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Abstract For a large class of subsets Ω ⊂ R
N (including unbounded domains), we discuss the Fred-

holm and properness properties of second-order quasilinear elliptic operators viewed as mappings from
W 2,p(Ω; R

m) to Lp(Ω; R
m) with N < p < ∞ and m � 1. These operators arise in the study of elliptic

systems of m equations on Ω. A study in the case of a single equation (m = 1) on R
N was carried out

by Rabier and Stuart.
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1. Introduction

In a recent paper [8], Rabier and Stuart studied the Fredholm and properness properties
of quasilinear elliptic operators viewed as mappings from W 2,p(RN ) to Lp(RN ) for N <

p < ∞. The motivation for this work was to prepare the way for the use of the topological
degree for C1-Fredholm maps of index zero that are proper on closed bounded sets
(see [7]), and they subsequently showed how this degree can be used to obtain new results
about the global bifurcation in W 2,p(RN ) of solutions of quasilinear elliptic equations [9].

The purpose of the present article is to extend the approach developed in [8] to
cover systems of quasilinear elliptic operators viewed as mappings from W 2,p(Ω; Rm)
to Lp(Ω; Rm), where m is an integer greater than or equal to 1, Ω is an open (possibly
unbounded) subset of R

N and N < p < ∞. The operators under consideration arise in
the study of a system of m partial differential equations of second order for m unknown
functions u1, . . . , um on a domain∗ Ω,

L11u1 + · · · + L1mum + b1 = 0,
...

Lm1u1 + · · · + Lmmum + bm = 0,

∗ For us, a domain is just an open subset, which need not be connected nor bounded.
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where

Lijuj = −
N∑

α,β=1

aij
αβ(x, u1, . . . , um,∇u1, . . . ,∇um)∂2

αβuj

and

bi = bi(x, u1, . . . , um,∇u1, . . . ,∇um) for i, j = 1, . . . , m.

To deal with such systems, we adopt a matrix-vector notation, which we believe to be
best suited for our purposes. So let u = (u1, u2, . . . , um) : Ω → R

m be a vector-valued
function, ∇u = (∂1u

1, . . . , ∂Nu1, ∂1u
2, . . . . . . , ∂1u

m, . . . , ∂Num), b : Ω×R
m×R

mN → R
m

a vector-valued map and aαβ : Ω × R
m × R

mN → R
m×m a family of matrix-valued maps

(α, β = 1, . . . , N). Then we consider the differential operator

F (u) = −
N∑

α,β=1

aαβ(·, u, ∇u) · ∂2
αβu + b(·, u, ∇u), (1.1)

where

[aαβ(·, u, ∇u) · ∂2
αβu]i =

N∑
j=1

aij
αβ(·, u, ∇u)∂2

αβuj ,

as a mapping from W 2,p(Ω; Rm) to Lp(Ω; Rm), and we investigate conditions for the
Fredholmness and the properness of F on the closed bounded subsets of W 2,p(Ω; Rm) ∩
W 1,p

0 (Ω; Rm).
Our approach is the same as in [8], and many arguments and proofs remain valid after

some modifications. In the present notation, the work in [8] deals with the situation
m = 1 and Ω = R

N , so in addition to extending the treatment to systems, we are also
generalizing the approach to more general domains by allowing Ω to be a domain in
R

N whose boundary is a bounded set. This covers the following cases: Ω = R
N ; Ω is

the exterior of a bounded domain; and Ω is a bounded domain. In some places, the
modifications required to the analogous arguments in [8] are little more than notational,
but in others they are more substantial. Therefore, for the reader’s convenience, we have
included fairly complete proofs of all the results and tried to highlight the arguments
that make the generalization possible.

For problems on bounded domains, there are strong connections between ellipticity and
Fredholmness [4,6]. Let us mention in particular the theorems on complete collections
of isomorphisms (see, for example, [2, 10, 14]). In our work, the ellipticity condition
intervenes first in proving Lemma 3.5, and this is done through the Lp− a priori estimates
of Koshelev [5], available for linear systems with continuous coefficients that are elliptic
in the sense of Petrovskii. We deal with quasilinear systems that are elliptic in a similar
sense (see (3.1)), since this is sufficiently general to cover the applications we have in
mind such as reaction-diffusions systems or systems that satisfy the strict Legendre–
Hadamard condition. Furthermore, it allows us to use the same function spaces for all
the components of the vector u, which would not be the case if we adopted a more general
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notion of ellipticity such as that due to Agmon et al . Note that we use standard Sobolev
spaces. For work on analogous issues in local Sobolev spaces, weighted Sobolev spaces
and Hölder spaces, one may consult the recent papers [11–13] and the references therein.

Section 2 begins with basic notation and properties of the domain Ω and then estab-
lishes the regularity properties of the operator (1.1). The Fredholm property is treated
in § 3 following a discussion of ellipticity. The main result here is Theorem 3.9. The study
of properness is begun is § 4, where we relate properness to Fredholm properties and to
a notion of uniform decay of sequences of functions as |x| → ∞. More explicit conclu-
sions are obtained in § 5 under the assumption that the system is asymptotically periodic
as |x| → ∞, the main results being Theorems 5.5 and 5.7.

2. Definitions and smoothness of some Nemytskii operators

Our first task is to make sure that the operator in (1.1) is well defined and has enough
smoothness for the subsequent discussion. Therefore, it is necessary to study the smooth-
ness of the Nemytskii operators u �→ b(·, u, ∇u) and u �→ aαβ(·, u, ∇u), entering in F .
This leads us to consider maps of the type f : Ω × (Rm × R

mN ) → R
d.

We make use of the following notation: if f : Ω × (Rm ×R
mN ) → R

d and u : Ω → R
m,

then the Nemytskii operator generated by f : u �→ f(·, u, ∇u) will be denoted by f

(i.e. f(u) = f(·, u, ∇u)∗). Note that if f = (f1, . . . , fd) and each component f j gives
rise to a Nemytskii operator f j , then the Nemytskii operator associated with f is
f = (f1, . . . ,fd), and any smoothness property of f is equivalent to the same prop-
erty of each component. So it is sufficient to study scalar-valued maps. But before going
further, let us continue to fix the notation we shall use below.

The integer N will always denote the dimension of the space of the independent vari-
able, i.e. R

N , and m the dimension of the system (m equations with m unknown func-
tions). The real number p will always satisfy N < p < ∞.

If z1, z2 ∈ R
m and A is an m × m matrix, z1 · z2 will denote the scalar product of z1

and z2, and A · z1 will denote the usual matrix-vector multiplication. Also, |z| and |A|
denote, respectively, the Euclidean norms of z ∈ R

d and A ∈ R
m×m.

Whenever we need to display the components of ξ ∈ R
m(N+1), we shall write

ξ = (ξ0, ξ1, . . . , ξN ), with ξk = (ξ1
k, . . . , ξm

k ) ∈ R
m, k = 0, . . . , N.

For f : Ω × (Rm × R
mN ) → R, x ∈ Ω, ξ ∈ R

m(N+1), we denote by

∇ξk
f(x, ξ) = (∂ξ1

k
, . . . , ∂ξm

k
)f(x, ξ)

the partial gradient with respect to the ξk block variable. Dξf is the gradient of f with
respect to ξ.

As in [8], we use the standard notation for the Lebesgue and Sobolev spaces. Let
O ⊂ R

N be an open set, l ∈ N, q ∈ [1,∞], the norm in (W l,q(O))m = W l,q(O; Rm) is
the norm in a Cartesian product of Banach spaces and will be denoted by ‖u‖l,q,O (i.e. if

∗ ∇u = (∂1u, . . . , ∂Nu) and ∂ku = (∂ku1, . . . , ∂kum), k = 1, . . . , N , ∂0u = u.
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u = (u1, . . . , um) ∈ W l,q(O; Rm), then ‖u‖l,q,O = ‖u1‖W l,q(O) + · · · + ‖um‖W l,q(O)). To
simplify the writing, we often use Yp(Ω) = (Lp(Ω))m and Xp(Ω) = (W 2,p(Ω))m; when
Ω = R

N , we write Xp and Yp.
To deal with the Dirichlet problem, we introduce the space

Dp(Ω) = (W 2,p(Ω) ∩ W 1,p
0 (Ω))m.

Note that Dp(Ω) is a closed subspace of Xp(Ω) and so it is also reflexive. Finally,
Dp(RN ) = Xp(RN ) = Xp.

C1(Ω̄) is the subspace of C0(Ω̄) ∩ C1(Ω) of the functions v for which ∇v has a con-
tinuous extension to Ω̄. We also use the space C1

d(Ω̄) introduced in [8],

C1
d(Ω̄) =

{
v ∈ C1(Ω̄) : lim

x∈Ω, |x|→∞
|v(x)| = lim

x∈Ω, |x|→∞
|∇v(x)| = 0

}
.

This is a Banach space for the norm max(maxx∈Ω̄ |v(x)|, maxx∈Ω̄ |∇v(x)|). Note also that
C1

d(Ω̄) ⊂ W 1,∞(Ω) and C1
d(Ω̄) = C1(Ω̄) when Ω is bounded. Some important properties

of the spaces used here are recalled in the appendix.

2.1. Remarks on the domain Ω

Ω will always have a bounded and Lipschitz boundary ∂Ω (possibly empty), so that Ω

can be a bounded domain, an exterior domain or R
N itself. In the main results of §§ 3–5,

it is furthermore assumed that Ω has a C2 boundary, and it is explicitly mentioned. This
implies some remarks that will be useful in § 3.

Remark 2.1. We have two cases: either Ω is bounded or not. If Ω is unbounded,
then necessarily �Ω is bounded. This is due to the boundedness of the boundary. Indeed,
let Br be a ball containing ∂Ω. We claim that Br contains �Ω . If not, there is a point
x ∈ �Ω ∩ �Br . Since Ω is also unbounded, there is a y ∈ Ω ∩ �Br . Now recall that �Br is
path connected, so we can join x to y by a path in �Br . This path, joining an exterior
point to an interior point of Ω, should meet the boundary, but it does not, since the
boundary lies inside the ball Br. Therefore, K = �Ω is bounded (compact).

Remark 2.2. Let Ω be unbounded. For every ball Br containing ∂Ω, we have

∂(Ω ∩ Br) = ∂Ω ∪ ∂Br.

Proof. We clearly have Ω ∩ Br ⊂ Ω̄ ∩ B̄r. Let us prove the reverse inclusion. Let
x ∈ Ω̄ ∩ B̄r. Then either (i) x ∈ Br or (ii) x ∈ ∂Br. First let x ∈ Br and V be an open
neighbourhood of x. If V ∩ (Ω ∩ Br) = ∅, then x ∈ V ∩ Br ⊂ K, which means that x is
an interior point of K. But this is impossible, since

x ∈ Ω̄ = �K = �K̇ .

Therefore, x ∈ Ω ∩ Br. Next, if x ∈ ∂Br ⊂ �Br ⊂ Ω, then, for all ε > 0 sufficiently small,
B(x, ε) ⊂ Ω. Clearly, B(x, ε) ∩ Br 
= ∅, and so B(x, ε) ∩ (Ω ∩ Br) 
= ∅, and once again
x ∈ Ω ∩ Br. Finally, Ω ∩ Br = Ω̄ ∩ B̄r.
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On the other hand,
�Ω∩Br = �Ω ∪ �Br .

So

∂(Ω ∩ Br) = Ω̄ ∩ �Ω ∩ B̄r ∪ B̄r ∩ �Br ∩ Ω̄ = ∂Ω ∩ B̄r ∪ ∂Br ∩ Ω̄ = ∂Ω ∪ ∂Br,

since ∂Ω ⊂ Br ⊂ B̄r and ∂Br ⊂ �Br ⊂ Ω ⊂ Ω̄. �

Remark 2.3. The connection between the Dirichlet problem and the space Dp(Ω) =
(W 2,p(Ω) ∩ W 1,p

0 (Ω))m introduced above is given by the following theorem (see, for
example, Brezis [3, Théorème IX.17]). Let Ω have a C1 boundary and let u ∈ W 1,q(Ω)∩
C(Ω̄) with 1 � q < ∞. Then the following conditions are equivalent.

(i) u = 0 on ∂Ω.

(ii) u ∈ W 1,q
0 (Ω).

2.2. A preliminary study of Nemytskii operators

It is clear that the smoothness of a Nemytskii operator generated by f : Ω × (Rm ×
R

mN ) → R should be derived from smoothness assumptions on f . In this paper, as in [8],
the following property of equicontinuity plays an important role.

Definition 2.4. We say that f : Ω × R
M → R

d is an equicontinuous C0 bundle map
if f is continuous and the collection (f(x, ·))x∈Ω is equicontinuous at every point of R

M .
If k � 0 is an integer, we say that f is an equicontinuous Ck

ξ bundle map if the partial
derivatives Dγ

ξ , |γ| � k, exist and are equicontinuous C0 bundle maps.

Note that f = (f1, . . . , fd) is a Ck
ξ bundle map if only if each component f j is a Ck

ξ

bundle map. Note also that a sum of Ck
ξ bundle maps is a Ck

ξ bundle map.
Now we give some important properties and examples of Ck

ξ bundle maps.

Lemma 2.5. Let f : Ω × R
M → R

d be an equicontinuous C0 bundle map. Then we
have the following.

(i) The collection (f(x, ·))x∈Ω is uniformly equicontinuous on the compact subsets of
R

M .

(ii) If A is a measurable subset of Ω and f(·, 0) ∈ L∞(A), the collection (f(x, ·))x∈A is
equibounded on the bounded subsets of R

M .

Proof. (i) If not, there exist a compact set K ⊂ R
m, ε0 > 0 and three sequences

(xn) ⊂ Ω, (ξn), (ηn) ⊂ R
M such that, for all n ∈ N,

|ξn − ηn| � 1
n

and |f(xn, ξn) − f(xn, ηn)| � ε0.

But (ξn) belongs to a compact set, so it contains a subsequence (ξϕ(n)) converging to
some ξ, which also implies that ηϕ(n) → ξ. By the equicontinuity of (f(x, ·))x at ξ, we
have, for all n large enough,

|f(xϕ(n), ξϕ(n)) − f(xϕ(n), ξ)| < 1
4ε0 and |f(xϕ(n), ηϕ(n)) − f(xϕ(n), ξ)| < 1

4ε0,
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and therefore
|f(xϕ(n), ξϕ(n)) − f(xϕ(n), ηϕ(n))| < 1

2ε0,

a contradiction.

(ii) Let K be a bounded subset of R
m and B be a closed ball in R

m containing 0
and K. By (i), there is δ > 0 such that, for all x ∈ Ω, |f(x, ξ) − f(x, η)| < 1 whenever
|ξ − η| � δ and ξ, η ∈ B. For any ξ ∈ K, one can divide the segment joining 0 to ξ into
[|ξ|/δ] + 1 segments of length not greater than δ. Thus, for x ∈ A,

|f(x, ξ)| � |f(x, 0)| + |f(x, ξ) − f(x, 0)| < ‖f(·, 0)‖L∞(A) +
[
|ξ|
δ

]
+ 1.

But |ξ| is bounded by the diameter of B, so the proof is complete. �

Remark 2.6. Let g : Ω × (Rm × R
mN ) → R

m be a C0 bundle map. Then, for
i = 0, . . . , N , (x, ξ) �→ g(x, ξ) · ξi is a scalar-valued C0 bundle map.

Proof. Fix η ∈ R
m × R

mN . Then

g(x, ξ) · ξi − g(x, η) · ηi = g(x, ξ) · (ξi − ηi) + (g(x, ξ) − g(x, η)) · ηi.

The result follows from the equicontinuity of (g(x, ·))x at η and its equiboundedness on
bounded subsets of R

m × R
mN (Lemma 2.5 (ii)). �

Remark 2.7. Let f : Ω × (Rm × R
mN ) → R be a C1

ξ bundle map. Define g : Ω ×
(Rm × R

mN ) → R
m by

g(x, ξ) =
∫ 1

0
∇ξi

f(x, tξ) dt.

Then g is a C0 bundle map.

Proof. Fix η ∈ R
m × R

mN . Then

g(x, ξ) − g(x, η) =
∫ 1

0
(∇ξif(x, tξ) − ∇ξi

f(x, tη)) dt.

If |ξ − η| � 1, then tξ and tη belongs to the closed ball with centre 0 and radius |η| + 1.
Thus the conclusion follows from Lemma 2.5 (i) applied to ∇ξif . �

Remark 2.8. If f is of class Ck and f(·, ξ) is N -periodic in x with period T =
(T1, . . . , TN ) for every ξ ∈ R

m(N+1), then f is a Ck
ξ bundle map. This follows from the

uniform continuity of Dγ
ξ f on [0, T1]×· · ·× [0, TN ]×K for every compact K ⊂ R

m×R
mN

and |γ| � k (see § 5).

Lemma 2.9. Let f : Ω × (Rm × R
mN ) → R be an equicontinuous C0 bundle map.

Suppose that f(·, 0) ∈ L∞(Ω). Then the Nemytskii operator f has the following proper-
ties.

(i) It is well defined and continuous from (C1
d(Ω̄))m to L∞(Ω).

(ii) It is well defined and continuous from (W 2,p(Ω))m to L∞(Ω) and maps bounded
subsets onto bounded subsets.
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(iii) If Ω is bounded, it is completely continuous from (W 2,p(Ω))m to L∞(Ω) (hence
also to Lq(Ω), 1 � q � ∞).

(iv) The multiplication (u, v) ∈ (W 2,p(Ω))m ×Lp(Ω) �→ f(·, u, ∇u)v ∈ Lp(Ω) is weakly
sequentially continuous.

Proof. (i) If u ∈ C1
d(Ω̄; Rm), the function x ∈ Ω̄ → f(x, u(x),∇u(x)) is continuous

and hence measurable. From the boundedness of u and ∇u on Ω̄, there is a bounded sub-
set K ⊂ R

m(N+1) containing (u(x),∇u(x)) for all x ∈ Ω̄. Therefore, by Lemma 2.5 (ii),
there is a constant MK > 0 such that |f(x, u(x),∇u(x))| � MK ∀x ∈ Ω̄. This means
that f(·, u, ∇u) ∈ L∞(Ω).

To prove the continuity, let un, u ∈ C1
d(Ω̄; Rm) and un → u in C1

d(Ω̄; Rm). Then, since
{u} ∪ {un, n ∈ N} is compact and hence bounded in C1

d(Ω̄; Rm), there is a compact
K ⊂ R

m(N+1) containing (u(x),∇u(x)) and (un(x),∇un(x)) for all x ∈ Ω̄ and n ∈ N.
But |(un(x),∇un(x)) − (u(x),∇u(x))| can be made arbitrary small uniformly in x ∈ Ω̄,
for n large enough. So, by Lemma 2.5 (i), given ε > 0, we have

|f(x, un(x),∇un(x)) − f(x, u(x),∇u(x))| � ε ∀x ∈ Ω̄.

Lastly, if B ⊂ C1
d(Ω̄; Rm) is bounded, then there is a bounded subset K ⊂ R

m(N+1)

containing (u(x),∇u(x)) for all x ∈ Ω̄ and u ∈ B. The boundedness of f(B) follows from
Lemma 2.5 (ii).

(ii) Follows from the imbedding W 2,p(Ω; Rm) ↪→ C1
d(Ω̄; Rm).

(iii) The above imbedding is compact when Ω is bounded.

(iv) Let un ⇀ u in W 2,p(Ω, Rm) and vn ⇀ v in Lp(Ω). From (ii), the sequence (f(un))
is bounded in L∞(Ω), and hence (f(un)vn) is bounded in Lp(Ω). Let Ω′ ⊂ Ω be any open
ball. By (iii), f(un)|Ω′ → f(u)|Ω′ in L∞(Ω′), which implies that f(un)vn|Ω′ ⇀ f(u)v|Ω′

in Lp(Ω′). Now, if a subsequence of (f(un)vn) converges weakly to w in Lp(Ω), and
hence in Lp(Ω′), we have w|Ω′ = f(u)v|Ω′ , and therefore w = f(u)v, since the ball is
arbitrary. This means that (f(un)vn) has a unique weak cluster point, which yields (see
the appendix) f(un)vn ⇀ f(u)v in Lp(Ω). �

Lemma 2.10. Let f : Ω × (Rm × R
mN ) → R have the form

f(x, ξ) = f0(x) +
N∑

i=0

gi(x, ξ) · ξi, (2.1)

where gi is a C0 bundle map, with gi(·, 0) ∈ L∞(Ω; Rm), 0 � i � N . Suppose that
f0 ∈ Lp(Ω). In particular, the above conditions hold if f is a C1

ξ bundle map with
f(·, 0) ∈ Lp(Ω) and Dξf(·, 0) bounded in Ω. Then the Nemytskii operator has the fol-
lowing properties.

(i) It is well defined and continuous from W 2,p(Ω; Rm) to Lp(Ω) and maps bounded
subsets onto bounded subsets.

(ii) It is weakly sequentially continuous from W 2,p(Ω; Rm) to Lp(Ω).
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Proof. To see the ‘in particular’, note that, for a C1
ξ bundle map f , one can write

f(x, ξ) − f(x, 0) =
∫ 1

0

∂

∂t
f(x, tξ) dt

=
∫ 1

0

N∑
i=0

∇ξif(x, tξ) · ξi dt

=
N∑

i=0

(∫ 1

0
∇ξi

f(x, tξ) dt

)
· ξi.

Take

gi(x, ξ) =
∫ 1

0
∇ξi

f(x, tξ) dt.

Then, by Remark 2.7, gi is a C0 bundle map. Furthermore, gi(·, 0) = ∇ξif(·, 0) ∈
L∞(Ω; Rm).

(i) Applying Lemma 2.9 (ii) to each component of gi, we have that gi : W 2,p(Ω, Rm) →
L∞(Ω; Rm) is continuous and maps bounded subsets onto bounded ones. As a result, the
operator

u �→
N∑

i=0

gi(u) · ∂iu ∈ Lp(Ω) (2.2)

is continuous and maps bounded subsets onto bounded ones. By (2.1), this is f −f0, and
the conclusion follows from the assumption f0 ∈ Lp(Ω).

(ii) Let un ⇀ u in W 2,p(Ω; Rm). By part (i), (f(un)) is bounded in Lp(Ω). Let Ω′ ⊂ Ω

be an open ball. Since f − f0 is an equicontinuous C0 bundle map (see Remark 2.6) and
vanishes when ξ = 0, Lemma 2.9 (iii) applies and yields f(un)|Ω′ → f(u)|Ω′ in Lp(Ω′).
Now, if a subsequence of (f(un)) converges weakly to some w in Lp(Ω), and hence in
Lp(Ω′), we have w|Ω′ = f(u)|Ω′ , and therefore w = f(u), since the ball is arbitrary.
This means that (f(un)) has a unique weak cluster point, and thus f(un) ⇀ f(u) in
Lp(Ω). �

Theorem 2.11. Let f : Ω × (Rm × R
mN ) → R be an equicontinuous C1

ξ bundle
map. Suppose that f(·, 0) ∈ L∞(Ω) (respectively, f(·, 0) ∈ Lp(Ω)) and that Dξf(·, 0)
is bounded on Ω. Then the Nemytskii operator f is of class C1 from W 2,p(Ω; Rm) to
L∞(Ω) (respectively, Lp(Ω)), with derivative

Df(u)v =
N∑

i=0

∇ξif(·, u, ∇u) · ∂iv. (2.3)

Furthermore, Df is bounded on the bounded subsets of W 2,p(Ω; Rm), and hence f is
uniformly continuous on these subsets.
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Proof. Define, for u ∈ W 2,p(Ω; Rm),

Tuv =
N∑

i=0

∇ξif(·, u, ∇u) · ∂iv.

By Lemma 2.9 (ii) applied to each component of ∇ξif , we have that ∇ξif(·, u, ∇u) is
bounded on Ω. Thus

‖Tuv‖0,p,Ω �
N∑

i=0

‖∇ξif(·, u, ∇u)‖0,∞,Ω‖∂iv‖0,p,Ω � const. × ‖v‖2,p,Ω

and

‖Tuv‖0,∞,Ω � const. × ‖v‖1,∞,Ω � const. × ‖v‖2,p,Ω .

Therefore, Tu is linear and bounded from W 2,p(Ω; Rm) to Lp(Ω) and to L∞(Ω).
Note that

f(·, u + v,∇(u + v)) − f(·, u, ∇u) =
∫ 1

0

∂

∂t
f(·, u + tv,∇u + t∇v) dt

=
N∑

i=0

(∫ 1

0
∇ξif(·, u + tv,∇u + t∇v) dt

)
· ∂iv.

So

f(·, u + v,∇(u + v)) − f(·, u, ∇u) − Tuv

=
N∑

i=0

(∫ 1

0
∇ξif(·, u + tv,∇u + t∇v) − ∇ξi

f(·, u, ∇u) dt

)
· ∂iv.

Thus, if we define

ku,i(x, ξ) :=
∫ 1

0
(∇ξif(x, u(x) + tξ0,∇u(x) + tξ′) − ∇ξif(x, u(x),∇u(x))) dt,

where ξ′ = (ξ1, . . . , ξN ), we get

f(·, u + v,∇(u + v)) − f(·, u, ∇u) − Tuv =
N∑

i=0

ku,i(·, v,∇v) · ∂iv. (2.4)

Now, one can check, as in Remark 2.7, that ku,i is an equicontinuous C0 bundle map
satisfying ku,i(·, 0) = 0 ∈ L∞(Ω; Rm). Therefore, by Lemma 2.9 (ii) applied to each com-
ponent of ku,i, we have that ku,i is continuous from W 2,p(Ω, Rm) to L∞(Ω; Rm). So,
given ε > 0, we have that ‖ku,i(v)‖0,∞,Ω � ε, provided ‖v‖2,p,Ω is small enough.

Now, if f(·, 0) ∈ L∞(Ω), then f maps Xp(Ω) to L∞(Ω) (see Lemma 2.9 (ii)). By (2.4),
we obtain

‖f(u + v) − f(u) − Tuv‖0,∞,Ω � const. × ε‖v‖1,∞,Ω � const. × ε‖v‖2,p,Ω ,

which means that f is differentiable and Df(u) = Tu.

https://doi.org/10.1017/S0013091504000550 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000550


100 H. G. Gebran and C. A. Stuart

If f(·, 0) ∈ Lp(Ω), then f maps Xp(Ω) to Lp(Ω) (Lemma 2.10 (i)). By (2.4), we obtain

‖f(u + v) − f(u) − Tuv‖0,p,Ω � const. × ε‖v‖1,p,Ω � const. × ε‖v‖2,p,Ω ,

which means that f is differentiable and Df(u) = Tu.
To prove the continuity of Df , note that

‖Df(u) − Df(u0)‖ � ‖Dξf(·, u, ∇u) − Dξf(·, u0,∇u0)‖0,∞,Ω ,

so the result follows from Lemma 2.9 (ii), which also ensures that Df is bounded on the
bounded subsets of Xp(Ω). �

Remark 2.12. If f takes values in R
m, the derivative of the Nemytskii operator

generated by f is just

Df(u)v = (Df1(u)v, . . . ,Dfm(u)v),

with, for k = 1, . . . , m, Dfk(u)v =
N∑

i=0

∇ξif
k(·, u, ∇u) · ∂iv. (2.5)

Similarly, if f = (fk,j)k,j=1,...,m is an m × m matrix, the derivative of the Nemytskii
operator f is the matrix

Df(u)v = (Dfk,j(u)v)k,j=1,...,m, with Dfk,j(u)v =
N∑

i=0

∇ξi
fk,j(·, u, ∇u) · ∂iv. (2.6)

Lemma 2.13 (cf. Lemma 2.9 of [8]). Let X, Y and Z be normed spaces with
X ↪→ Y and let f : X → Z be uniformly continuous on the bounded subsets of X.
Suppose that there is a dense subset D ⊂ X such that whenever u ∈ D and (un) ⊂ X is
a bounded sequence with un → u in Y , we have f(un) → f(u) in Z. Then the restriction
of f to the bounded subsets of X remains continuous for the topology induced by Y .

Lemma 2.14. Let f : Ω × (Rm × R
mN ) → R be an equicontinuous C1

ξ bundle map.
Suppose that f(·, 0) ∈ Lp(Ω) and that ∇ξif(·, 0) ∈ (Lp(Ω) ∩ L∞(Ω))m, 0 � i � N .
Then the restriction of the Nemytskii operator to any bounded subset of W 2,p(Ω; Rm)
is continuous into Lp(Ω) for the topology of C1

d(Ω̄; Rm).

Proof. Recall that f is uniformly continuous on the bounded subsets of W 2,p(Ω; Rm)
by Theorem 2.11. Note also that if

D = {u ∈ C∞(Ω; Rm); ∃v ∈ C∞
0 (RN ; Rm) such that v|Ω = u},

then D is dense in W 2,p(Ω, Rm) (see [1, Theorem 3.18]). We show that if u ∈ D and (un)
is a bounded sequence from Xp(Ω) converging to u in C1

d(Ω̄; Rm), then f(un) → f(u) in
Lp(Ω). The result will follow from Lemma 2.13 with X = W 2,p(Ω; Rm), Y = C1

d(Ω̄; Rm),
Z = Lp(Ω) and D defined above.
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In Lemma 2.10, we have already established that

f(v) = f(·, 0) +
N∑

i=0

gi(v) · ∂iv,

where

gi(x, ξ) =
∫ 1

0
∇ξi

f(x, tξ) dt,

and, by Remark 2.7, the gi are C0 bundle maps. Hence, by Lemma 2.9 (i) applied to each
component of gi, gi : C1

d(Ω̄; Rm) → L∞(Ω; Rm) is continuous.
Clearly, the problem reduces to showing that gi(un) · ∂iun → gi(u) · ∂iu in Lp(Ω),

0 � i � N . To see this, we write

gi(un) · ∂iun − gi(u) · u = (gi(un) − gi(u)) · ∂iun + gi(u) · ∂i(un − u). (2.7)

The first term tends to zero in Lp(Ω) because gi(un) → gi(u) in L∞(Ω; Rm), and (∂iun)
is bounded in Lp(Ω; Rm). On the other hand, (un − u) → 0 in C1

d(Ω̄; Rm), which is
continuously imbedded in W 1,∞(Ω; Rm). The last term of (2.7) tends to zero if we show
that gi(u) ∈ Lp(Ω; Rm), and this is true for the following reason. Let Ω′ ⊂ Ω be the
support of u ∈ D. Then first gi(u) ∈ L∞(Ω; Rm) ⊂ L∞(Ω′; Rm) ⊂ Lp(Ω′; Rm), and
secondly gi(u)(x) = gi(x, u(x),∇u(x)) = gi(x, 0) = ∇ξif(x, 0) when x ∈ Ω \ Ω′. But
∇ξif(·, 0) ∈ Lp(Ω; Rm). Therefore, gi(u) ∈ Lp(Ω \Ω′; Rm), and thus gi(u) ∈ Lp(Ω; Rm),
as claimed. �

Lemma 2.15. Let f : Ω × (Rm × R
mN ) → R be an equicontinuous C1

ξ bundle
map. Suppose that f(·, 0) ∈ Lp(Ω) and that Dξf(·, 0) is bounded on Ω (so that the
Nemytskii operator f is of class C1 from W 2,p(Ω; Rm) to Lp(Ω) by Theorem 2.11). If
(un) ⊂ W 2,p(Ω; Rm) is a bounded sequence and u ∈ W 2,p(Ω; Rm) is such that un → u

in C1
d(Ω̄; Rm) (hence un ⇀ u in W 2,p(Ω; Rm) (see the appendix)), we have

f(un) − f(u) − Df(u)(un − u) → 0 in Lp(Ω). (2.8)

Proof. Let vn = un − u, so that vn ⇀ 0 in W 2,p(Ω, Rm) and vn → 0 in C1
d(Ω̄; Rm).

Then the left-hand side of (2.8) is f(u + vn) − f(u) − Df(u)vn = g(vn) − g(0), where
g(v) := f(u + v) − Df(u)v for v ∈ W 2,p(Ω, Rm). Note that g is the Nemytskii operator
associated with (see (2.3))

g(x, ξ) := f(x, u(x) + ξ0,∇u(x) + ξ′) −
N∑

i=0

∇ξi
f(x, u(x),∇u(x)) · ξi,

where ∇ξif(·, u, ∇u) is continuous and bounded (see Lemma 2.9 (ii)), so one can check,
using Lemma 2.5 (i), that g is an equicontinuous C1

ξ bundle map with

∇ξig(x, ξ) = ∇ξif(x, u(x) + ξ0,∇u(x) + ξ′) − ∇ξif(x, u(x),∇u(x)).

Furthermore, g(·, 0) = f(·, u, ∇u) ∈ Lp(Ω) (see Lemma 2.10 (i)) and ∇ξig(·, 0) = 0 ∈
Lp(Ω; Rm) ∩ L∞(Ω; Rm). Thus g verifies the conditions of Lemma 2.14, and therefore
g(vn) → g(0) in Lp(Ω), which completes the proof. �
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2.3. Smoothness of F

Let the coefficients of F in (1.1) satisfy the following assumptions:

aαβ are equicontinuous C1
ξ bundle maps, 1 � α, β � N ; (2.9)

aαβ(·, 0) and Dξaαβ(·, 0) are bounded on Ω, 1 � α, β � N ; (2.10)

b is an equicontinuous C1
ξ bundle map; (2.11)

b(·, 0) ∈ Lp(Ω; Rm), Dξb(·, 0) is bounded on Ω. (2.12)

Lemma 2.16. The operator F in (1.1) is both continuous and weakly sequentially
continuous from W 2,p(Ω; Rm) to Lp(Ω; Rm) and it maps bounded subsets onto bounded
subsets.

Proof. By Lemma 2.9 (ii) applied to each component of aαβ , the Nemytskii operators
aαβ are continuous from W 2,p(Ω; Rm) to L∞(Ω; Rm×m) and they map bounded subsets
onto bounded subsets. By Lemma 2.10 (i) (applied to each component of b), b is contin-
uous from W 2,p(Ω; Rm) to Lp(Ω; Rm) and maps bounded subsets onto bounded ones.
This proves the continuity and the boundedness properties.

Now if (un) ⊂ W 2,p(Ω, Rm) converges weakly to u, we have that ∂2
αβun ⇀ ∂2

αβu in
Lp(Ω, Rm)∗. By Lemma 2.9 (iv), aαβ(un)·∂2

αβun ⇀ aαβ(u)·∂2
αβu in Lp(Ω; Rm). Next, by

Lemma 2.10 (ii), b(un) ⇀ b(u) in Lp(Ω; Rm). This proves the weak continuity of F . �

Remark 2.17. Note that the proof of the above lemma requires only the following
weaker assumptions: aαβ are C0 bundle maps, with aαβ(·, 0) bounded, b(x, ξ) = b0(x) +∑N

i=1 ci(x, ξ) · ξi, where b0 ∈ Lp(Ω; Rm), and the ci are C0 equicontinuous bundle maps
with ci(·, 0) bounded. This will be used in § 5.

Theorem 2.18. The operator F in (1.1) is of class C1 from W 2,p(Ω; Rm) to
Lp(Ω; Rm), with derivative

DF (u)v = −
N∑

α,β=1

aαβ(u) · ∂2
αβv + Db(u)v −

N∑
α,β=1

(Daαβ(u)v) · ∂2
αβu, (2.13)

where Db(u) and Daαβ(u) are given by (2.5) and (2.6), respectively.
In particular, the restriction of F to the subspace Dp(Ω) = (W 2,p(Ω) ∩ W 1,p

0 (Ω))m is
C1 from Dp(Ω) to Lp(Ω; Rm).

Proof. Recall that

F (u) = −
N∑

α,β=1

aαβ(u) · ∂2
αβu + b(u).

By Theorem 2.11, b ∈ C1(Xp(Ω), Yp(Ω)) and aαβ ∈ C1(Xp(Ω), L∞(Ω; Rm×m)). Now let
G(u) := aαβ(u) · ∂2

αβu and B : L∞(Ω; Rm×m) × Yp(Ω) → Yp(Ω) be the bounded bilinear
operator defined by B(M, x) = M · x. Then G = B ◦ (aαβ , ∂2

αβ), and the result follows
from the chain rule. �

∗ ∂2
αβ : Xp(Ω) → Yp(Ω) is linear and bounded and therefore weakly continuous.
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3. Fredholmness

We now begin the investigation of the Fredholmness of the second-order differential
operator (1.1). To the hypotheses (2.9)–(2.12), we add an ellipticity condition, which
implies that the linearization DF (u) is a compact perturbation of a linear elliptic operator
(of second order),

det
( N∑

α,β=1

(ηαηβaαβ(x, ξ))
)

� γ(x, ξ)|η|2m ∀η ∈ R
N , (x, ξ) ∈ Ω × (Rm × R

mN ), (3.1)

where γ : Ω × (Rm × R
mN ) → (0,∞) is bounded from below by a positive constant on

every compact subset of Ω × (Rm × R
mN ).

Note that, in the case of a single equation (m = 1), this condition reduces to

N∑
α,β=1

aαβ(x, ξ)ηαηβ � γ(x, ξ)|η|2 ∀η ∈ R
N , (x, ξ) ∈ Ω × R

N+1,

and this is just the ellipticity condition used in [8] with Ω = R
N . In the remainder of

the paper, the coefficients of the operator F in (1.1) will satisfy hypotheses (2.9)–(2.12)
and (3.1).

Note that

DF (u)v = L(u)v −
N∑

α,β=1

(Daαβ(u)v) · ∂2
αβu,

where

L(u)v := −
N∑

α,β=1

aαβ(u) · ∂2
αβv + Db(u)v, (3.2)

and clearly L(u) ∈ L(Xp(Ω), Yp(Ω)).

Lemma 3.1. Let u ∈ Xp(Ω). Then the difference DF (u) − L(u) is compact between
Xp(Ω) and Yp(Ω). Therefore, given µ ∈ Z ∪ {±∞}, we have the following.

(i) DF (u) ∈ Φµ(Xp(Ω), Yp(Ω)) ⇔ L(u) ∈ Φµ(Xp(Ω), Yp(Ω)).

(ii) DF (u) ∈ Φµ(Dp(Ω), Yp(Ω)) ⇔ L(u) ∈ Φµ(Dp(Ω), Yp(Ω)).

Proof. If we show that the difference is compact, then (i) and (ii) will follow from the
stability of Φµ(Xp(Ω), Yp(Ω)) and Φµ(Dp(Ω), Yp(Ω)) under compact perturbations (see
Note A in the appendix).

By (3.2), we have

DF (u)v − L(u)v = −
N∑

α,β=1

(Daαβ(u)v) · ∂2
αβu.
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Clearly, it suffices to show that each (Daαβ(u)v) · ∂2
αβu is compact, and again, for that,

it suffices to show that each component
∑m

j=1(Daαβ(u)v)k,j∂
2
αβuj (k = 1, . . . , m) is

compact. Now, each term of this sum is (by (2.6))
( N∑

i=0

∇ξia
k,j
αβ (·, u, ∇u) · ∂iv

)
∂2

αβuj .

Once again, writing the components, we deal with the terms (∂ξl
i
ak,j

αβ (·, u, ∇u)∂2
αβuj)∂iv

l,
k, j, l = 1, . . . , m. Now, indeed, ∂ξl

i
ak,j

αβ (·, u, ∇u)∂2
αβuj ∈ Lp(Ω). But since N < p < ∞,

the multiplication by a fixed function of Lp(Ω) is a compact operator from W 1,p(Ω) to
Lp(Ω) (see the appendix). Thus w �→ Tw := (∂ξl

i
ak,j

αβ (·, u, ∇u)∂2
αβuj)∂iw is compact from

W 2,p(Ω) to Lp(Ω)∗. Now, going back through the steps, we see that DF (u) − L(u) is a
compact operator from Xp(Ω) to Yp(Ω), and therefore also from Dp(Ω) to Yp(Ω). �

Fix u and let Aαβ(x) = aαβ(u)(x). Furthermore, let Bα(x) be the matrix with
lines ∇ξα

bk(x, u(x),∇u(x)), k = 1, . . . , m, and let C(x) be the matrix with lines
∇ξ0b

k(x, u(x),∇u(x)), k = 1, . . . , m. Then

L(u)v = −
N∑

α,β=1

Aαβ(x) · ∂2
αβv +

N∑
α=1

Bα(x) · ∂αv + C(x) · v

is a linear second-order differential operator, with continuous and bounded coefficients.
Condition (3.1) implies that

det
( N∑

α,β=1

(Aαβ(x)ηαηβ)
)

� γ(x, u(x),∇u(x))|η|2m.

As x varies over a compact set, the continuity of u and ∇u ensures that (x, u(x),∇u(x))
remain in a compact set K. Thus, by (3.1), there exists γK > 0 such that

det
( N∑

α,β=1

(Aαβ(x)ηαηβ)
)

� γK |η|2m.

This leads us to introduce the following definition for linear differential operators.

Definition 3.2. Let Aαβ , Bα, C (α, β = 1, . . . , N) be (matrix-valued) functions
from Ω to R

m×m. Define a second-order linear differential operator L by

Lv := −
N∑

α,β=1

Aαβ(x) · ∂2
αβv +

N∑
α=1

Bα(x) · ∂αv + C(x) · v.

L is said to be elliptic at x in the sense of Petrovskii if there exists a positive constant γ

(= γ(x)) such that

det
( N∑

α,β=1

(Aαβ(x)ηαηβ)
)

� γ|η|2m ∀η ∈ R
N .

∗ wn ⇀ w in W 2,p ⇒ ∂iwn ⇀ ∂iw in W 1,p ⇒ Twn → Tw in Lp.
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We say that L is strictly elliptic on a subset K ⊂ Ω if, in the above definition, one can
choose the same γ for all x ∈ K.

Remark 3.3. From the above, we can say that, for each fixed u ∈ Xp(Ω), the differ-
ential operator L(u) is strictly Petrovskii-elliptic on the compact subsets of Ω.

Lemma 3.4 (cf. Theorem 17 of [5]). Let Ω′ ⊂ R
N be a bounded domain with C2

boundary, and 1 < q < ∞. Let L be as in the above definition, strictly elliptic in Ω′,
with continuous coefficients. If v ∈ W 2,q(Ω′; Rm) ∩ W 1,q

0 (Ω′; Rm), then v satisfies the a
priori estimate

‖v‖2,q,Ω′ � c(‖Lv‖0,q,Ω′ + ‖v‖0,1,Ω′), (3.3)

where c is a positive constant.

Lemma 3.5. Assume that ∂Ω is of class C2. Let L be a second-order linear differ-
ential operator, strictly elliptic on the compact subsets of Ω, with continuous bounded
coefficients∗. If (un) ⊂ Dp(Ω) is a sequence converging weakly to zero in Dp(Ω) and
Lun → 0 in Yp(Ω), then un → 0 in Xp(Ω′) for all open and bounded subsets Ω′ ⊂ Ω.

Proof. We distinguish between two cases.

Case 1 (Ω is bounded). Since un ⇀ 0 in W 2,p(Ω; Rm) ↪→comp L1(Ω; Rm), we have
un → 0 in L1(Ω; Rm). On the other hand, Lun → 0 in Lp(Ω, Rm). Note that (un), L

and Ω satisfy the conditions of Lemma 3.4. So, by letting q = p and v = un in (3.3), we
get un → 0 in W 2,p(Ω, Rm).

Case 2 (Ω is unbounded). For every r > 0, set Br = {x ∈ R
N ; |x| < r} and

Ωr = Ω ∩ Br. Clearly, it is equivalent to show that the result holds when Ω′ = Ωr for
r > 0 large enough†.

Let Br be a ball containing ∂Ω, and R > r. It follows from the remarks made about Ω

in § 2 that ∂ΩR = ∂Ω∪∂BR, so that ∂ΩR is C2 since ∂Ω∩∂BR = ∅. Define ϕ : R
N → R

to be a C∞ function with compact support such that ϕ = 1 on Br, ϕ = 0 outside BR

and ‖ϕ‖0,∞ � 1. Define a new sequence (vn) by vn = ϕun, so that un = vn on Ω ∩ Br,
and vn ∈ Dp(ΩR).

Recall that un ⇀ 0 in Dp(Ω) ↪→comp W 1,p(ΩR; Rm) ↪→ L1(ΩR; Rm), so that un → 0
in W 1,p(ΩR; Rm) as well as in L1(ΩR; Rm), and therefore also vn → 0 in L1(ΩR; Rm),
since ϕ is bounded.

On the other hand, a direct calculation leads to

Lvn = ϕLun +
∑
α,β

(∂2
αβϕAαβ) · un +

∑
α,β

(∂αϕAαβ) · ∂βun

+
∑
α,β

(∂βϕAαβ) · ∂αun +
∑
α

(∂αϕBα) · un.

∗ The boundedness of the coefficients ensures that L maps continuously W 2,p(Ω; R
m) into Lp(Ω; R

m).
† Since Ωr is open and bounded and every open and bounded subset of Ω is contained in a subset of

the form Ωr.
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Thus, due to the boundedness of ϕ, of its derivatives and of the coefficients of L, we
get Lvn → Lp(ΩR; Rm).

Estimate (3.3) now gives that vn → 0 in Xp(ΩR), and therefore also in Xp(Ωr). This
finally implies that un → Xp(Ωr). �

For the next result, we need the following concept introduced in [8].

Definition 3.6. Let X and Y be real Banach spaces with X reflexive and let T, L ∈
L(X, Y ) be given. We say that T is compact modulo L if, for every sequence (un) ⊂ X,
we have {un ⇀ 0 in X, Lun → 0 in Y } ⇒ Tun → 0 in Y .

Lemma 3.7 (cf. Lemma 3.7 of [8]). Let X and Y be real Banach spaces with X

reflexive and let L0, L1 ∈ L(X, Y ) be given. Suppose that L0 − L1 is compact modulo
both L0 and L1. Then we have the following.

(i) If (un) ⊂ X is a sequence converging weakly to zero, we have L0un → 0 in Y if
and only if L1un → 0.

(ii) L0 ∈ Φ+(X, Y ) if and only if L1 ∈ Φ+(X, Y ).

For t ∈ [0, 1], define Lt := tL1 + (1 − t)L0. If L0 − L1 is compact modulo Lt ∀t ∈ [0, 1],
then the following holds.

(iii) Lt ∈ Φ+(X, Y ) for all t ∈ [0, 1] if and only if this holds for some t0 ∈ [0, 1], and, in
this case, the index of Lt is independent of t.

Lemma 3.8. Assume that ∂Ω is C2. For L(u) defined by (3.2), the relation L(u) ∈
Φ+(Dp(Ω), Yp(Ω)) holds for every u ∈ Dp(Ω) if and only if it holds for some u0 ∈ Dp(Ω).

Proof. We prove that L(u)−L(u0) is compact modulo L(u). By exchanging the roles
of u and u0, this shows that L(u) − L(u0) is compact modulo both L(u) and L(u0). The
conclusion follows from Lemma 3.7 (ii).

Let (vn) ⊂ Dp(Ω) be such that vn ⇀ 0 in Dp(Ω) and L(u)vn → 0 in Yp(Ω). From the
equicontinuity of aαβ and Dξb at ξ = 0, we have that, given ε > 0, there is a δ > 0 such
that

|aαβ(x, ξ) − aαβ(x, 0)| < 1
2ε and |Dξb(x, ξ) − Dξb(x, 0)| < 1

2ε

for |ξ| < δ and all x ∈ Ω. Due to the embedding W 2,p(Ω, Rm) ↪→ C1
d(Ω̄; Rm) and the

definition of C1
d(Ω̄), there is r > 0 such that |(u(x),∇u(x))| < δ and |(u0(x),∇u0(x))| < δ

for |x| � r (we can choose r such that ∂Ω ⊂ Br). Therefore,

|aαβ(x, u(x),∇u(x)) − aαβ(x, u0(x),∇u0(x))| < ε

and

|Dξb(x, u(x),∇u(x)) − Dξb(x, u0(x),∇u0(x))| < ε
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whenever |x| � r. Now let Ωr = {x ∈ Ω : |x| < r}, Ω̃r = {x ∈ Ω : |x| > r} and recall
that

(L(u) − L(u0))v

= −
N∑

α,β=1

(aαβ(u) − aαβ(u0)) · ∂2
αβv +

N∑
i=0

(∇ξib(·, u, ∇u) − ∇ξib(·, u0,∇u0)) · ∂iv.

Therefore,

‖(L(u) − L(u0))v‖0,p,Ω̃r
� m2(N2 + N + 1)ε‖v‖2,p,Ω̃r

for v ∈ Dp(Ω).

Hence
‖(L(u) − L(u0))vn‖0,p,Ω̃r

� m2M(N2 + N + 1)ε, (3.4)

where M is a bound for ‖vn‖2,p,Ω .
As already observed, L(u) verifies the conditions required in Lemma 3.5, thus vn → 0

in Xp(Ωr), so L(u0)vn and L(u)vn converge to zero in Yp(Ωr)∗, which means that, for
any ε > 0 and n large enough,

‖(L(u) − L(u0))vn‖0,p,Ωr
� ε. (3.5)

Equations (3.4) and (3.5) together yield that ‖(L(u) − L(u0))vn‖0,p,Ω can be made arbi-
trary small for n large enough. This completes the proof. �

Theorem 3.9. Let ∂Ω be of class C2. The operator F in (1.1) is semi-Fredholm of
index µ ∈ Z ∪ {−∞} (i.e. DF (u) ∈ Φµ(Dp(Ω), Yp(Ω)) for every u ∈ Dp(Ω)) if and only
if there is some u0 ∈ Dp(Ω) such that DF (u0) ∈ Φµ(Dp(Ω), Yp(Ω)).

Proof. By Lemmas 3.1 and 3.8,

DF (u0) ∈ Φ+(Dp(Ω), Yp(Ω)) ⇔ L(u0) ∈ Φ+(Dp(Ω), Yp(Ω))

⇔ L(u) ∈ Φ+(Dp(Ω), Yp(Ω)) ∀u ∈ Dp(Ω)

⇔ DF (u) ∈ Φ+(Dp(Ω), Yp(Ω)) ∀u ∈ Dp(Ω).

By Theorem 2.18, DF is continuous as a map from Dp(Ω) into L(Dp(Ω), Yp(Ω)).
Recall also that the index of a semi-Fredholm operator is locally constant, whence
u �→ index DF (u) is locally constant and therefore constant since Dp(Ω) is connected. �

4. Properness

Lemma 4.1. Let u ∈ W 2,p(Ω; Rm) and (un) ⊂ W 2,p(Ω; Rm) be a bounded sequence
converging to u in C1

d(Ω̄; Rm). Then F (un) − F (u) − DF (u)(un − u) → 0 in Lp(Ω; Rm).

∗ L(u) ∈ L(Xp(Ωr), Yp(Ωr)) by Theorem 2.18, with Ω replaced by Ωr.
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Proof. Note first that un ⇀ u in W 2,p(Ω; Rm) (see Note E2 of the appendix),

F (un) − F (u) − DF (u)(un − u)

= −
N∑

α,β=1

(aαβ(un) − aαβ(u)) · ∂2
αβun

+
N∑

α,β=1

(Daαβ(u)(un − u)) · ∂2
αβu + b(un) − b(u) − Db(u)(un − u). (4.1)

As already observed in the proof of Lemma 3.1, v �→ (Daαβ(u)v) · ∂2
αβu is a compact

linear operator from Xp(Ω) to Yp(Ω). Therefore,

N∑
α,β=1

(Daαβ(u)(un − u)) · ∂2
αβu → 0 in Lp(Ω; Rm). (4.2)

By Lemma 2.15,

b(un) − b(u) − Db(u)(un − u) → 0 in Lp(Ω; Rm). (4.3)

By Lemma 2.9 (i), aαβ(un) → aαβ(u) in L∞(Ω; Rm×m), and since ∂2
αβun is bounded in

Lp(Ω; Rm), we have

N∑
α,β=1

(aαβ(un) − aαβ(u)) · ∂2
αβun → 0 in Lp(Ω; Rm) (4.4)

�

Theorem 4.2. Let Ω have a C2 boundary. Suppose that there exists u0 ∈ Dp(Ω) for
which DF (u0) ∈ Φ+(Dp(Ω), Yp(Ω)). The following properties are equivalent.

(i) F : Dp(Ω) → Yp(Ω) is proper on the closed bounded subsets of Dp(Ω).

(ii) Every bounded sequence (un) ⊂ Dp(Ω) such that (F (un)) converges in Yp(Ω)
contains a subsequence converging in C1

d(Ω̄; Rm).

Proof. (i)⇒ (ii) is evident, since Dp(Ω) ↪→ C1
d(Ω̄; Rm).

(ii)⇒ (i). Let (un) ⊂ Dp(Ω) be bounded and such that (F (un)) converges in Yp(Ω).
By assumption, there is a subsequence (uφ(n)) converging to some u in C1

d(Ω̄; Rm), and
hence, by Lemma 4.1, F (uφ(n)) − F (u) − DF (u)(uφ(n) − u) → 0 in Yp(Ω). By Note F2
in the appendix, uφ(n) ⇀ u in Xp(Ω), and F is weakly continuous (see Lemma 2.16), so
F (uφ(n)) ⇀ F (u), and hence F (uφ(n)) → F (u) in Yp(Ω). Thus DF (u)(uφ(n) − u) → 0 in
Yp(Ω). But we know that DF (u) ∈ Φ+(Dp(Ω), Yp(Ω)) (see Theorem 3.9), and hence it
is proper∗. Therefore, uφ(n) → u in Dp(Ω). �

∗ Yood’s criterion, see the appendix.
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As in [8], we can give an equivalent formulation of Theorem 4.2 in terms of sequences
vanishing uniformly at infinity.

Definition 4.3. We say that the sequence un ⊂ C1
d(Ω̄; Rm) vanishes uniformly at

infinity in the sense of C1
d(Ω̄) if the following condition holds: ∀ε > 0, ∃R > 0, ∃n0 ∈ N

such that |un(x)| + |∇un(x)| � ε for all |x| � R and n � n0.

Lemma 4.4. Let (un) ⊂ Xp(Ω) be a bounded sequence. For u ∈ Xp(Ω), the following
conditions are equivalent.

(i) un → u in C1
d(Ω̄; Rm).

(ii) un ⇀ u in Xp(Ω) and (un) vanishes uniformly at infinity in the sense of C1
d(Ω̄).

Proof. Let Ωr = {x ∈ Ω; |x| < r} and Ω̃r = {x ∈ Ω; |x| > r} for every r > 0.

(i)⇒ (ii). It follows from Note F2 in the appendix that un ⇀ u in Xp(Ω). Let ε > 0
be given. There exists r > 0 for which |u(x)|+ |∇u(x)| � 1

2ε whenever x ∈ Ω̃r. Let n0 be
such that ‖un − u‖1,∞,Ω � 1

2ε for n � n0. Then, for every x ∈ Ω̃r and n � n0, we have
|un(x)| + |∇un(x)| � ε.

(ii)⇒ (i). Let ε > 0 be given and r > 0 and n0 ∈ N be such that |un(x)|+|∇un(x)| � 1
2ε

whenever x ∈ Ω̃r and n � n0. After increasing r if necessary, we may assume that
|u(x)| + |∇u(x)| � 1

2ε. Hence

|u(x) − un(x)| + |∇u(x) − ∇un(x)| � ε ∀x ∈ Ω̃r ∀n � n0.

Next, since Xp(Ωr) ↪→comp C1
d(Ω̄r; Rm), there exists n1 ∈ N such that

|u(x) − un(x)| + |∇u(x) − ∇un(x)| � ε ∀x ∈ Ω̄r ∀n � n1.

Thus, finally, we have ‖un − u‖1,∞,Ω � ε for n � max(n0, n1), which shows that un → u

in C1
d(Ω̄; Rm) as claimed. �

Corollary 4.5. Let Ω have a C2 boundary. Suppose there exists u0 ∈ Dp(Ω) for
which DF (u0) ∈ Φ+(Dp(Ω), Yp(Ω)). The following conditions are equivalent.

(i) F : Dp(Ω) → Yp(Ω) is proper on the closed bounded subsets of Dp(Ω).

(ii) Every bounded sequence (un) ⊂ Dp(Ω) such that (F (un)) converges in Yp(Ω)
vanishes uniformly at infinity in the sense of C1

d(Ω̄).

(iii) Every bounded sequence (un) ⊂ Dp(Ω) such that (F (un)) converges in Yp(Ω)
contains a subsequence vanishing uniformly at infinity in the sense of C1

d(Ω̄).

Proof. (i)⇒ (ii). Let (un) be a bounded sequence from Dp(Ω) such that (F (un))
converges in Yp(Ω), and suppose that (un) does not vanish uniformly at infinity. Denote,
for simplicity, θn(x) = |un(x)| + |∇un(x)|. Then there exist ε0 > 0, a subsequence uφ(n)

and a sequence (xn) ⊂ Ω such that

|xn| � n and θφ(n)(xn) = |uφ(n)(xn)| + |∇uφ(n)(xn)| � ε0.
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Now (uφ(n)) is also bounded and its image by F convergent. So, by Theorem 4.2, it
contains a subsequence uφ(ψ(n)) converging in C1

d and therefore vanishing uniformly
at infinity. Accordingly, there exists n0 ∈ N and r > 0 such that θφ(ψ(n))(x) < 1

2ε0

whenever |x| � r and n � n0. So, for n � max(r, n0) (since ψ(n) � n), we have
ε0 � θφ(ψ(n))(xψ(n)) < 1

2ε0, a contradiction.

(ii)⇒ (iii) is evident.

(iii)⇒ (i). Let (un) be a bounded sequence from Dp(Ω) such that (F (un)) converges.
By assumption, it contains a subsequence (uφ(n)) vanishing uniformly at infinity in the
sense of C1

d . But this subsequence is also bounded in Dp(Ω), and therefore it contains
a subsequence (uφ(ψ(n))) converging weakly to some u in Dp(Ω). So, by Lemma 4.4,
uφ(ψ(n)) → u in C1

d(Ω̄; Rm). Hence F is proper by Theorem 4.2 (ii). �

Lemma 4.6. Let (un) ⊂ W 2,p(Ω) be a sequence converging to zero in W 2,p(Ω′), for
every bounded and open subset Ω′ ⊂ Ω. Then, given v ∈ W 2,p(Ω), ε ∈ (0, 1) and n0 ∈ N,
there exists n1 ∈ N, n1 � n0, such that, for every n � n1:

(i) ‖v‖p
2,p,Ω + ‖un‖p

2,p,Ω − ε � ‖v + un‖p
2,p,Ω � ‖v‖p

2,p,Ω + ‖un‖p
2,p,Ω + ε; and

(ii) ‖v + un‖1,∞,Ω � max(‖v‖1,∞,Ω , ‖un‖1,∞,Ω) + ε.

Proof. Let Ωr = {x ∈ Ω : |x| < r} and Ω̃r = {x ∈ Ω : |x| > r}. Since v ∈ Xp(Ω) ↪→
C1

d(Ω̄; Rm), there exists r > 0 such that

‖v‖2,p,Ω̃r
� ε and ‖v‖1,∞,Ω̃r

� ε. (4.5)

By assumption, we have un → 0 in W 2,p(Ωr) and hence also in C1(Ω̄r). Thus, for n large
enough,

‖un‖2,p,Ωr
� ε and ‖un‖1,∞,Ωr

� ε. (4.6)

Using the preceding inequalities and |a − b|p � ap − p(a + b)p−1b, we get

‖v + un‖p
2,p,Ω � |‖v‖2,p,Ωr

− ‖un‖2,p,Ωr
|p + |‖v‖2,p,Ω̃r

− ‖un‖2,p,Ω̃r
|p

� ‖v‖p
2,p,Ωr

+ ‖un‖p

2,p,Ω̃r
− 2p(M + ε)p−1ε,

where M is a bound for ‖v‖2,p,Ω and ‖un‖2,p,Ω . We also deduce from (4.5) and (4.6) that

‖v‖p
2,p,Ω � ‖v‖p

2,p,Ωr
+ εp and ‖un‖p

2,p,Ω � ‖un‖p

2,p,Ω̃r
+ εp.

Thus
‖v‖p

2,p,Ω + ‖un‖p
2,p,Ω − 2(p(M + 1)p−1 + 1)ε � ‖v + un‖p

2,p,Ω . (4.7)

Analogously, using (4.5) and (4.6) and (a + b)p � ap + p(a + b)p−1b, we prove that

‖v + un‖p
2,p,Ω � ‖v‖p

2,p,Ω + ‖un‖p
2,p,Ω + 2p(M + 1)p−1ε.

This proves (i), since ε is arbitrary.

https://doi.org/10.1017/S0013091504000550 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000550


Fredholm and properness properties 111

For (ii), we have

‖v + un‖1,∞,Ω = max(‖v + un‖1,∞,Ωr
, ‖v + un‖1,∞,Ω̃r

)

� max(‖v‖1,∞,Ωr
+ ε, ‖un‖1,∞,Ω̃r

+ ε)

= max(‖v‖1,∞,Ωr , ‖un‖1,∞,Ω̃r
) + ε

� max(‖v‖1,∞,Ω , ‖un‖1,∞,Ω) + ε.

�

Lemma 4.7. Assume that Ω has a C2 boundary. Let

L = −
N∑

α,β=1

Aαβ(x) · ∂2
αβ +

N∑
α=1

Bα(x) · ∂α + C(x)·

be a differential operator that is strictly elliptic on the compact subsets of Ω, with
continuous and bounded coefficients. Suppose there is a sequence (un) in Dp(Ω) such
that un ⇀ 0 in Dp(Ω), Lun → 0 in Yp(Ω) and (un) contains no subsequence converging
to 0 in Dp(Ω). Then there is a sequence (wn) ⊂ Dp(Ω) such that wn ⇀ 0 in Dp(Ω)
and Lwn → 0 in Yp(Ω), (wn) contains no subsequence converging to 0 in Dp(Ω), but,
furthermore, wn → 0 in C1

d(Ω̄; Rm).

Proof. For simplicity, we denote by ‖u‖k,p the norm of u in W k,p(Ω; Rm).
Since (un) contains no subsequence converging to 0, there exist γ > 0 and n0 ∈ N such

that ‖un‖2,p � γ for n � n0. Therefore, at least one component (uln
n ) of (un) verifies

‖uln
n ‖2,p � γ/m = δ. Since (ln) ⊂ {1, . . . , m} is finite, it contains a constant subsequence

lψ(n) = l, so that ‖ul
ψ(n)‖2,p � δ. In the remainder of the proof, l is fixed, and, for the

sake of further simplicity, we denote by un the subsequence uψ(n).
Note that the hypotheses made about (un) imply, by Lemma 3.5, that un → 0 in

W 2,p(Ω′; Rm) for every open and bounded subset Ω′ ⊂ Ω. Therefore, uj
n → 0 in W 2,p(Ω′)

∀j = 1, . . . , m.
Let εn be a sequence from (0, 1) such that

∑∞
n=0 εn = δp.

We construct a sequence (vn) in Dp(Ω) and a subsequence (uϕ(n)) verifying vn+1 =
vn +uϕ(n+1). Recall that Lun → 0, so there is an integer ϕ(0) for which ‖Luϕ(0)‖0,p � ε0.
Set v0 = uϕ(0). In Lemma 4.6, let v = uj

ϕ(0), ε = ε1 and n0 = ϕ(0). This produces
an integer n1(j). Also, there exists an n2 ∈ N such that k � n2 ⇒ ‖Luk‖0,p � ε1.
Set ϕ(1) = max{n2, n1(j), 1 � j � m} + 1 and v1 = v0 + uϕ(1). By induction, sup-
pose (vn) and ϕ(n) already constructed. Let v = vj

n and ε = εn+1 and n0 = ϕ(n)
in Lemma 4.6. This produces an integer n1(j), from which the estimates of this
lemma hold. Also, there exists an n2 ∈ N such that k � n2 ⇒ ‖Luk‖0,p � εn+1. Set
ϕ(n + 1) = max{n2, n1(j) : 1 � j � m} + 1 and vn+1 = vn + uϕ(n+1). Note that, by con-
struction, ‖Luϕ(n)‖0,p � εn. Note also that the relation defining vn shows, by induction,
that vn ∈ Dp(Ω).

By Lemma 4.6 (i), we have

‖vj
k‖p

2,p + ‖uj
ϕ(k+1)‖

p
2,p − εk+1 � ‖vj

k+1‖
p
2,p � ‖vj

k‖p
2,p + ‖uj

ϕ(k+1)‖
p
2,p + εk+1 ∀k ∈ N.
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Thus, by summation for n � 1,
n∑

k=0

‖uj
ϕ(k)‖

p
2,p −

n∑
k=1

εk � ‖vj
n‖p

2,p �
n∑

k=0

‖uj
ϕ(k)‖

p
2,p +

n∑
k=1

εk. (4.8)

Taking j = l in the above, we get, for n � n0 (l and n0 are defined in the beginning of
the proof), (n − n0)δp � ‖vl

n‖p
2,p, and therefore

(n − n0)1/pδ � ‖vl
n‖2,p � ‖vn‖2,p for n � n0. (4.9)

Let Mj � 1 be a bound for ‖uj
n‖2,p, so that M =

∑m
j=1 Mj is a bound of ‖un‖2,p. The

second inequality of (4.8) yields ‖vj
n‖2,p � Mj(n + 1 + δp)1/p. Therefore,

‖vn‖2,p � M(n + 1 + δp)1/p. (4.10)

From Lemma 4.6 (ii),

‖vj
n+1‖1,∞ � max{‖vj

n‖1,∞, ‖uj
ϕ(n+1)‖1,∞} + εn+1.

Hence, by induction,

‖vj
n‖1,∞ � max{‖uj

ϕ(k)‖1,∞ : 0 � k � n} +
n∑

k=1

εk,

and thus
‖vn‖1,∞ � m(C + δp), (4.11)

where C is a bound for ‖un‖1,∞.
Next,

‖Lvn‖0,p �
n∑

k=0

‖Luϕ(k)‖0,p �
n∑

k=0

εk.

Therefore,
‖Lvn‖0,p � δp. (4.12)

Set wn = n−1/pvn. By (4.9), ‖wn‖2,p � δ(1 − (n0/n))1/p, so that (wn) contains
no subsequence converging to 0 in Dp(Ω). By (4.10), (wn) is bounded in Dp(Ω).
By (4.11), ‖wn‖1,∞ � const. × n−1/p, whence wn → 0 in C1

d(Ω̄; Rm). Lastly, by (4.12),
‖Lwn‖0,p � δpn−1/p, which implies that Lwn → 0 in Yp(Ω). That wn ⇀ 0 in Dp(Ω) fol-
lows from its boundedness in Dp(Ω) and its convergence to 0 in C1

d(Ω̄; Rm) (see Note F2
in the appendix). �

Theorem 4.8. Let Ω have a C2 boundary and let L be an elliptic operator as in the
preceding lemma. Then the following statements are equivalent.

(i) L ∈ Φ+(Dp(Ω), Yp(Ω)).

(ii) Every bounded sequence (un) ⊂ Dp(Ω) converging to zero in C1
d(Ω̄; Rm) and such

that Lun → 0 in Yp(Ω) contains a subsequence converging to zero in Dp(Ω)∗.
∗ Which, in turn, implies that un → 0 in Dp(Ω) (see Note F3 of the appendix).
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Proof. (i)⇒ (ii). Recall that a bounded sequence in Dp(Ω) converging to 0 in
C1

d(Ω̄; Rm) is weakly convergent to zero in Dp(Ω) (see Note F2 in the appendix), so
the result follows from Note B in the appendix.

(ii)⇒ (i). It suffices to show (by the same note) that if (un) is a sequence in Dp(Ω)
such that un ⇀ 0 in Dp(Ω) and Lun → 0 in Yp(Ω), then un → 0 in Dp(Ω). If this is false,
then there is a subsequence (uφ(n)) bounded away from zero in Dp(Ω) (which implies
that it contains no subsequence converging to zero). Hence (uφ(n)) satisfies the conditions
of Lemma 4.7, and, accordingly, there is a sequence (wn) having the same properties as
(uφ(n)) and, furthermore, converging to zero in C1

d(Ω̄; Rm). Then, by assumption, (wn)
contains a subsequence converging to zero in Dp(Ω). But this is impossible, since (wn)
contains no subsequence converging to 0 in Dp(Ω). �

Corollary 4.9. Let Ω have a C2 boundary. Suppose that every bounded sequence
(un) ⊂ Dp(Ω) converging to zero in C1

d(Ω̄; Rm) and such that F (un) → F (0) in Yp(Ω)
contains a subsequence converging to zero in Dp(Ω)∗. (This is so if F is proper on
the closed bounded subsets of Dp(Ω).) Then there exists µ ∈ Z ∪ {−∞} such that
DF (u) ∈ Φµ(Dp(Ω), Yp(Ω)) for all u ∈ Dp(Ω).

Proof. By Theorem 3.9, it suffices to show that DF (0) ∈ Φ+(Dp(Ω), Yp(Ω)). Accord-
ing to Theorem 4.8 with L = DF (0), it is sufficient to show that if (un) is a bounded
sequence from Dp(Ω) converging to zero in C1

d(Ω̄; Rm) and (DF (0)un) converges to 0
in Yp(Ω), then (un) contains a subsequence converging to 0 in Dp(Ω). By Lemma 4.1,
we have F (un) − F (0) − DF (0)un → 0 in Yp(Ω). But DF (0)un → 0, and therefore
F (un) → F (0). Hence, by assumption, (un) contains a subsequence converging to 0
in Dp(Ω). �

5. Operators with asymptotically periodic coefficients

In this section, we consider the case where F has a limit operator with periodic coefficients
in a sense precised below. Here, Ω is unbounded and so K = �Ω is bounded according to
our assumptions.

When we deal with periodic functions, it is necessary to assume them defined on the
whole space R

N . Let T = (T1, . . . , TN ) ∈ R
N with Ti > 0. A mapping f defined on R

N is
said to be periodic with period T if f(x1, . . . , xi +Ti, . . . , xN ) = f(x1, . . . , xN ) ∀x ∈ R

N .
We use the following notation: for n ∈ Z and T as above, nT = (nT1, . . . , nTN ), and for
l ∈ ZN , lT = (l1T1, . . . , lNTN ).

We maintain the previous notation for r > 0: Br is the ball of centre 0 and radius r,
B̃r = {x ∈ R

N : |x| > r}, Ωr = Ω ∩ Br and Ω̃r = Ω ∩ B̃r.
Assume that there are two families of matrix-valued functions,

a∞
αβ : R

N × (Rm × R
mN ) → R

m×m, 1 � α, β � N,

∗ Therefore, un → 0 in Dp(Ω) by Note F3 of the appendix.
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and

c∞
i : R

N × (Rm × R
mN ) → R

m×m, 0 � i � N,

both continuous and periodic in x with the same period T , and verifying

lim
|x|→∞

|aαβ(x, ξ) − a∞
αβ(x, ξ)| = 0, (5.1)

lim
|x|→∞

∣∣∣∣
∫ 1

0
∇ξib(x, tξ) dt − c∞

i (x, ξ)
∣∣∣∣ = 0, (5.2)

the convergence being uniform on the compact subsets of R
m(N+1).

We set

b∞(x, ξ) =
N∑

i=0

c∞
i (x, ξ) · ξi, (5.3)

so that b∞(x, 0) = 0.
Note that, by Remark 2.8, a∞

αβ and b∞ are equicontinuous C0 bundle maps. We define
the limit operator F∞ by

F∞(u) = −
N∑

α,β=1

a∞
αβ(·, u, ∇u) · ∂2

αβu + b∞(·, u, ∇u). (5.4)

Observe that, by Lemma 2.16 and Remark 2.17, F∞ is continuous and weakly continuous
from Xp to Yp, as well as from Xp(Ω) to Yp(Ω), and maps bounded subsets onto bounded
ones. Note also that

F∞(v) − F∞(0) −
(

−
N∑

α,β=1

a∞
αβ(·, 0) · ∂2

αβv +
N∑

α=0

c∞
α (·, 0) · ∂αv

)

= −
N∑

α,β=1

(a∞
αβ(·, v,∇v) − a∞

αβ(·, 0)) · ∂2
αβv +

N∑
α=0

(c∞
α (·, v,∇v) − c∞

α (·, 0)) · ∂αv.

It follows from the equicontinuity of aαβ and cα at ξ = 0 that F∞ is differentiable at 0
with derivative

DF∞(0)v = −
N∑

α,β=1

a∞
αβ(·, 0) · ∂2

αβv +
N∑

α=0

c∞
α (·, 0) · ∂αv. (5.5)

Lemma 5.1. Let Ω̃r = {x ∈ Ω : |x| > r} and B ⊂ Xp(Ω) be a bounded subset. Then,
for every ε > 0, there is an r > 0 such that, for every u ∈ B, the following hold.

(i) ‖F (u) − F (0) − F∞(u)‖0,p,Ω̃r
� ε.

(ii) ‖DF (0)u − DF∞(0)u‖0,p,Ω̃r
� ε.
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Proof. (i) Since B is bounded in Xp(Ω), and therefore in C1
d(Ω̄; Rm), there exists a

compact set K ⊂ R
m(N+1) such that (u(x),∇u(x)) ∈ K for every u ∈ B and x ∈ Ω.

Since the limit in (5.1) is uniform in ξ ∈ K,

|aαβ(x, ξ) − a∞
αβ(x, ξ)| � ε ∀x ∈ Ω̃r ∀ξ ∈ K

if r is large enough. Thus

‖aαβ(u) − a∞
αβ(u)‖0,∞,Ω̃r

� ε ∀u ∈ B. (5.6)

A similar argument based on (5.2) yields

∣∣∣∣
∫ 1

0
∇ξib(x, tξ) dt − c∞

i (x, ξ)
∣∣∣∣ � ε ∀x ∈ Ω̃r ∀ξ ∈ K

if r is large enough, and thus

|b(x, ξ) − b(x, 0) − b∞(x, ξ)| � ε

N∑
i=0

|ξi|.

Therefore, for k = 1, . . . , m,

‖bk(u) − bk(0) − b∞,k(u)‖0,p,Ω̃r
� ε

N∑
i=0

‖|∂iu‖|0,p,Ω̃r

� ε

N∑
i=0

m∑
j=1

‖|∂iu
j‖|0,p,Ω̃r

� εm(N + 1)‖u‖2,p,Ω ∀u ∈ B.

Thus

‖b(u) − b(0) − b∞(u)‖0,p,Ω̃r
� εm2(N + 1)‖u‖2,p,Ω . (5.7)

With (5.6), we get

‖F (u) − F (0) − F∞(u)‖0,p,Ω̃r
� εm2(N2 + N + 1)‖u‖2,p,Ω ∀u ∈ B.

Lastly note that ε is arbitrary and ‖u‖2,p,Ω is bounded. Hence the desired result follows.

(ii) The proof for this case is similar. Recall that

DF (0)u−DF∞(0)u = −
N∑

α,β=1

(aαβ(·, 0)−a∞
αβ(·, 0))·∂2

αβu+
N∑

α=0

(∇ξα
b(·, 0)−c∞

α (·, 0))·∂αu.

Thus ‖DF (0)u − DF∞(0)u‖0,p,Ω̃r
� εm2(N2 + N + 1)‖u‖2,p,Ω . �
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Corollary 5.2. Let (un) be a bounded sequence from Xp(Ω) such that un → 0 in
Xp(Ω′) for every bounded open subset Ω′ ⊂ Ω. Then we have the following.

(i) F (un) − F (0) − F∞(un) → 0 in Yp(Ω).

(ii) (DF (0) − DF∞(0))un → 0 in Yp(Ω).

Proof. (i) Let ε > be given. Since (un) is bounded in Xp(Ω), it follows from
Lemma 5.1 (i) that, for r > 0 large enough, we have

‖F (un) − F (0) − F∞(un)‖0,p,Ω̃r
� ε ∀n ∈ N.

Recall that un → 0 in Xp(Ωr) by hypothesis and that F and F∞ are continuous from
Xp(Ωr) to Yp(Ωr) by Lemma 2.16 and Remark 2.17. Therefore, F (un) → F (0) and
F∞(un) → 0 in Yp(Ωr), which means that ‖F (un) − F (0) − F∞(un)‖0,p,Ωr � ε for n

large enough. Thus ‖F (un) − F (0) − F∞(un)‖0,p,Ω can be made arbitrary small for n

large enough.

(ii) The proof for this case is similar. First, by Lemma 5.1 (ii), we have

‖DF (0)un − DF∞(0)un‖0,p,Ω̃r
� ε.

Next, DF (0) ∈ L(Xp(Ωr), Yp(Ωr)) by Theorem 2.18 with Ω = Ωr and it is clearly seen
from (5.5) that DF∞(0) ∈ L(Xp(Ωr), Yp(Ωr)). Therefore, (DF (0) − DF∞(0))un → 0
in Yp(Ωr). Thus ‖(DF (0) − DF∞(0))un‖0,p,Ω can be made arbitrary small for n large
enough. �

Given h ∈ R
N and a function f : R

N → R, we denote by τh(f) : R
N → R the function

τh(f)(x) = f(x + h).

Corollary 5.3. Let B ⊂ Xp(Ω) be a bounded subset and Ω′ ⊂ R
N be a bounded

open subset. Then, for every ε > 0, we have ‖τh(F (u) − F (0)) − τhF∞(u)‖0,p,Ω′ � ε for
every u ∈ B, provided |h| is large enough.

Proof. Choose r > 0 as in Lemma 5.1 and increase it if necessary to have B̃r ⊂ Ω.
Then, for |h| large enough, we have Ω′ + h ⊂ B̃r ⊂ Ω. By the translation invariance of
the Lebesgue measure,

‖τh(F (u) − F (0)) − τhF∞(u)‖0,p,Ω′ = ‖F (u) − F (0) − F∞(u)‖0,p,Ω′+h.

Now, by Lemma 5.1,

‖F (u) − F (0) − F∞(u)‖0,p,Ω′+h � ‖F (u) − F (0) − F∞(u)‖0,p,B̃r
� ε

for every u ∈ B. �

Lemma 5.4 (shifted subsequence lemma). Let T = (T1, . . . , TN ) with Ti > 0. If
(un) is a bounded sequence from Xp(Ω), then either
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(i) (un) vanishes uniformly at infinity in the sense of C1
d(Ω̄); or

(ii) there exists a sequence (ln) ⊂ ZN with limn→∞ |ln| = ∞, a subsequence (uφ(n))
and a non-zero element ū ∈ Xp = W 2,p(RN ; Rm) such that the sequence ũn, defined
by ũn(x) = uφ(n)(x + lnT ), is weakly convergent to ū in Xp(Bk) for all k ∈ N

∗.

Proof. First of all, the definition of ũn makes sense. Indeed, the domain of such a
shifted subsequence is Ω − lnT . Let BR be a ball containing K = �Ω , and T̂ = minTi.
Given k ∈ N

∗, there exists a nk ∈ N
∗ such that |ln| > (k + R)/T̂ for n � nk. Then,

for x ∈ Bk, |x + lnT | � |ln|T̂ − |x| � |ln|T̂ − k > R for all n � nk, and so x + lnT ∈ Ω

for all x ∈ Bk and n � nk. Hence Bk is in the domain of definition of ũn for n � nk.
Furthermore, ũn ∈ Xp(Bk) with

‖ũn‖2,p,Bk
� ‖uφ(n)‖2,p,Ω � M (5.8)

for some constant M and for all n � nk. Therefore, it makes sense to consider
limn→∞ ũn|Bk

for any k ∈ N
∗.

Now we go to the proof of the alternative. Let Q0 = (0, T1) × · · · × (0, TN ). Suppose
that (i) does not hold, so that there exists an ε0 > 0, a sequence (xn) such that |xn| � n

and a subsequence (uψ(n)) such that |uψ(n)(xn)| + |∇uψ(n)(xn)| � ε0 for all n ∈ N. Since
R

N =
⋃

l∈ZN (Q̄0 + lT ), there exists zn ∈ ZN for which yn = xn − znT ∈ Q̄0. Clearly,
limn→∞ |zn| = ∞. Define vn(x) = uψ(n)(x + znT ).

According to what has been said at the beginning of the proof, for every k ∈ N
∗,

there exists nk ∈ N
∗ from which vn ∈ Xp(Bk), and, furthermore, (vn)n�nk

is bounded
in Xp(Bk). In particular, (vn)n�n1 is bounded in Xp(B1), and so there is a subsequence
(vθ1(n)) converging weakly to some ū1 ∈ Xp(B1). But, for n � n2, (vθ1(n)) ⊂ (vn) is
bounded in Xp(B2), and again there exists a subsequence (vθ2(n)) ⊂ (vθ1(n)) converging
weakly to some ū2 ∈ Xp(B2). Clearly, ū2|B1 = ū1.

Continuing the process, we construct a sequence of subsequences (vθk(n)), each of which
converges weakly to ūk ∈ Xp(Bk), and, furthermore, ūk+1 is an extension of ūk.

Now we define (ũn) as the diagonal subsequence (vθn(n)), i.e.

ũn(x) = uψ(θn(n))(x + zθn(n)T ) = uφ(n)(x + lnT )

if we set ln = zθn(n) and φ(n) = ψ(θn(n)). On the other hand, we see that there is a
function ū : R

N → R
m naturally defined by ū(x) = ūk(x) if x ∈ Bk.

Since (ũn)n�nk
is a subsequence of (vθk(n)), we have that (ũn) converges weakly to ū

in Xp(Bk) for all k ∈ N
∗. Therefore, according to (5.8),

‖ū‖2,p,Bk
� lim inf

n→∞
‖ũn‖2,p,Bk

� M

for all k ∈ N
∗, and so ū ∈ Xp.

It remains to show that ū 
= 0. Choose k ∈ N
∗ such that Q̄0 ⊂ Bk. By the compactness

of the embedding W 2,p(Q0; Rm) ↪→ C1(Q̄0; Rm), we have that ũn → ū in C1(Q̄0; Rm),
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and hence ‖ũn‖1,∞,Q0 → ‖ū‖1,∞,Q0 . But

‖ũn‖1,∞,Q0 � 1
2 (|ũn(yθn(n))| + |∇ũn(yθn(n))|)

= 1
2 (|uψ(θn(n))(xθn(n))| + |∇uψ(θn(n))(xθn(n))|)

� 1
2ε0.

Therefore, ‖ū‖1,∞,Q0 � 1
2ε0, whence ū 
= 0. �

Theorem 5.5. Let Ω have a C2 boundary. Suppose that the following hold.

(i) There exists u0 ∈ Dp(Ω) for which DF (u0) ∈ Φ+(Dp(Ω), Yp(Ω)).

(ii) {u ∈ Xp; F∞(u) = 0} = {0}.

Then F is proper on the closed bounded subsets of Dp(Ω).

Proof. By Corollary 4.5, it suffices to show that if (un) is a bounded sequence from
Dp(Ω) and (F (un)) converges to some y in Yp(Ω), then (un) vanishes uniformly at infinity
in the sense of C1

d(Ω̄). After replacing F by F − F (0) and y by y − F (0), we can assume
that F (0) = 0. Let us show that case (ii) of Lemma 5.4 cannot occur. By contradiction,
suppose there is a sequence (ln) ⊂ ZN with limn→∞ |ln| = ∞ and a subsequence (uφ(n))
such that the sequence (ũn) defined by ũn(x) = uφ(n)(x+ lnT ) has a non-zero weak limit
ū in Xp(Bk).

It is enough to show that F∞(ū) = 0. Let ỹn be defined by ỹn(x) = y(x + lnT ) =
τlnT (y)(x). According to the proof of Lemma 5.4, for all k ∈ N

∗, ỹn ∈ Xp(Bk) from a
certain rank nk, and it is bounded by a constant independent of k.

Let ψ ∈ C∞
0 (RN ), and choose k ∈ N

∗ such that Bk contains the support of ψ.
Recall that ũn ⇀ ū in Xp(Bk) and F∞ : Xp(Bk) → Yp(Bk) is weakly continuous, and so
F (ũn) ⇀ F (ū) in Yp(Bk). Thus∫

RN

ψF∞(ū) dx =
∫

Bk

ψF∞(ū) dx

= lim
n→∞

∫
Bk

ψF∞(ũn) dx

= lim
n→∞

∫
Bk

ψτlnT F∞(uφ(n)) dx. (5.9)

On the other hand, according to Corollary 5.3 (we assumed that F (0) = 0),

τlnT F (uφ(n)) − τlnT F∞(uφ(n)) −−−−→
n→∞

0 in Yp(Bk). (5.10)

For n � nk and j = 1, . . . , m, we have

‖(τlnT F (uφ(n)) − ỹn)j‖p
0,p,Bk

=
∫

Bk

|τlnT Fj(uφ(n))(x) − τlnT yj(x)|p dx

=
∫

|z−lnT |<k

|Fj(uφ(n))(z) − yj(z)|p dz

� ‖Fj(uφ(n)) − yj‖p
0,p,Ω −−−−→

n→∞
0 by assumption. (5.11)
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Equations (5.9)–(5.11) together give∫
RN

ψF∞(ū) dx = lim
n→∞

∫
Bk

ψỹn dx.

But, for each component (ỹn)j , j = 1, . . . , m, we have∫
Bk

ψ(ỹn)j dx =
∫

Bk

ψ(x)yj(x + lnT ) dx

=
∫

B(lnT,k)
ψ(z − lnT )yj(z) dz

�
(∫

B(lnT,k)
|yj |p

)1/p(∫
B(lnT,k)

|ψ(z − lnT )|q dz

)1/q (
1
p

+
1
q

= 1
)

�
(∫

B(lnT,k)
|yj |p

)1/p(∫
RN

|ψ|q
)1/q

−−−−→
n→∞

0,

since B(lnT, k) ⊂ B̃|lnT |−k, so that the result follows from Note G3 in the appendix.
Thus, finally, ∫

RN

ψF∞(ū) dx = 0 for all ψ ∈ C∞
0 (RN ),

and consequently F∞(ū) = 0. �

The last theorem shows that, together, the semi-Fredholmness of F and the non-
existence of non-trivial solutions of the limit problem F∞(u) = 0 are sufficient conditions
for the properness of F on Dp(Ω). Are they also necessary conditions? We already know
by Corollary 4.9 that the semi-Fredholmness is necessary. It turns out that, in the case
of Ω = R

N , the second condition is also necessary.
Accordingly, assume in the sequel that conditions (2.9)–(2.12) and (3.1) are satisfied

on the whole space R
N . Consequently, the results obtained so far are true and will be

applied with Ω = R
N .

Lemma 5.6. Let 1 < q < ∞ and k ∈ N. Given u ∈ W k,p(RN ; Rm) and a sequence
(hn) ⊂ R

N such that limn→∞ |hn| = ∞, set ũn(x) = u(x + hn). Then ũn → 0 in
W k,p(Ω′; Rm) for every bounded open subset Ω′ ⊂ R

N . In particular, ũn ⇀ 0 in
W k,p(RN ; Rm).

Proof. For m = 1, this is Lemma 4.8 of [8]. The conclusion is then clear, since
convergence, respectively weak convergence in W k,p(RN ; Rm), is equivalent to this type
of convergence of each component in W k,p(RN ). �

Theorem 5.7. The following statements are equivalent.

(i) F is proper on the closed bounded subsets of Xp.

(ii) Every sequence (un) ⊂ Xp such that un ⇀ 0 in Xp and F (un) → F (0) in Yp

contains a subsequence converging in Xp
∗.

∗ Which implies that un → 0 in Xp.
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(iii) There exists u0 ∈ Xp for which DF (u0) ∈ Φ+(Xp, Yp) and the equation F∞(u) = 0
has no non-zero solution in Xp.

Proof. (i)⇒ (ii) is evident since a weakly convergent sequence is bounded. (iii)⇒ (i)
is Theorem 5.5 (with Ω = R

N ). It remains to prove (ii)⇒ (iii). That DF (0) : Xp → Yp

is semi-Fredholm follows from Corollary 4.9. Consider now an element u ∈ Xp such that
F∞(u) = 0. Set un(x) = u(x + nT ) so that F∞(un) = 0 by the periodicity of the
coefficients of F∞. By Lemma 5.6, un → 0 in Xp(Ω′) for every open bounded subset
Ω′ ⊂ R

N , and hence, by Corollary 5.2 (i), F (un) − F (0) → 0 in Yp. Also, un ⇀ 0
in Xp, and therefore, by hypotheses, (un) contains a convergent subsequence (uφ(n)).
Its limit is necessarily 0 (by the uniqueness of the weak limit in Xp). But recall that
‖un‖2,p,RN = ‖u‖2,p,RN . Hence u = 0. �

Remark 5.8. Note that strict ellipticity on the compact subsets of R
N and strict

ellipticity on R
N are equivalent for F∞. This is due to the periodicity of a∞

αβ .
On the other hand, note that det(

∑N
α,β=1(ηαηβaαβ(x, 0))) is a homogeneous poly-

nomial of order 2m in η, so it could be written as∗ P (x, η) =
∑N

|γ|=2m pγ(x)ηγ , and the
coefficients are an algebraic combination of the components of the matrices aαβ . Similarly,

det
( N∑

α,β=1

(ηαηβa∞
αβ(x, 0))

)
= P∞(x, η) =

N∑
|γ|=2m

p∞
γ (x)ηγ .

Thus, from (5.1), it follows that, given ε > 0, |pγ(x) − p∞
γ (x)| � ε for |x| large

enough. Therefore, |P (x, η) − P∞(x, η)| � N2mε|η|2m, and thus, if P (x, η) � λ|η|2m,
we have P∞(x, η) � (λ − N2mε)|η|2m. Therefore, the strict ellipticity condition (in R

N )
for aαβ(·, 0) is equivalent to the strict ellipticity of a∞

αβ(·, 0).
Note that this reasoning also proves the stability of the ellipticity condition, i.e. an

elliptic system remains elliptic after a small enough perturbation of its leading coefficients.

Appendix A. Some results about sequences and the function spaces
used in the paper

In what follows, X, Y and Z are real Banach spaces, L(X, Y ) is the Banach space of
all linear and bounded operators from X to Y , X ′ = L(X, R) is the dual of X, X ↪→ Y

means that X is imbedded in Y and X ↪→comp Y means that the imbedding is compact.

Note A. L ∈ L(X, Y ) is semi-Fredholm if rge L is closed and at least one among
dim KerL and codim rgeL is finite. The index of L is µ = dim KerL − codim rge L ∈
Z ∪ {±∞}. We denote by Φµ(X, Y ) the set of semi-Fredholm operators of index µ, and

Φ+(X, Y ) =
⋃

µ∈Z∪{−∞}
Φµ(X, Y ).

When F ∈ C1(X, Y ) is not necessarily linear, it is semi-Fredholm if, for every u ∈ X,
DF (u) ∈ L(X, Y ) is semi-Fredholm. In this paper, we used three properties of semi-
Fredholm operators.

∗ γ = (γ1, . . . , γN ) ∈ N
N is a multi-index.
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(i) The index of semi-Fredholm operators is a locally constant function. This property
is due to the fact that Φµ(X, Y ) is open in L(X, Y ).

(ii) If F ∈ Φµ(X, Y ) and K ∈ L(X, Y ) is compact, then F + K ∈ Φµ(X, Y ) (stability
under a compact perturbation).

(iii) Yood’s criterion, which states that when L is linear, L is proper on the closed
bounded subsets of X if and only if L ∈ Φ+(X, Y ).

For more details, see [8, p. 141] and the references therein.

Note B. Let L : X → Y be a continuous operator. L is proper on the closed bounded
subsets of X if, for every compact K from Y and every closed bounded subset B of X, we
have that L−1(K) ∩ B is compact. This condition is clearly equivalent to the following.

(i) Every bounded sequence (un) from X such that (L(un)) converges contains a con-
vergent subsequence.

When X is reflexive∗, properness on the closed bounded subsets is equivalent to the
following.

(ii) For every sequence (un) ⊂ X such that un ⇀ u and L(un) converges, we have
un → u.

Proof. (ii)⇒ (i). Let (un) be bounded and (Lun) convergent. Since X is reflexive,
there exists a subsequence (uϕ(n))† converging weakly to some u, but (Luϕ(n)) also con-
verges. Therefore, uϕ(n) → u.

(i)⇒ (ii). Let un ⇀ u and L(un) converges. If (un) does not converge to u, there exist
ε0 > 0 and a subsequence (uϕ(n)) such that ‖uϕ(n) − u‖ � ε0. But (uϕ(n)) has the same
properties of (un). Therefore, it contains a convergent subsequence (to u, by uniqueness
of the weak limit). But this contradicts the above inequality. �

Note C. Let L : X → Y be an operator (not necessary linear or continuous). L is
compact if it transforms bounded subsets onto relatively compact ones (i.e. with compact
closure). L is completely continuous if it transforms weakly convergent sequences into
strongly convergent ones. We used the fact that when X is reflexive and L is linear and
bounded, complete continuity and compactness for L are equivalent. More precisely, one
can prove the following.

(1) If X is reflexive and L is completely continuous, then L is compact.

(2) If L is weakly continuous and compact, then it is completely continuous (hence
continuous). One can argue by contradiction.

∗ The reflexivity condition is used in this work to ensure that every bounded sequence from X contains
a weakly convergent subsequence.

† ϕ and ψ are strictly increasing functions from N to N.
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Note D. Let Ω ⊂ R
N be an open set, with ∂Ω bounded and Lipschitz and N < p < ∞.

Then the functions of W 1,p(Ω) are bounded and Hölder continuous on Ω̄ (see [1, The-
orem 5.4]). Now let u ∈ W 1,p(Ω). Since C∞

0 (RN ) is dense in W 1,p(Ω) (see [1, The-
orem 3.18]), there exists a sequence (un) in C∞

0 (RN ) converging to u in W 1,p(Ω),
and hence in L∞(Ω). Accordingly, for any ε > 0, there exists an n0 ∈ N such that
‖u − un0‖0,∞,Ω � ε, and therefore, ∀x ∈ Ω, |u(x)| � |un0(x)| + ε. But, for |x| large
enough un0(x) = 0, we have |u(x)| � ε, which means that limx∈Ω, |x|→∞ |u(x)| = 0.

From the preceding, we deduce that W 2,p(Ω) ↪→ C1
d(Ω̄). The imbeddings are compact

if, in addition, Ω is bounded.

Note E. Let N < p < ∞ and u ∈ Lp(Ω). Define the operator T by Tv := uv. Then
T : W 1,p(Ω) → Lp(Ω) is compact.

Proof. Tv ∈ Lp(Ω) since v ∈ W 1,p(Ω) ↪→ L∞(Ω). Define φn for n ∈ N by φn(x) = 1
if |x| � n and zero elsewhere. Let Tnv = φnuv and Ωn = {x ∈ Ω : |x| < n}. Since
W 1,p(Ωn) ↪→comp L∞(Ωn), then Tn : W 1,p(Ω) → Lp(Ω) is compact. Now

‖Tv − Tnv‖p
p =

∫
|x|>n

|u|p|v|p � ‖v‖p
∞

∫
|x|>n

|u|p � const. × ‖v‖p
1,p

∫
|x|>n

|u|p.

This means that T is the uniform limit of a sequence of compact operators, and so it is
itself compact (see also Note G3). �

Note F1. Let X be reflexive, u ∈ X and (un) be a bounded sequence from X. Suppose
that every weakly convergent subsequence of (un) converges weakly to u (i.e. the limit is
independent of the subsequence, or (un) has a unique weak cluster point). Then un ⇀ u.

Proof. If not, there exist f ∈ X ′, ε0 > 0 and a subsequence (uϕ(n)) such that
|〈f, uϕ(n)〉 − 〈f, u〉| � ε0 for all n ∈ N. But (uϕ(n)) is bounded, and therefore it con-
tains a subsequence (uϕ(ψ(n))) converging weakly to some l. By assumption, l = u, so
that uϕ(ψ(n)) ⇀ u. But this contradicts the above inequality. �

Note F2. Let X be reflexive, X ↪→ Y , u ∈ X and (un) be a bounded sequence in X

such that un → u in Y . Then un ⇀ u in X.

Proof. If not, there exist f ∈ X ′, ε0 > 0 and a subsequence (uϕ(n)) such that, ∀n ∈ N,
|〈f, uϕ(n)〉 − 〈f, u〉| � ε0. But (uϕ(n)) is bounded, so it contains a subsequence (uϕ(ψ(n)))
converging weakly to some v in X (and hence in Y ). By the uniqueness of the weak limit
in Y , we have v = u. Therefore, uϕ(ψ(n)) ⇀ u in X. But this contradicts the definition
of (uϕ(n)). �

Application. X = W 2,p(Ω; Rm), Y = C1
d(Ω̄; Rm), with N < p < ∞ and ∂Ω bounded

and Lipschitz.

Note F3. Let L : X → Z have the following property: if (un) is bounded in X,
un → 0 in Y and L(un) converges in Z, then (un) contains a subsequence converging to
zero in X. Then, for (un) as above, we have, in fact, un → 0 in X.
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Proof. If not, there exists a subsequence, bounded away from zero in X. But this
subsequence has all the properties of (un), so, by hypotheses, it contains a subsequence
converging to zero in X, which contradicts its definition. �

Note G1. Let A ⊂ R
N be a measurable set and 1 � q � ∞. Let un → u in L∞(A)

and vn → v in Lq(A). Then unvn → uv in Lq(A).

Proof. This is because ‖unvn − uv‖q � ‖un − u‖∞‖vn‖q + ‖u‖∞‖vn − v‖q. �

Note G2. Let un → u in L∞(A) and vn ⇀ v in Lq(A) for 1 � q < ∞. Then we have
that unvn ⇀ uv in Lq(A).

Proof. Let f ∈ Lq′
(A). Then

∫
A

f(unvn − uv) =
∫

A

f(unvn − uvn) +
∫

A

fu(vn − v).

The result follows from the fact that fu ∈ Lq′
(A) and

∣∣∣∣
∫

A

f(unvn − uvn)
∣∣∣∣ � ‖f‖q′‖vn‖q‖un − u‖∞.

�

Note G3. Let f ∈ L1(A). Then the functional µ defined on the measurable subsets of
A by µ(G) =

∫
G

|f | is a measure on A, and, as any measure, it satisfies limn→∞µ(Gn) =
µ(

⋂
Gn) for every decreasing family of subsets (Gn) from A. This is why

lim
n→∞

∫
|x|>n

|f | =
∫

⋂
B̃n

|f | = 0,

since
⋂

B̃n = ∅.
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