1(w, w), w〉
= 2〈−α + 2w, 1〉 + α〈−α + 2w, w〉 = −2α + 2α = 0.

Thus we conclude

〈d0
e1
, d0

e 〉 = 〈we1(0, w)e0, we(0, w)e0〉 − 〈φ(w)e1, we(0, w)e0〉

= −2α − α|α|2

= −α(2 + |α|2) 6= 0

to get a contradiction in this case. This completes the proof.

4 Reducing Subspaces for Mz2φαφβ

In this section we will classify minimal reducing subspaces of Mz2φαφβ
for two nonzero

points α and β in D and with α 6= β.

Theorem 4.1 Let φ be the Blaschke product z2φαφβ for two nonzero points α and β
in D. If α does not equal either β or −β, then φ(B) has exact two nontrivial reducing

subspaces {M0,M
⊥
0 }.

Proof By [9, Theorem 27], if N is a nontrivial minimal reducing subspace of φ(B)

which is not equal to M0, then N is a subspace of M
⊥
0 , so we only need to show that

M
⊥
0 is a minimal reducing subspace for φ(B) unless α = −β.

Assume that M
⊥
0 is not a minimal reducing subspace for φ(B). By [16, The-

orem 3.1], we may assume H =
⊕2

i=0 Mi such that each Mi is a reducing sub-

space for φ(B), M0 = M0 is the distinguished reducing subspace for φ(B), and
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M1 ⊕ M2 = M
⊥
0 . Recall that φ0 = zφαφβ , L0 = span{1, p1, eα, eβ}, with eα =

kα(z)kα(w), eβ = kβ(z)kβ(w) and

L0 = (L0 ∩ M0) ⊕ (L0 ∩ M1) ⊕ (L0 ∩ M2).

So we further assume that the dimension of M1 ∩ L0 is one and the dimension of

M2 ∩ L0 is two. Take a nonzero element e1 in M1 ∩ L0. Then by Theorem 1.1, there

are numbers µ1, λ1 such that

(4.1) d1
e1

= d0
e1

+ µ1e1 + λ1e0.

We only need to consider two possibilities, µ1 is zero or nonzero. If µ1 is zero,

then (4.1) becomes

(4.2) d1
e1

= d0
e1

+ λ1e0.

In this case, simple calculations give

〈d0
e1
, p1〉 = 〈we1(0, w)e0(z, w) − wφ0(w)e1(z, w), p1(z, w)〉

= 〈we1(0, w)e0(w, w) − wφ0(w)e1(w, w), p1(z, w)〉
= 〈we1(0, w)e0(w, w) − wφ0(w)e1(w, w), p1(0, w)〉
= 〈we1(0, w)e0(w, w) − wφ0(w)e1(w, w), w〉
= 〈e1(0, w)e0(w, w) − φ0(w)e1(w, w), 1〉
= e1(0, 0)e0(0, 0) − φ0(0)e1(0, 0) = 0,

and

〈e0, p1〉 = 〈e0(z, w), p1(z, w)〉
= 〈e0(z, w), p1(w, w)〉
= 〈e0(0, w), 2w〉
= 〈φ0(w), 2w〉
= 2〈wφα(w)φβ(w), w〉
= 2φα(0)φβ(0) = 2αβ 6= 0.

Noting that d1
e1

is orthogonal to L0, by (4.2) we have that λ1 = 0, and hence

d0
e1

= d1
e1
⊥ L0.

So 〈d0
e1
, eα〉 = 0 = 〈d0

e1
, eβ〉. On the other hand,

〈d0
e1
, eα〉 = αe1(0, α)e0(α, α) − αφ0(α)e1(α, α) = αe1(0, α)e0(α, α)
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and

〈d0
e1
, eβ〉 = βe1(0, β)e0(β, β) − βφ0(β)e1(β, β) = βe1(0, β)e0(β, β).

Consequently,

(4.3) e1(0, α) = e1(0, β) = 0.

Observe that e0, e1, and 1 are linearly independent. If this is not so, then 1 =

ae0 + be1 for some numbers a, b. But e1(0, α) = 0 and e0(0, α) = 0. This forces that

1 = 0 and leads to a contradiction.

By Theorem 1.1, we can take an element e ∈ M2 ∩ L0 such that d1
e = d0

e + e2 + µe0

with e2 6= 0 and e2 ∈ M2 ∩ L0. Thus we have that e2 is orthogonal to 1 and so e2 is in

{1, e0, e1}⊥ and {1, e0, e1, e2} form a basis for L0. Moreover for any f ∈ M2 ∩ L0,

d1
f = d0

f + g + λe0

for some number λ and g ∈ M2 ∩ L0. If g does not equal 0, then g is orthogonal to 1.

Thus g is in {1, e0, e1}⊥ and hence g = ce2 for some number c. Therefore taking a

nonzero element e3 ∈ M2 ∩ L0 which is orthogonal to e2, we have

d1
e2

= d0
e2

+ µ2e2 + λ2e0, d1
e3

= d0
e3

+ µ3e2 + λ3e0,

and {e0, e1, e2, e3} is an orthogonal basis for L0.

If µ2 = 0, then by the same reason as before we get

λ2 = 0, d0
e2

= d1
e2
⊥ L0 e2(0, α) = e2(0, β) = 0.

So using p1 ∈ L0 = span{1, e0, e1, e2}, we have α = p1(0, α) = p1(0, β) = β, which

contradicts our assumption that α 6= β. Hence µ2 6= 0.

Observe that 1 is in L0 = span{e0, e1, e2, e3} and orthogonal to both e0 and e2.
Thus 1 = c1e1 + c3e3 for some numbers c1 and c3. So

1 = c1e1(0, α) + c3e3(0, α) = c1e1(0, β) + c3e3(0, β).

By (4.3), we have 1 = c3e3(0, α) = c3e3(0, β), to obtain that c3 6= 0 and

e3(0, α) = e3(0, β) = 1/c3.

If µ3 = 0, then by the same reason as before we get e3(0, α) = e3(0, β) = 0. Hence

µ3 6= 0.
Now by the linearality of d1

(·) and d0
(·) we have

d1
µ3e2−µ2e3

= d0
µ3e2−µ2e3

+ (µ3λ2 − µ2λ3)e0.

By the same reason as before we get µ3λ2−µ2λ3 = 0 and d0
µ3e2−µ2e3

= d1
µ3e2−µ2e3

⊥ L0

and therefore

µ3e2(0, α) − µ2e3(0, α) = µ3e2(0, β) − µ2e3(0, β) = 0.
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So we get e2(0, α) = µ2/µ3c3 = e2(0, β). Hence p1 ∈ L0 = span{1, e0, e1, e2}.

This implies that α = p1(0, α) = p1(0, β) = β, which again contradicts our as-

sumption that α 6= β.

Another case is that µ1 is not equal to 0. In this case, (4.1) can be rewritten as

e1 =
1

µ1

d1
e1
− 1

µ1

d0
e1
− λ1

µ1

e0,

and we have that e1 is orthogonal to 1 since d1
e1

, d0
e1

, and e0 are orthogonal to 1. Thus

1 is in M2 ∩ L0.

By Theorem 1.1, there is an element e ∈ M2 ∩ L0 and a number λ0 such that

(4.4) d1
1 = d0

1 + e + λ0e0.

If e = 0, then λ0 = 0, and hence d0
1 ⊥ L0 and 1 = 1(0, α) = 1(0, β). So e 6= 0.

Since d1
1 is in L⊥

0 , d1
1 is orthogonal to 1. Noting that d0

1 and e0 are orthogonal to 1,

we have that e ⊥ 1. Hence we get an orthogonal basis {e0, e1, 1, e} of L0.

Claim e(0, α) − e(0, β) = 0.

Proof Using Theorem 1.1 again, we have that d1
e = d0

e +g +λe0 for some g ∈ L0∩M2.

If g 6= 0, we have that g ⊥ 1, since d1
e , d0

e , and e0 are orthogonal to 1. Thus we have

that g = µe for some number µ to obtain d1
e = d0

e + µe + λe0.

Furthermore by the linearality of d1
(·) and d0

(·) we have that

d1
e−µ1 = d0

e−µ1 + (λ − µλ0)e0.

By the same reason (namely d1
e−µ1 ⊥ L0, d0

e−µ1 ⊥ 1 and 〈e0, 1〉 6= 0) we have that

λ − µλ0 = 0, d0
e−µ1 = d1

e−µ1 ⊥ L0

(e − µ1)(0, α) = (e − µ1)(0, β) = 0.

Hence we have e(0, α)− e(0, β) = µ−µ = 0 to complete the proof of the claim.

Let us find the value of λ0 in (4.4) which will be used to make the coefficients

symmetric with respect to α and β. To do this, we first state a technical lemma which

will be used in several other places in the sequel.

Lemma 4.2 If g is in H2(T), then 〈wgφ ′
0, φ0〉 = g(0) + g(α) + g(β).

Proof Since φ0 equals zφαφβ , simple calculations give

〈wgφ ′
0, φ0〉 = 〈wg(wφαφβ) ′, wφαφβ〉

= 〈g(wφαφβ) ′, φαφβ〉
= 〈g(φαφβ + wφ ′

αφβ + wφαφ ′
β), φαφβ〉

= 〈g, 1〉 + 〈wgφ ′
α, φα〉 + 〈wgφ ′

β , φβ〉

= g(0) + 〈wgφ ′
α, φα〉 + 〈wgφ ′

β , φβ〉.
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Writing φα as

φα = − 1

ᾱ
+

1
ᾱ − α

1 − ᾱw
= − 1

ᾱ
+

1 − |α|2
ᾱ

kα(w),

we have

〈wgφ ′
α, φα〉 =

1 − |α|2
α

(wgφ ′
α)(α) = g(α).

The first equality follows from 〈wgφ ′
α, 1〉 equals 0 and the second equality follows

from

φ ′
α(α) =

1

1 − |α|2 .

By the symmetry of α and β, similar computations lead to 〈wgφ ′
β , φβ〉 = g(β).

We state the values of λ0 and 〈e0, e0〉 as a lemma.

Lemma 4.3

λ0 = −α + β

4
, 〈e0, e0〉 = 4

Proof Since d1
1 is orthogonal to L0, e0 is in L0, and e is orthogonal to e0, (4.4) gives

0 = 〈d1
1, e0〉 = 〈d0

1 + e + λ0e0, e0〉 = 〈d0
1, e0〉 + λ0〈e0, e0〉.

We need to compute 〈d0
1, e0〉 and 〈e0, e0〉, respectively.

〈d0
1, e0〉 = 〈−φ(w) + we0, e0〉 = 〈we0, e0〉

= 〈we0(w, w), e0(0, w)〉 = 〈w(wφ ′
0 + φ0), φ0〉

= 〈w2φ ′
0, φ0〉 + 〈wφ0, φ0〉 = 〈w2φ ′

0, φ0〉
= α + β.

The last equality follows from Lemma 4.2 with g = w.

〈e0, e0〉 = 〈e0(w, w), e0(0, w)〉 = 〈wφ ′
0 + φ0, φ0〉

= 〈wφ ′
0, φ0〉 + 〈φ0, φ0〉 = 〈wφ ′

0, φ0〉 + 1

= 4,

where the last equality follows from Lemma 4.2 with g = 1. Hence α + β + 4λ0 = 0

and λ0 = −α+β
4

.

Continuing with the proof of Theorem 4.1, let PL0
denote the projection of H2(T

2)

onto L0. The element PL0
(kα(w) − kβ(w)) has the property that for any g ∈ L0,

〈g, PL0
(kα(w) − kβ(w))〉 = 〈g, kα(w) − kβ(w)〉 = g(0, α) − g(0, β).

Thus PL0
(kα(w) − kβ(w)) is orthogonal to g for g ∈ L0 with g(0, α) = g(0, β). So

PL0
(kα(w) − kβ(w)) is orthogonal to e0, 1, e. On the other hand,

〈p1, PL0
(kα(w) − kβ(w))〉 = α − β 6= 0.
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This gives that the element PL0
(kα(w)− kβ(w)) is a nonzero element. Therefore there

exists a nonzero number b such that PL0
(kα(w) − kβ(w)) = be1. Without loss of

generality we assume that e1 = PL0
(kα(w) − kβ(w)).

Observe that

p1(φ(z), φ(w))e1 + d1
e1
∈ M1, p1(φ(z), φ(w)) + d1

1 ∈ M2, M1 ⊥ M2,

to get

〈p1(φ(z), φ(w))e1 + d1
e1
, p1(φ(z), φ(w)) + d1

1〉 = 0.

Thus we have

0 = 〈p1(φ(z), φ(w))e1 + d1
e1
, p1(φ(z), φ(w)) + d1

1〉

= 〈(φ(z) + φ(w))e1, φ(z) + φ(w)〉 + 〈d1
e1
, d1

1〉

= 〈d1
e1
, d1

1〉.

(4.5)

The second equality follows from d1
e1
, d1

1 ∈ ker T∗
φ(z) ∩ ker T∗

φ(z). The last equality

follows from e1 ⊥ 1 and e1, 1 ∈ ker T∗
φ(z) ∩ ker T∗

φ(z). Substituting (4.4) into equation

(4.5), we have

0 = 〈d1
e1
, d0

1 + e + λ0e0〉 = 〈d1
e1
, d0

1〉 = 〈d1
e1
,−φ(w) + we0〉

= 〈d1
e1
, we0〉 = 〈d0

e1
+ µ1e1 + λ1e0, we0〉

= 〈d0
e1
, we0〉 + µ1〈e1, we0〉 + λ1〈e0, we0〉.

The second equation comes from the fact that d1
e1

is orthogonal to L0 and both e

and e0 are in L0. The third equation follows from the definition of d0
1 and the forth

equation follows from the fact that d1
e1

is in ker T∗
φ(z) ∩ ker T∗

φ(w). We need to calculate

〈d0
e1
, we0〉, 〈e1, we0〉, and 〈e0, we0〉 separately.

To get 〈d0
e1
, we0〉, by the definition of d0

e1
we have

〈d0
e1
, we0〉 = 〈−φ(w)e1 + we1(0, w)e0, we0〉 = 〈−φ(w)e1, we0〉 + 〈we1(0, w)e0, we0〉.

Thus we need to compute 〈−φ(w)e1, we0〉 and 〈we1(0, w)e0, we0〉 one by one. The

equality 〈−φ(w)e1, we0〉 = 0 follows from the following computations.

〈−φ(w)e1, we0〉 = 〈−wφ0(w)e1, we0〉 = −〈φ0(w)e1, e0〉
= −〈φ0(w)e1(w, w), e0(0, w)〉
= −〈φ0(w)e1(w, w), φ0(w)〉
= −〈e1(w, w), 1〉
= −〈e1, 1〉
= 0.

https://doi.org/10.4153/CJM-2010-026-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-026-4


Classification of Reducing Subspaces 433

To get 〈we1(0, w)e0, we0〉, we continue as follows.

〈we1(0, w)e0, we0〉 = 〈e1(0, w)e0, e0〉
= 〈e1(0, w)e0(w, w), e0(0, w)〉
= 〈e1(0, w)e0(w, w), φ0(w)〉
= 〈e1(0, w)(φ0(w) + wφ ′

0(w)), φ0(w)〉
= 〈e1(0, w)φ0(w), φ0(w)〉 + 〈e1(0, w)wφ ′

0(w), φ0(w)〉
= 〈e1(0, w), 1〉 + 〈e1(0, w)wφ ′

0(w), φ0(w)〉
= e1(0, 0) + 〈e1(0, w)wφ ′

0(w), φ0(w)〉
= 〈e1, 1〉 + 〈e1(0, w)wφ ′

0(w), φ0(w)〉
= 〈e1(0, w)wφ ′

0(w), φ0(w)〉
= e1(0, α) + e1(0, β).

The last equality follows from Lemma 4.2 and e1(0, 0) = 〈e1, 1〉 = 0. Hence

〈d0
e1
, we0〉 = e1(0, α) + e1(0, β).

Recall that d1
1 = d0

1 + e + λ0e0 is orthogonal to L0 and e1 is orthogonal to both e

and e0. Thus

0 = 〈e1, d0
1 + e + λ0e0〉 = 〈e1,−φ(w) + we0〉 = 〈e1, we0〉.

From the computation of 〈d0
1, e0〉 in the proof of Lemma 4.3 we have showed that

〈we0, e0〉 = α + β. Therefore we have that

(4.6) e1(0, α) + e1(0, β) + λ1(ᾱ + β̄) = 0.

On the other hand,

0 = 〈d1
e1
, e0〉 = 〈d0

e1
+ µ1e1 + λ1e0, e0〉 = 〈d0

e1
, e0〉 + 4λ1

and

〈d0
e1
, e0〉 = 〈−φ(w)e1 + we1(0, w)e0, e0〉

= 〈we1(0, w)e0, e0〉
= 〈we1(0, w)e0(w, w), e0(0, w)〉
= 〈we1(0, w)(φ0(w) + wφ ′

0), φ0(w)〉

= 〈w2e1(0, w)φ ′
0, φ0(w)〉

= αe1(0, α) + βe1(0, β).
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The last equality follows from Lemma 4.2 with g = we1(0, w). Thus

αe1(0, α) + βe1(0, β) + 4λ1 = 0.

So

(4.7) λ1 = −α

4
e1(0, α) − β

4
e1(0, β).

Substituting (4.7) into (4.6), we have

[

1 − α(ᾱ + β̄)

4

]

e1(0, α) +
[

1 − β(ᾱ + β̄)

4

]

e1(0, β) = 0.

Recall that λ0 = −α+β
4

, to get

(4.8) (1 + λ̄0α)e1(0, α) + (1 + λ̄0β)e1(0, β) = 0.

We are going to draw another equation about e1(0, α) and e1(0, β) from the prop-

erty that d1
e1

is orthogonal to L0. To do this, recall that

e1 = PL0
(kα(w) − kβ(w)) ∈ M1 ∩ L0,

d1
e1

= d0
e1

+ µ1e1 + λ1e0 ⊥ L0,

L0 = span{1, p1, eα, eβ},
eα = kα(z)kα(w), eβ = kβ(z)kβ(w).

Thus d1
e1

is orthogonal to p1, eα and eβ .
Since d1

e1
is orthogonal to p1 we have 〈d0

e1
, p1〉+µ1〈e1, p1〉+λ1〈e0, p1〉 = 0. Noting

〈d0
e1
, p1〉 = 〈−φ(w)e1 + we1(0, w)e0, p1〉 = 〈we1(0, w)e0, p1〉

= 〈we1(0, w)e0(w, w), w〉 = 〈e1(0, w)e0(w, w), 1〉
= 0,

〈e1, p1〉 = 〈PL0
(Kα(w) − Kβ(w)), p1〉 = 〈Kα(w) − Kβ(w), p1〉

= ᾱ − β̄,

〈e0, p1〉 = 〈e0(0, w), p1(w, w)〉 = 〈φ0(w), 2w〉 = 〈wφαφβ , 2w〉
= 2〈φαφβ , 1〉 = 2φα(0)φβ(0)

= 2αβ,

we have (ᾱ − β̄)µ1 + 2αβλ1 = 0, to obtain

λ1 = −µ1
ᾱ − β̄

2αβ
.
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Since d1
e1
⊥ eα, we have 〈d0

e1
, eα〉 + µ1〈e1, eα〉 + λ1〈e0, eα〉 = 0, to get

(4.9) 〈d0
e1
, eα〉 + µ1〈e1, eα〉 − µ1

ᾱ − β̄

2αβ
〈e0, eα〉 = 0.

We need to calculate 〈d0
e1
, eα〉, 〈e1, eα〉, and 〈e0, eα〉. Simple calculations show that

〈d0
e1
, eα〉 = 〈−φ(w)e1 + we1(0, w)e0, eα〉(4.10)

= 〈we1(0, w)e0, eα〉
= αe1(0, α)e0(α, α),

〈e1, eα〉 = e1(α, α)

= 〈PL0
(kα(w) − kβ(w)), eα〉

= 〈kα(w) − kβ(w), eα〉

=
1

1 − |α|2 − 1

1 − αβ̄

=
α(ᾱ − β̄)

(1 − |α|2)(1 − αβ̄)
,

(4.11)

〈e0, eα〉 = e0(α, α) = αφ ′
0(α) + φ0(α)

= α2 1

1 − |α|2
α − β

1 − αβ̄
.

(4.12)

Thus (4.11) and (4.12) give

e1(α, α)

e0(α, α)
=

ᾱ − β̄

α(α − β)
.

Substituting the above equality in equation (4.9) leads to

αe1(0, α)e0(α, α) + µ1e1(α, α) − µ1
ᾱ − β̄

2αβ
e0(α, α) = 0.

Dividing both sides of the above equality by e0(α, α) gives

αe1(0, α) + µ1
e1(α, α)

e0(α, α)
− µ1

ᾱ − β̄

2αβ
= 0.

Hence we have

αe1(0, α) + µ1
ᾱ − β̄

α(α − β)
− µ1

ᾱ − β̄

2αβ
= 0,

to obtain

(4.13) αe1(0, α) + (β + λ0)
2µ1(ᾱ − β̄)

αβ(α − β)
= 0.
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Similarly, since d1
e1

is orthogonal to eβ , we have

〈d0
e1
, eβ〉 + µ1〈e1, eβ〉 + λ1〈e0, eβ〉 = 0,

to obtain

(4.14) 〈d0
e1
, eβ〉 + µ1〈e1, eβ〉 − µ1

ᾱ − β̄

2αβ
〈e0, eβ〉 = 0.

We need to calculate 〈d0
e1
, eβ〉, 〈e1, eβ〉, and 〈e0, eβ〉. Simple calculations as above show

that

〈d0
e1
, eβ〉 = 〈−φ(w)e1 + we1(0, w)e0, eβ〉(4.15)

= 〈we1(0, w)e0, eβ〉
= βe1(0, β)e0(β, β),

〈e1, eβ〉 = e1(β, β)

= 〈PL0
(kα(w) − kβ(w)), eβ〉

= 〈kα(w) − kβ(w), eβ〉

=
1

1 − ᾱβ
− 1

1 − |β|2

=
β(ᾱ − β̄)

(1 − ᾱβ)(1 − |β|2)
,

(4.16)

(4.17) 〈e0, eβ〉 = e0(β, β) = βφ′
0(β) + φ0(β) = β2 β − α

1 − ᾱβ

1

1 − |β|2

Combining (4.16) with (4.17) gives

e1(β, β)

e0(β, β)
= − ᾱ − β̄

β(α − β)
.

Substituting the above equality in (4.14) gives

βe1(0, β)e0(β, β) + µ1e1(β, β) − µ1
ᾱ − β̄

2αβ
e0(β, β) = 0.

Dividing both sides of the above equality by e0(β, β) gives

βe1(0, β) + µ1
e1(β, β)

e0(β, β)
− µ1

ᾱ − β̄

2αβ
= 0

Hence we have

βe1(0, β) − µ1
ᾱ − β̄

β(α − β)
− µ1

ᾱ − β̄

2αβ
= 0,
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to get

(4.18) βe1(0, β) − (α + λ0)
2µ1(ᾱ − β̄)

αβ(α − β)
= 0.

Eliminating 2µ1(ᾱ−β̄)
αβ(α−β)

from (4.13) and (4.18) gives

(4.19) α(α + λ0)e1(0, α) + β(β + λ0)e1(0, β) = 0.

Now combining (4.8) and (4.19), we have the following linear system of equations

about e1(0, α) and e1(0, β)

(4.20)
(1 + λ̄0α)e1(0, α) + (1 + λ̄0β)e1(0, β) = 0

α(α + λ0)e1(0, α) + β(β + λ0)e1(0, β) = 0.

If e1(0, α) = e1(0, β) = 0, then p1 is in L0 = span{e0, e1, 1, e}. But noting

e0(0, α) = e0(0, β) and e(0, α) = e(0, β)

we have p1(0, α) = p1(0, β), which contradicts the assumption that α 6= β. So at

least one of e1(0, α) and e1(0, β) is nonzero. Then the determinant of the coefficient

matrix of system (4.20) must be zero. This implies

∣

∣

∣

∣

1 + λ̄0α 1 + λ̄0β
α(α + λ0) β(β + λ0)

∣

∣

∣

∣

= 0

Making elementary row reductions on the above the determinant, we get

∣

∣

∣

∣

(α − β)λ̄0 1 + λ̄0β
(α − β)(α + β + λ0) β(β + λ0)

∣

∣

∣

∣

= 0.

Since α + β = −4λ0 and α − β 6= 0, we have

∣

∣

∣

∣

λ̄0 1 + λ̄0β
−3λ0 β(β + λ0)

∣

∣

∣

∣

= 0.

Expanding this determinant we have

0 = λ̄0(β2 + βλ0) + 3λ0(1 + λ̄0β)

= λ̄0(β2 + βλ0 + 3βλ0) + 3λ0

= λ̄0(β2 + 4βλ0) + 3λ0

= λ̄0(−αβ) + 3λ0.

Taking absolute value on both sides of the above equation, we have

0 = |λ̄0(−αβ) + 3λ0| ≥ |λ0|(3 − |αβ|) ≥ 2|λ0|,

to get λ0 = 0. This implies α + β = 0, to complete the proof of Theorem 4.1
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