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The present paper concerns the linear fate of transverse perturbations in a gravity-driven,
thin-film flow over a soluble substrate. We propose a reduced-order model, based on a
boundary-layer treatment of the solute transport and a depth-integration of the Stokes
equations, using two extended lubrication methodologies found in the literature. We
obtain a closed-form dispersion relation, which we compare to a previous, fully resolved
analytical investigation (Bertagni and Camporeale, J. Fluid Mech., vol. 913, 2021, A34).
The results allow us to distil the essential physical mechanisms behind the instability.
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1. Introduction

Linear karren patterns are dissolution features adorning the bare, inclined faces of soluble
rocks, e.g. limestone (figure 1a). They appear as regularly spaced grooves following the
incline and their hydrodynamical origin is undisputed (Ford & Williams 2007; Ginés et al.
2009). In contrast to fracture-induced forms, these grooves are caused by flows of rainwater
or snow melt over the exposed rock surfaces. Their streamwise length as well as their
transverse periodicity – observed in nature to span over length scales from millimetres
to metres – are questions of particular interest, as they may shed light on past climatic
conditions.

Recent laboratory experiments by Guérin et al. (2020) showed that a uniform film flow
carves an array of parallel rills on its gypsum substrate. Although the film thicknesses
they probed were larger than in natural conditions and the flows presented wall-induced
turbulence, this evidence highlighted the theoretical lack in the study of karren formation.

Bertagni & Camporeale (2021) provided the first theoretical analysis in the framework
of linear stability theory. They used a complete description of the laminar hydrodynamical
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Figure 1. (a) Natural karren in the Bernese Alps (top) and in the Jura (bottom). (b) Sketch of the problem at
hand.

flow and, crucially, addressed the dissolution process by fully resolving the solute
transport within the flow. They demonstrated the system’s linear instability to transverse
perturbations over a substantial range of wavenumbers and revealed the importance
of transverse diffusion, both of momentum and solute, for the stabilisation of larger
wavenumbers.

Here, we propose a boundary-layer approach to this linear karren instability. We
consider a creeping, gravity-driven, streamwise-invariant flow. We model the dissolution
process, by the use of Lévêque’s (1928) boundary-layer solution, which profoundly
simplifies the solute transport problem and enables us, together with the solution to
the linearised Stokes equations, established by Bertagni & Camporeale (2021), to write
a dispersion relation in closed form. The latter is remarkably faithful to the complete,
tridimensional treatment of the solute transport by Bertagni & Camporeale (2021).

Finally, we propose to reduce the hydrodynamical description using two extended
lubrication models, found in the literature. The revised lubrication theory, recently
proposed by Devauchelle, Popović & Lajeunesse (2022), may lack ‘the mathematical
rigour of an order expansion’, notably as it includes the transverse momentum diffusion,
while neglecting other effects, a priori of the same asymptotical weight, but is a
very intuitive depth-integrated model. The weighted-residual integral boundary-layer
methodology (see Kalliadasis et al. (2012) and references therein), on the other hand,
has the advantage of being asymptotically consistent, although somewhat tedious to
manipulate. Both produce sets of depth-integrated streamwise and transverse momentum
conservation equations, which further emphasise the simple underlying physics of the
coupling in the problem at hand: the streamwise component of the flow interacts with
the dissolution process, while the transverse flow serves to flatten the free surface. Their
results are validated against the exact linearised Stokes equations.

2. Problem formulation and modelisation

We investigate the laminar, incompressible, gravity-driven flow of a thin film of Newtonian
liquid (water) of density ρ, kinematic viscosity ν and surface tension σ over a soluble
substrate (e.g. limestone or gypsum), inclined by an angle θ with respect to the
horizontal, and the solute transport inside the film, with diffusion coefficient D (figure 1b).
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Boundary-layer approach to the linear karren instability

The substrate material’s insolubility γ = ρs/csat is defined as a dimensionless solid
density ratio between its crystallised and dissolved states, where ρs is the rock’s density
and csat is the equilibrium, i.e. saturated, mass concentration in the liquid.

2.1. Governing equations
The system is governed by the continuity, the Stokes and the advection–diffusion
equations. We make the problem dimensionless by rescaling all lengths by the
characteristic film thickness HN , the pressure p by a hydrostatic pressure scale
ρg sin θHN/2 and the velocity u by a Nusselt velocity scale g sin θH2

N/(2ν), where g is the
gravitational acceleration. Lastly, we rescale the concentration c by its saturated value csat.
Assuming that the concentration field adapts instantly to the flow, i.e. in a quasi-stationary
regime, the governing equations read

∇ · u = 0, (2.1)

∇p = ∇2u + f , (2.2)

Peu · ∇c = ∇2c, (2.3)

where f = 2x̂ − 2 cot θ ŷ is the gravity forcing. The Péclet number Pe = g sin θH3
N/(2νD)

is the product of the Reynolds and Schmidt numbers Sc = ν/D = 103, and can therefore
be large even for creeping flows.

As the considered water films are usually formed by rainwater runoff or snow melt, the
water is assumed solute-free at the inlet:

c|x=0 = 0. (2.4a)

In general, the dissolution process is governed by a competition between the surface
reaction and diffusion rates. For simple dissolution reactions, the comparison is relatively
straightforward: the dissolution of very soluble minerals, e.g. salt, are overwhelmingly
diffusion-controlled. In contrast, the dissolution of calcite involves a much more
sophisticated chemical reaction, the kinetics of which can vary substantially with the
conditions. It is usually accepted that calcite’s dissolution in very undersaturated water
is also transport-controlled (Ford & Williams 2007). This means that the reaction at the
solid–liquid interface is quasi-instantaneous; the water is nearly saturated at contact with
the rock,

c|y=η = 1, (2.4b)

and the dissolution rate is thus regulated by how fast diffusion can evacuate the solute. The
solid mass conservation equation then governs the geomorphological evolution:

γ Pe∂tη = ∇c · ∇[y − η]|y=η. (2.4c)

We remind the reader that the dimensionless parameter γ measures the insolubility of
the substrate material; it is large for weakly soluble materials, e.g. γ = 49 091 for calcite
(Bertagni & Camporeale 2021). Moreover, there is no solute flux through the liquid–air
interface

∇c · ∇[y − η − h]|y=η+h = 0. (2.4d)

From (2.4c), we observe that the geomorphological time scale is much larger than the
hydrodynamical one. The substrate’s evolution – being controlled by diffusion, Pe � 1,
and undergoing a dramatic reduction in its solid density, γ � 1 – is vastly slower than the

977 R3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.932


S. Djambov and F. Gallaire

flow velocities, which enables us to use the classical no-slip and no-penetration boundary
conditions at the substrate:

u|y=η = 0. (2.5a)

The kinematic boundary condition describes the evolution of the film’s thickness:

∂th = u · ∇[y − η − h]|y=η+h. (2.5b)

Finally, the liquid–air interface is free of tangential stresses and undergoing a capillary
jump in the normal stress:

T · ∇[y − η − h]|y=η+h = −WeK∇[y − η − h], (2.5c)

with the stress tensor T = −pI + (∇u + ∇uT), the curvature

K = ∇ ·
[ ∇[y − η − h]
‖∇[y − η − h]‖

]
, (2.6)

and the Weber number We = 2σ/(ρg sin θH2
N). The gradient expressions ∇[y − η − h]

and ∇[y − η] are the upward-pointing vectors, normal to the upper and lower boundaries
of the liquid domain, respectively. They are not normalised in the kinematic and
dissolution conditions ((2.5b), (2.4c)), as ∂th and ∂tη are themselves projections of the
normal interface velocities onto ŷ.

2.2. Flat-rock basic flow
The stationary, transverse-invariant basic flow is that of a uniform liquid film falling over
an inclined flat rock,

hb = 1, ηb = 0, (2.7a,b)

involving a half-Poiseuille streamwise velocity profile and a hydrostatic pressure field

ub = y(2 − y)x̂, pb = 2 cot θ(1 − y). (2.7c,d)

Polyanin et al. (2001, pp. 130–132) provide an exact solution to the advection–diffusion
equation (2.3) for this basic flow, ignoring the streamwise diffusion (∂2

x cb), which is
negligible for large Péclet numbers Pe (figure 2). Near the inlet, the solute forms a thin
boundary layer, outside of which the water remains pure. The thickness of this layer grows
due to diffusion and the water’s aggressivity towards the substrate decreases. Downstream,
the accumulation of solute saturates the film.

Since the basic concentration field and, crucially, its gradient at the substrate are a
function of the streamwise coordinate x, flat rock cannot be an exact solution. Bertagni &
Camporeale (2021) remedied this by isolating the dissolution rate induced by the uniform
film flow V from the evolution of the substrate ∂tη. They formulated the dissolution law
(2.4c) as

γ Pe(∂tη − V) = ∇c · ∇[y − η]|y=η, with γ PeV = −∂ycb|y=0. (2.8)

2.3. Solutal Lévêque boundary-layer dissolution model
Let us focus on the region near the inlet, where the water is almost pure of solute.
The concentration interacts with the velocity field only very close to the wall, in
a solutal boundary layer, where the velocity has an almost purely shear profile.
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Figure 2. Two-dimensional basic concentration field cb and wall-normal profiles at x/Pe =
{10−3, 10−2, 10−1, 1}. The orange solid lines represent the exact solution, while the black dashed lines
depict Lévêque’s (1928) boundary-layer solution.

Under these conditions, x � Pe, and keeping only the streamwise advection and the
wall-normal diffusion, Lévêque (1928) reduced the advection–diffusion equation (2.3) to

Peτ( y − η)∂xc = ∂2
y c, (2.9)

where the advecting streamwise velocity is asymptotically expanded using its shear rate at
the substrate τ = ∂yu|y=η, and subject to boundary conditions

c|x=0 = 0, c|y=η = 1, ∂yc|y→∞ = 0. (2.10a–c)

Lévêque (1928) obtained a self-similar solution, which reads

c(x, y) =
Γ

(
1
3
,

Peτ( y − η)3

9x

)
Γ (1/3)

, (2.11)

with Γ (a, s) = ∫∞
s ta−1 e−t dt and Γ (a) ≡ Γ (a, 0) – the incomplete and complete gamma

functions, respectively. For the basic flow, τb = 2 and ηb = 0, this solution is compared to
the exact one in figure 2 and is found to be fairly valid up to x/Pe � 0.1, as already noted
by Bertagni & Camporeale (2021).

By injecting this solution (2.11) into the dissolution law (2.8), we obtain the following
evolution equation:

∂tη = V − (γ Pe)−1‖∇[y − η]‖2∂yc|y=η = V(1 − ‖∇[y − η]‖2(τ/τb)
1/3), (2.12)

with V = (6Pe/x)1/3/(γ PeΓ (1/3)) and where we have used the saturation condition
(2.4b) to rewrite ∇c · ∇[y − η]|y=η = ‖∇[y − η]‖2∂yc|y=η. This model indeed ignores
the in-plane concentration diffusion, which is important at small wavelengths, but should
capture well the behaviour of the boundary layer’s thickness with respect to the streamwise
velocity.
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2.4. Depth-integrated hydrodynamical models
At this stage, only the streamwise shear rate at the rock surface τ is necessary for
closing the problem with the dissolution model (2.12). As mentioned above, Bertagni &
Camporeale (2021) achieved an exact solution to the linearised Stokes equations for this
problem, which can be directly applied here for the purposes of linear stability analysis, as
we will see in § 3.1. However, with the purpose to validate fully depth-averaged models, we
set out to generalise two extended lubrication methodologies and obtain three closed-form
expressions for the dispersion relation. We believe that depth-averaged models could in
future prove very useful when it comes to studying the nonlinear evolution of linear karren
patterns. They can suitably be used as surrogates for the full Stokes equations with a
free interface, which would require an interface-capturing or interface-tracking multiphase
solver. A Wolfram Mathematica script, performing the mathematical derivations from this
section, is available as supplementary material at https://doi.org/10.1017/jfm.2023.932.

2.4.1. Revised lubrication model
Firstly, following Devauchelle et al. (2022), and generalising their model to free-surface
flows, we make a half-Poiseuille ansatz for the in-plane velocity profiles,

u( y, z)x̂ + w( y, z)ẑ = 3q(z)
h(z)

F0

[
y − η(z)

h(z)

]
, (2.13)

with the local flow rate vector q = qxx̂ + qzẑ. The y-dependence of the in-plane velocity
field is isolated into a semi-parabolic structure

F0[ζ ] = ζ − ζ 2/2, (2.14)

ensuring the no-slip condition (2.5a) on the wall and a leading-order, long-wave version of
the stress-free dynamic boundary condition (2.5c) on the water–air interface (∂yu|y=η+h =
∂yw|y=η+h = 0). The mass conservation equation reads

∂th + q′
z = 0, (2.15)

where the prime ′ denotes a differentiation with respect to z.
The integration of the wall-normal component of the momentum equations (2.2)

produces the hydrostatic pressure field

p( y, z) = 2 cot θ(η + h − y) + WeK, (2.16)

which includes the capillary contribution of the curved interface and where, in the
lubrication spirit, we have ignored the wall-normal momentum’s diffusion ∇2v.

Finally, using the ansatz (2.13), we integrate the in-plane components of the Stokes
equations (2.2) through the film and obtain the following momentum conservation
equations:(

1 + η′2 − h′η′ − h′2 + h(h′′ + η′′)
2

)
q + h(h′ + η′)q′ − h2q′′

3

= h3

3
(2x̂ − 2 cot θ(h′ + η′)ẑ − WeK′ẑ). (2.17)

There are three sources of depth-integrated momentum: the streamwise projection of the
gravitational acceleration and the transverse hydrostatic and capillary pressure gradients,
generated by deformations of the free surface.
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Boundary-layer approach to the linear karren instability

The revision, proposed by Devauchelle et al. (2022), essentially consists in allowing q
to keep an autonomous dependence on z, instead of it being adiabatically slaved to h and
η, as in the classical lubrication theory (Kalliadasis et al. 2012), where

q = h3

3
(2x̂ − 2 cot θ(h′ + η′)ẑ − WeK′ẑ). (2.18)

Evaluating the streamwise shear rate at the substrate from the ansatz (2.13) produces

τ = 3qx

h2 . (2.19)

2.4.2. Weighted-residual integral boundary-layer model
Secondly, following the derivations gathered in the monograph of Kalliadasis et al. (2012),
we aim at a weighted-residuals formulation for the free-surface thin-film flow over a
variable substrate morphology η(z). We rewrite the Stokes equations (2.2) as a set of
streamwise-invariant boundary-layer equations, which are asymptotically consistent up
to second order (so as to keep the in-plane momentum diffusion) in a thin-film order
parameter, separating in-plane and wall-normal length scales,

2 + ∂2
y u + ∂2

z u = 0, (2.20a)

−2 cot θ − ∂yp + ∂2
y v = 0, (2.20b)

−∂zp + ∂2
y w + ∂2

z w = 0, (2.20c)

with the dynamic boundary conditions now reading

∂yu|y=h+η = ∂z[h + η]∂zu|y=h+η, (2.21a)

∂yw|y=h+η = 4∂z[h + η]∂zw|y=h+η − ∂zv|y=h+η, (2.21b)

p|y=h+η = 2∂yv|y=h+η − We∂2
z [h + η]. (2.21c)

In order to account for higher-order deviations from the half-Poiseuille profile, the
in-plane velocity ansatz is corrected with two additional polynomial functions, weighted
by their associated coefficients r = rxx̂ + rzẑ and s = sxx̂ + szẑ:

u( y, z)x̂ + w( y, z)ẑ = 3(q − r − s)
h

F0

[
y − η

h

]
+ 45r

h
F1

[
y − η

h

]
+ 210s

h
F2

[
y − η

h

]
,

(2.22)
where

F1[ζ ] = ζ − 17ζ 2

6
+ 7ζ 3

3
− 7ζ 4

12
,

F2[ζ ] = ζ − 13ζ 2

2
+ 57ζ 3

4
− 111ζ 4

8
+ 99ζ 5

16
− 33ζ 6

32
, (2.23a,b)

which are chosen orthogonal to one another, and to F0[ζ ], with respect to the scalar
product 〈a|b〉 = ∫ h+η

η
ab dy, and satisfy the leading-order boundary conditions. The local

flow rate vector remains q and hence the mass conservation equation (2.15) still holds. The
corrections r and s are at least of order 1 in the thin-film parameter, so that their second
derivatives with respect to z fall out of the boundary-layer equations (2.20). Since their
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first derivatives do not appear in the equations either, r and s are adiabatically slaved to q,
h and η.

The pressure field is integrated from the wall-normal boundary-layer equation (2.20b):

p = 2 cot θ(h + η − y) − ∂zw − ∂zw|y=h+η − We(h′′ + η′′), (2.24)

where we have used the continuity equation (2.1) to replace ∂yv.
Finally, we perform a Galerkin projection of the in-plane boundary-layer momentum

equations (2.17) onto the basis functions themselves,〈
Fi

[
y − η

h

]∣∣∣∣ 2 + ∂2
z u
〉
+ Fi[1]∂yu|y=h+η +

〈
∂2

y Fi

[
y − η

h

]∣∣∣∣ u
〉

= 0, (2.25a)

〈
Fi

[
y − η

h

]∣∣∣∣− ∂zp + ∂2
z w
〉
+ Fi[1]∂yw|y=h+η +

〈
∂2

y Fi

[
y − η

h

]∣∣∣∣w
〉

= 0 (2.25b)

with i = {0, 1, 2}, and where we have integrated by parts the wall-normal diffusion terms
in order to introduce explicitly the second-order dynamic boundary conditions (2.21a,b).
The projections onto F0 readily produce the following momentum conservation equations:

(
1 + η′2 + h′η′

2
− 3h′2

10
+ h(23h′′ + 15η′′)

40

)
qx + 2hh′q′

x

5
− 2h2q′′

x

5
= 2h3

3
, (2.26a)

(
1 + 2η′2 + h′η′ − 8h′2

5
+ h(24h′′ + 15η′′)

10

)
qz + 9hh′q′

z

5
− 9h2q′′

z

5

= h3

3
(−2 cot θ(h′ + η′) + We(h′′′ + η′′′)),

(2.26b)

while the corrections r and s can be computed from the other residual equations i = {1, 2}.
The streamwise shear rate is then obtained from the corrected ansatz (2.22):

τ =
(

1 + 51h′η′

64
− h′2

320
+ h(53h′′ − 75η′′)

640

)
3qx

h2 + 69h′ − 315η′

320
q′

x

h
− q′′

x

5
. (2.27)

3. Linear stability analysis

3.1. Linearised Stokes equations
As mentioned in § 2.4, Bertagni & Camporeale (2021) provide an exact solution in
closed form to the hydrodynamical problem ((2.1), (2.2)), linearised around the basic flow
(2.7c,d), with boundary conditions (2.6c,d), linearised and flattened around the flat-rock
solution (2.7a,b). Thanks to the streamwise invariance, the continuity equation enables
them to write the cross-stream components of the perturbation velocity field in terms
of a scalar streamfunction ϕ, separate from the streamwise perturbation velocity. After
a normal mode decomposition

(u; h, η) = (ub; 1, 0) + ε(ũ( y)x̂ − ikϕ̃( y)ŷ + ∂yϕ̃( y)ẑ; h̃, η̃) exp[i(kz − ωt)] + c.c.,
(3.1)

977 R3-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.932


Boundary-layer approach to the linear karren instability

with real transverse wavenumber k and angular frequency ω, the imaginary part of which
is the temporal growth rate, their solution reads in the present notation

ũ = 2 sech k
(

(h̃ + η̃)
sinh[ky]

k
− η̃ cosh[k − ky]

)
,

ϕ̃ = i(2 cot θ + Wek2)

×(ky coth[ky] − 1)(k sinh k + cosh k) − k2y cosh k
k2(2k2 + cosh[2k] + 1)

sinh[ky](h̃ + η̃).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2a,b)

The linearised and flattened kinematic boundary condition and dissolution model ((2.5b),
(2.12)) can then form the system of solvability equations

ωh̃ = kϕ̃|y=1, (3.3a)

iωη̃ = V
6

(∂yũ|y=0 + η̃∂2
y ub|y=0), (3.3b)

which is singular and hence allows for non-trivial solutions when

ωlS
±(k) = ωlS

0
2

±

√√√√(ωlS
0
2

)2

− V(cosh k sinh k − k)(1 − k tanh k)
3k(2k2 + cosh[2k] + 1)

(2 cot θ + Wek2),

(3.4)
with

ωlS
0 = −i

{
cosh k sinh k − k

k(2k2 + cosh[2k] + 1)
(2 cot θ + Wek2) + V

3
(sech k + k tanh k − 1)

}
. (3.5)

3.2. Linearised depth-integrated models
The two depth-integrated models, developed in § 2.4 to replace the Stokes equations,
instead reduce the problem to four scalar variables (qx, qz; h, η), governed by four
equations ((2.17) or (2.26), (2.15), and (2.12) with either (2.19) or (2.27)). The perturbed
state is expressed in the form

(qx, qz; h, η) = (2/3, 0; 1, 0) + ε(q̃x, q̃z; h̃, η̃) exp[i(kz − ωt)] + c.c. (3.6)

For the revised lubrication model, presented in § 2.4.1, the linearised perturbation
evolution equations then read

(3 + k2)q̃x − (6 + k2)h̃ − k2η̃ = 0, (3.7a)

(3 + k2)q̃z + ik(2 cot θ + Wek2)(h̃ + η̃) = 0, (3.7b)

kq̃z − ωh̃ = 0, (3.7c)

V(3q̃x/2 − 2h̃) − 3iωη̃ = 0. (3.7d)

We obtain the following dispersion relation:

ωrl
±(k) = ωrl

0
2

±

√√√√(ωrl
0

2

)2

− Vk2(1 − 2k2/3)

(3 + k2)2 (2 cot θ + Wek2), (3.8)

with ωrl
0 = −ik2(2 cot θ + Wek2 + V/2)/(3 + k2).
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Figure 3. Dispersion relations ((3.4), (3.8), (3.10)) compared to Bertagni & Camporeale (2021). Here
Pe = 103, γ = 49 091 (calcite), x = 10, θ = {π/8, π/4, 3π/8, π/2}, We ≈ 4210 × sin−1/3 θ .
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Figure 4. (a) Contour plot of the growth rate Im[ω+] (3.4) in the {k, Pe} space. The most unstable wavenumber
km is displayed by a dashed line. The striped area indicates negative growth rates. Here γ = 49 091 (calcite),
x/Pe = 0.05, θ = π/4, We ≈ 4.7 × 105 × Pe−2/3. (b) Dispersion relation (3.4) for several materials. Here
Pe = 103, x = 10, θ = π/4, We ≈ 4726.

For the weighted-residuals model, presented in § 2.4.2, the linearised perturbation
evolution equations instead read

(3 + 6k2/5)q̃x − (6 + 23k2/20)h̃ − 3k2η̃/4 = 0, (3.9a)

(3 + 27k2/5)q̃z + ik(2 cot θ + Wek2)(h̃ + η̃) = 0, (3.9b)

kq̃z − ωh̃ = 0, (3.9c)

V(5q̃x/4 − (3/2 − 5k2/384)h̃ + 23k2η̃/128) − 3iωη̃ = 0. (3.9d)
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Boundary-layer approach to the linear karren instability

The dispersion relation becomes

ωwr
± (k) = ωwr

0
2

±
√(

ωwr
0
2

)2

− Vk2(1 − k2(9 + k2)/15)

(3 + 6k2/5)(3 + 27k2/5)

(
2 cot θ + Wek2

)
, (3.10)

with

ωwr
0 = −ik2

{
2 cot θ + Wek2

3 + 27k2/5
+ 21V(1 + 46k2/315)

128 + 256k2/5

}
. (3.11)

3.3. Results
Figure 3 presents these dispersion relations ((3.4), (3.8), (3.10)) for different inclination
angles θ . In the presented range, the weighted-residuals dispersion relation is visually
indistinguishable from the linear Stokes one. Both gravity and surface tension are
destabilising at small k. The instability is neutralised linearly when k → 0 for θ /=π/2 and
quadratically for a vertical substrate. Larger wavenumbers, k tanh k > 1 ⇔ k2 > 1.439 for
the linear Stokes model, k2 > 3/2 for the revised lubrication model, or k2 > (

√
141 −

9)/2 ≈ 1.437 for the weighted-residuals model, are stabilised by the transverse transfer of
momentum, emulated strikingly well by the diffusion terms in the two extended lubrication
models ((2.17), (2.26)).

These simplified models appear to capture in a distilled form most of the necessary
physics to compare rather favourably with the much more involved and complete analytical
treatment of Bertagni & Camporeale (2021). Deviations are observed only for the cutoff
wavenumber, which can be accounted for by the lack of transverse solute diffusion in
Lévêque’s (1928) boundary-layer dissolution model (see their figure 5c).

In the spirit of Bertagni & Camporeale (2021), figure 4(a) illustrates the influence of
the Péclet number Pe on the dispersion relation (3.4). Our analysis retrieves a behaviour
rather faithful to what they report. We remind the reader that Pe = ScRe with the Schmidt
number Sc = ν/D. Figure 4(b) shows the dispersion relation for different materials, to be
compared again with the results of Bertagni & Camporeale (2021). More soluble minerals,
e.g. salt, exhibit a shorter plateau of larger growth rate.

3.4. Instability mechanism
We briefly elucidate here the instability mechanism, explained by Guérin et al. (2020) and
depicted in figure 7 of Bertagni & Camporeale (2021). Let the substrate be perturbed
by a sinusoidal wave in the transverse direction z. Then, over the troughs (i) the film
gets thicker – on the one hand because of a hydrostatic pressure gradient, which tends
to bring water back down in the troughs, and on the other hand because of a capillary
pressure gradient, which tends to keep the free surface flat; (ii) the flow accelerates; (iii)
the boundary layer becomes thinner; and (iv) the dissolution is faster than on the crests.

For shorter wavelengths, transverse transfer of momentum becomes important and the
flow acceleration in step (ii) is hindered. Inside the narrower troughs the flow is confined
and in fact slowed down, thus stabilising the system.

For very long wavelengths, the flattening of the free surface, step (i), becomes a
growth-limiting factor and the instability is neutralised. This explains the qualitatively
different asymptotic behaviour of the growth rate for θ = π/2: without a wall-normal
component of the gravitational acceleration, surface tension is the only effect restoring
the flat free surface. This is also why in the rigid-lid approximation, where h̃ + η̃ = 0 is
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imposed, bypassing step (i) altogether, the unstable plateau reaches k = 0, as highlighted
by Bertagni & Camporeale (2021).

4. Conclusion

The dispersion relation displays a large plateau of almost equally unstable wavenumbers
in the interval 10−3 � k � 10−1 (figure 3). This impedes to some degree the model’s
predictive power, since a large range of wavelengths – spanning from ten to approximately
a thousand times the film thickness HN – can grow with very similar rates. On the other
hand, this feature may be consistent with the wide-ranging length scales spanned by natural
linear karren forms. The competition for the emerging pattern’s ultimate wavelength would
be settled by more subtle mechanisms. Finite amplitude and stochastic effects, such as the
roughness and/or grain distribution of the initial rock surface, or raindrop impacts on the
falling film, might play a role in the wavelength selection.

It is clear that the classical lubrication theory could not predict a cutoff wavenumber –
while the film is thicker over the troughs, the flow would always be faster, and the troughs
would dissolve more, independent of k. In this sense, both extended lubrication models,
because they account for the transverse transfer of momentum, have proven to be suitable.
Moreover, their striking adjacency underlines the place of physical insight in simplifying
mathematically cumbersome systems. Finally, their validation against the exact Stokes
equations, at least in the linear regime, holds a promise for their future use in nonlinear
analyses.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2023.932.
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