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DIFFERENTIAL EQUATIONS AND AN ANALOG OF THE
PALEY-WIENER THEOREM FOR LINEAR
SEMISIMPLE LIE GROUPS

KENNETH D. JOHNSON

§1. Introduction

Let G be a noncompact linear semisimple Lie group. Fix G = KAN
an Iwasawa decomposition of G. That is, K is a maximal compact sub-
group of G, A is a vector subgroup with AdA consisting of semisimple
transformations and A normalizes N, a simply connected nilpotent sub-
group of G. Let M’ denote the normalizer of A in K, M the centralizer
of A in K, and W = M’/M the restricted Weyl group of G. Fix 6 a
Cartan involution of G which leaves every element of K fixed and set
N = gN. We denote the Lie algebras of G, K, A, N, N, and M respectively
by &, & U, N, N, and M respectively.

For ge G set g = K(g9) exp H(9)n(9) where K(g)e K, H(g)c ¥, and
n(g) e N and expl, is an isomorphism from % to A with inverse log.
Recall that 1€ %U* is called a root if &, = {Xe®&: [H, X] = A(H)X for all
H e} + {0} and 2 is a positive root if &, & N. Let P denote the set
of all positive roots and let L be the semilattice of all elements of A*
of the form > ,.r ¢4 and ¢, is a nonnegative integer.

Let V be a finite dimensional vector space and let K act on V via
the double representation r. That is, for veV and k,k,e K

(ky, k)i v — (k) - v (k).

Consider the C~ functions f:G — V for which f(kgk,) = (k) f(9)c(k,)
(k, k,e K). We denote these functions by C=(G,r) and we denote the
C=-functions with compact support by C (G, z) and the Schwartz functions
in C~(G,7) by ¥(G,7).

Consider fe%(G,z) and for veU% me M set
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g,60)m) = | da IN fman)ete-10s i
where for He % p(H) = +tr adH,, and for we M, set
Vi) = [ pmg e)om)dm .

Now y(w:v) e V¥ where V¥ = {ve V:z(m)v = ve(m) for all m e M} and
in fact ¥ (0:v) € V¥(w) where V¥(0) = E (V¥) and

E, @) = d, j _ nmyemyvdm .

In general for AcV” we define the Eisenstein integral of Harish-
Chandra by setting

EA:v:2) = J (K (xk)) o A o o(k) e ~PHE s |
K

Remark. Our notation for the Eisenstein integral differs slightly
from Harish-Chandra’s Eisenstein integral only in that we shall have no
need to specify the parabolic subgroup P = MAN which defines the
integral.

Part of the Plancherel formula of Harish-Chandra [6], [7] tells us
that for f e %(G,r) there is a function f, € ¥(G,7) where

Sfa@) = Z; J;;: EW(w:v):v: o)plw: v)dy

0EM

and F = f — f,e%(G,r) with
f Fgn)dn = 0
N

where N is the unipotent radical of P = MAN. Moreover, the function
ue M X %% — C satisfies the following conditions:

1) v— plw:v) is meromorphic on %[z(weM) ;

2) v— plw:v) is analytic and > 0 on A*(w e M); and,

3) For seW u(sw: sv) = plw: ).

In the following we will say that a function F e %(G,7) is a quasi-
cusp form if

fN Flgnydn = 0 .
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We denote the space of quasi-cusp forms by %,(G, 7).

The main result of this paper (Theorem 3.1) gives a weak analog of
the classical Paley-Wiener theorem in characterizing the support of a
function feCy(G,7) in terms of growth conditions on the “Fourier-
Laplace transform” v (o: v).

We first state some results concerning some estimates which we shall
need in the proof of the Paley-Wiener theorem.

In Section 3 we prove our result which contains a rather ambiguous
residue function which we treat somewhat further in Section 4. In
Section 5 we apply our results to the study of some partial differential
operators on G.

§2. Some estimates.

Let V be as in section one, let A e V¥ and consider the Eisenstein
integral E(A:v:x). Let At = {HeA: 2(H) > 0 for all 2¢ P} and set 4+
= exp A*. Harish-Chandra in Warner [16] has given a useful expansion
of F(A:v:a) for a € A* which we now describe.

For ae A* and s e W there exist functions ¢: W X %% — End V¥ and
D, A XU —>End V¥ such that EA:v:a) = D ew Ds(a:v)(c(s: v)(4)).
Furthermore, we have that

Oa:y) = >, I (isv—p)etsr-e-nloga)
#EL

where for peL v— I',(isv — p) is a rational function with image in
End (V¥). Here I'y=1.

For 2e%* there is an H, e such that 2(H) = B(H,H,) for all He Y
where B is the Killing form of &. For ve¥U¥ write —iv = & + 4y when
&neW*. For Hye¥U set T(H) ={ve¥U¥:H,cH,+ A*}. The I'’s now
satisfy the following

LEMMA 2.1 (Lemma 2.3 [13]). Fix H,e A and H,cA*. Then there
is & polynomial pg,(v) and a polynomial K(v) > 0 depending on py,, H, and
H, such that

||PH0(V)Fp('iu — p)|| < Ker@®n |

For the proof of this lemma we refer to [13]. We now need some
estimates on the functions c(s: v).
We say that for ac A* @ — o if ||loga| = B(log a, log @)/ — c and
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there is an ¢>0 such that for all 2¢ P i(loga) > ¢|logal. Then from
Harish-Chandra [6], [7] we have for A e V¥ and ve %* that

lim (er®e 2 E(A:v:a) — >, c(s:v)(A)e+ea) =0,
SEW

a—c

Again from Harish-Chandra [6],[7] we have that the map v—c(s:v) e
End (V%) is meromorphic and hence we see that if Reidv(loga) >0 for
all ac A*

log ele-ws (A :p: a) = ¢(1:v)(A).

a0

Hence for Reidv(loga) > 0 and all a ¢ A* we obtain
c(l:y) = f_ A ot(K(m)) e~ o Hm) gy |
N

More generally we obtain that if Reisv(loga) > 0 for all ac A* and se W
log ete-t e (A 1 y: a) = ¢(s: v)(A)

a-—roo

and in this case an elementary calculation yields

c(s:v)(A) = t(w)j; @) o Ao gy W)z (w)™? (wes)

where
i) = j_ g~ oM (K (1))~ dT
Ny

and

ire) = L—v et-PEI (K (1)) dTo

with N, = {me N: wnw e N} and N, = {mRe N: wnw'e N}.

We wish to apply estimates of the form found in Lemma 3.1 of [13].
To do so we first need a product formula for the functions j7(v) and
J: () which may be attributed to Gindikin and Karpelevic [4] and Schiff-
mann [15]. A more general product formula has been obtained by
Harish-Chandra [7].

Let P; ={aeP:s'a>0} and P; ={aeP:s'a<0}. Then

N=> G, and N,= > G_,

a€PF a€P;

and for a ¢ P where a/2e¢P let N, = G_,+®_,,. If aecP; set
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12@) = f_ g~ (ProEMI(K(R))'dR
Na
and if «c P; set
JZ0) = .[_ e =PI (K(R))dTR .
Ng

If |Pf|=Fk and |P;|=+¢ we may put an ordering on P; where P; =
{ay, + -+, a;} on an ordering on P; where P; = {4, ---,2} where «a; < a;,,
and 4; < 4;,, such that j7() =750) --- 750) and j;() = j50) - - - 750).
The proof of this fact follows immediately from Gindikin-Karpelevic [4]
or more precisely from the proof of their main theorem. From Lemma
3.2 of [13] we have the following lemma

LEMMA 2.2. Given 6 > 0 there is an R > 0 and an integer N >0
such that if |<v,ad| > R and |arg {v,a)> + =n/2| > 0 for ac P; the matrix
entries of jr(w)™' are bounded in absolute value by |{v,a)|¥. Hence there
s an B, > 0 and an N, > 0 for which the matriz entries of ji(v)™ are
bounded in absolute value by w,cps|<v, adM if |<v,a)| > R, and |arg {v,a)
+ z/2| = 6 for «a ¢ P}. (Here |arg z| < n.) Furthermore there is an B’ >0
and an integer N’ > 0 for which the matrixz entries of j7(v)™! are bounded
n absolute value by w,cp- |<v, [V if |[<v,a)| > R’ and |arg {v,a) — /2]
>0 for acP;.

Using the inner product on V¥ we now compute the adjoint of ¢(s:v)
for veU*. Fixing wes as before and letting BeEnd V¥, we see
that

c(s: *(B) = Gy ) *c(w)'B-c(w)(7; )* .

Moreover, we see that (j7(v))* is the limit of operators of the form

J e ““”H(”’r(K(%))‘ldﬁ

N

where 2 — v (e ¥q*) and (J7()* is the limit of operators of the form

J‘— eC-nEM (K (T))dT

N

where 41— v (v e U*).
We now compute the adjoint of c¢(s:v) for ve¥*. For wes and
Be V¥ we see that
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c(s: )*(B) = j; )* or(w) ' o Boz(w) o 57 (v)* .
For ie %% let

Jr () = I_ ¢~ W EI (K (7)) ' dT
N2
and

J:(Z) —_ J; e‘“"")‘H("”r(K('ﬁ))dﬁ
Ny

and denote their meromorphic continuations by the same symbols. Then
Gro)* = J;() and (GFO)* = J@). Letting C(s: D(B) = J; (Dr(w)'Be(w)
X J+(2) we see that the function 12— C(s: 2) is defined meromorphically
and for ve %* C(s:v) = ¢(s:v)*. It is a trivial fact to see that J T =
J50) -+ 73 and Ji() = j,,() - - j5(») where the «; and 2; are as before.

We conclude this section with the following observation. Suppose
f is a holomorphic function on C® and suppose that f satisfies the
following estimate. There are constants C and A > 0 and an integer
N > n for which

|F@)] < CQ + ||Z[) Vet

where ||Z|| = ((Z,2))"* and for Z = & + 4 with Z,JeR" ImZ = 7.

Suppose m > 0 is an integer and let ¢, ---,¢c,, 1€ C. We assume
that {Z:cz, + -+ + €2, —2=0}NR*"=0. Let g3@) =GZ— D" fZ)
where ¢ = (¢, - -+, ¢,). Then the following formula holds.

Im .re 9@y, -, x)de, - - - da,
=r r 9@, + W, &y, - -+, XA, - - - da,
— 2mt Jm tre J‘w Resa (g(z, Ly =+ ‘9xn)a

A— Cly — ¢+ — Cl
22 . nen dxzdxn
1

The above observation is useful since the singularities of the function
v— I',(isv — p) (peL) and v — c(s:v)™' have their singularities on hyper-
planes and are meromorphic with polynomial growth.

§3. A Paley-Wiener theorem

We now describe our analog of the classical Paley-Wiener theorem.
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We suppose first that fe Co(G,7) and f(g) =0 for o(g) > A where if
g =koak, with k,k,cK and acA o(9) = (B(loga, loga))”* or we say
Je€Cz2(G,7). Observe that the map v — ¢ (w:v) is holomorphic and
satisfies

(1) For N > 0 an integer there is a constant C, such that

V(@) < Oy + [ly|p~etmt,
(2) For se W we have
c(s: V)W) = cl: sv)(P(sw: sy)) .
We now derive a third condition which is satisfied by the function

v—yw:y) for o Cz,. We have that

Falg) = Z:A L* EWfo:v)iv: gplw: v)dy .

wEM

Moreover, picking an e %* with |7|| small and with no v — I",(is(v + ¢3)
— p) (e L) having a singularity for any v e %* we have

7 = 5 [ By + iy +ig: 0pe: v + inds

wEM

and by Lemma 2.1 we have for ac A*

fd@=> > L IGisy — p)e(s: V) (@ v)plw: v)etisr=e=mios e,

sew el pelL

The Maass-Selberg relations of Harish-Chandra [6], [7] state that
le(s: ) @: )P = [Cs: )W @i )P = plo: v)7d, 4w )
for ve A*. Hence we have plw:v)'d, = c(s: v)C(s: V) v Lhus,
oz v)es: VW : ) = d,Cs: ) lo:v) .

For H e % and se W consider the tube T(s,H) = {ve A¥: — Hy,, e A"
+ H}. Then the following lemma now follows from Lemmas 2.1 and 2.2

LEMMA 3.1. Given H,e¥ and se W there are a finite number of
hyperplanes Fi, ---,F, in A§ which intersect T(s, H,) and for which the
functions v — I' (isv — p) (p€ L) and v — C(s: v)™! are analytic on T(s, H)
~F, U .- UF,). Furthermore, there is a C > 0 such that {y: —{Imy, &)
> C for all @ P} T(s,H) F; =0 for all 1 <i< 7.

Now setting for se W and ac A+,
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Sasl@) = Z Z d, I' (isy — p)(f’(s: V) (Y0t v)dy .
#GM re Ak+iy
Using our remarks at the end of Section 2, we see that f, (a) =
Res; (f)(@) + f.(a@) where Res, (f)(a) is a residue integral over the im-
aginary part of the hyperplanes F,, -.-,F, and

Ses(@) = Z 2 I (isy — p)C(s: v) (P (@ v))eli=r-m B ),

a)eM p€L JIm y=2

with —H,e%* and ||2|| > C. By the standard method used in the clas-
sical Paley-Wiener theorem we see that f,(a) =0 if o(a) > A. Letting
Res (f) = >,ew Res, (f) and f, = D> ew f.s and using the Plancherel for-
mula we now see that there is an F e ¢,(G,r) such that

@ f=f.+Res() +F
and Res f(a) + F(a) =0 for ac A* with ¢(a) > A.

Now for A > 0 let #(A,r) be the space of all functions F: M x Ui
— V such that F(w:») =0 if o & 7, and F satisfies the following con-
ditions.

I) uy(F) = sup,, 1 + [[p|)¥e-4=" | F(w: v)| < oo
I) e(s: v)(F(w:v) = c(1: sp)(F(sw: sv)
ITI) The function

J(9) = Zj EF(:v):v: gu(w: v)dy

oEM

differs from a function in C(G,z) by a function H in % ,(G,z). More-
over, for g regular f(9) = Res f(g9) + f.(¢9) with f.(9) = 0 for F(g) > A.

THEOREM 3.1. A function f e C>(G,7) is in C3(G,1) + €(G,7) if and
only if its Fourier-Laplace transform is in P(A,1).

Proof. 1t is clear that if fe C3(G, ) + €,(G,) its Fourier-Laplace
transform is in #(4, ).
‘Suppose 0 # F € #(A,7). By Theorem 3.1 of Arthur [1] we have that

@9 =3 f EFE@:v):v:9) o v)dy £0 .

meM
By Lemma 2.2 of [13] we have that f¢ %,(G,rz). By assumption there
is an H e %,(G,7) for which f-He C;(G,z). However our arguments in
obtaining 3) guarantee that 0 + f — Hec C3(G,7). This completes our
proof.
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COROLLARY 1. A function feCy(G,7) is in C3(G,7) if and only if
for every integer N > 0 there is a Cy > 0 such that

”‘P’f(w: U)“ < CN(]- + ”””)—NeAIIIm .

COROLLARY 2. Let #(r) be the union of all #(A,r). Then a function
feC=(G,7) is in C3(G,7) + (G, 7) if and only if its Four ier-Laplace
transform is in P(z).

§4. The function Res f

We inject here a few remarks concerning the function Res f where
feC3(G, 7). Although we have strong reason to believe that Res f ex-
tends to a function in %,(G,7) and thus f, extends to a function in
C3(G,7) we can only establish this for some special cases which we
describe in this section. We first give a more detailed description of
Res f.

Let P denote the set of positive restricted roots and let 4 = {«,, - - -,
a;} be the simple restricted roots in P. Let {4, ---,4} = ‘4 be dual to 4
(.e. 2(QApap/laa0) =8;). For FCdlet °F=4~F and let \FC'4
be dual to F and °F dual to °F. Let AF) (A(°F)) be the linear span
of {H,:aeF} {H,: e °F}) and set A(F) = exp A(F") (A(°F) = exp A(°F).
Observe that if He 9 H = H, 4+ H, where H, ¢ A(F) and H,e UA(°F) and
this decomposition is unique. Furthermore, if H e A* H = H, + H, where
H ecAF)Y ={HeUWF): a(H) > 0 for all «eF} and H, = > c,H, where
the sum is over °F' and each ¢, > 0. (It is easy to see that the converse
holds only when FF=4 or F =@). Now for acA* we set a = a0,
where H = loga and a; = exp H,; as above.

Continuing our integration process described at the end of Section 2
and allowing F' to vary we see that the function Res f is a finite sum
of functions of the form

7)) = 7,00y, @) = 3 9, (a,)ePrmiosa
rEL

where 7,_,(a) € End (V¥), —H,,,e%*, L is the semilattice described in
Section 2, the series converges absolutely for ae A* and 7,(a) =0 for
a(a,) > A as do all 3,_,’s.

The following lemma is an immediate consequence of this expansion.

LEMMA 4.1. If Res f(a) =0 for all acA* with o(@) > C then
Res f = 0.
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THEOREM 4.1. If G has split rank one Res f extends to a (quast)

cusp form. If G has only one conjugacy class of Cartan subgroup
Res f = 0.

Proof. The case where G has split rank one has been treated in [13]
and the case where G has only one conjugacy class of Cartan subgroup
follows from Lemma 4.1.

COROLLARY. Suppose G has split rank one or has only one conjugacy
class of Cartan subgroup. Then if feC2(G,7) f=f.

§5. Applications to differential equations

Let U(®) be the complexified enveloping algebra of & and let U(®)*
be the centralizer of & in U(®). If feC~(G) and Xe® set Xf(g9) =
(d/dt) fexp —tX9)|,., and extend this action to all of U(®). Let &(®
denote the distributions with compact support.

In [14] a sufficient condition for D e U(®)* to be injective as an
operator D: &(G) — &'(G) was established. In this section we prove the
converse of this result. We first recall the definition of the principal
series.

Let w: M — GI(H) be an irreducible unitary representation of M and
let ved¥. o and v define a representation V,, of the group MAN = B
on H by setting 7, (man) = e®+»2qg(m) (meM, ac A, neN). Now
let H** be the set of all measurable functions f: G — H such that:

1) flgp) =V,.(0)'f(9 (9€G, peB); and,

2) [ 170k = 7] < co.

Now H“* becomes a Hilbert space with inner product
W, 0) = |_Guth), v)dk
K

and left translation induces a representation z,, of G on H** and we
call the pairs (z,,, H**) the principal series of G. Let K°* denote the
K-finite vectors of H“*. Observe that z,, induces a representation of
U(®) on X* and that as a K-module X°* is isomorphic to the space
X(w) = {u: K — H:u is left K-finite and u(km) = o(m)~*u(k) for all ke K,
me M}. We abuse notation and identify X*» with X(w).

We now restate Lemma 3.1 of [14]. (Injectivity criterion) Suppose
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D e U(®)* Suppose for no we M is there a finite dimensional subspace
U € X(w) such that =, ,(D): U— U and detz, (D)|y =0 for all ». Then
D: &(G) — &'(@) is injective.

Observe that =z, , defines a linear map

,,: C2(G,7) —> L(H**, V ® H**)
by setting

zo (U = j @, @udzr  (f e C2(Gyo), ue H) .

If we set 6,,(f) = >, (7, (us, w;) where {u;: ¢ = 1} is an orthonormal
basis of H,, we obtain by a simple calculation that 4, _,(4(x)'f) =
EW(w:v):v:x) where 4(x) (r(x)) denotes left (right) translation by .
(Although the Eisenstein integral may be obtained from a distribution
on G our treatment here is useful in the study of differential equations.)

We may now select u,, - --,u, an orthonormal set of vectors in H*~*
such that

8.._(U@)Df) = 6. _(r@DJ)
- z (o, (D)u () )y 1)

where for h e C2(G)

(@ By U5) = L h(@) (o, (@i 1) A .

We now prove the converse of the injectivity criterion.

Suppose that D e U(®)* and for w,e M we have a finite dimensional
K-invariant subspace U C X(w,) such that =, (D): U — U and detr,, ,(D)|y
=0 for all ve¥UAE. Without loss of generality we may assume that
Ty (D) =0 on U. Let ¢ be the representation of K on U and let V =
End U and extend z to a double representation of K on V.

Now let F: M x A% — V¥ be such that F(w:v) = 0 if w # sw, for some
seW. Suppose also that F' satisfies conditions I, IT and III of Section 3.
Set

J@ =3 L E(F(0: v): v: D)pw: )dy .

There is an He%,G,z) such that f + HeC:(G,7z). Also a simple
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calculation yields

Df@) = Y. j E(r._ (D)o F(w:): v: )ulw: v)dy
meﬁ' u*
and thus Df =0 and if G = f + H we see that DG e €,(G,7) N C7(G, 7)
and by [14] DG = 0. Hence we have proved

THEOREM 5.1. Suppose Dec U®)*. D:E&(G) — &(GF) 1s injective if
and only if for no we M is there a finite dimensional subspace U C X(w)
such that =, (D): U— U and detr,, (D)|y =0 for all veU§.

For »r> 0 let V,(0) ={9eG:a(9) <1}

THEOREM 5.2 (P-convexity). Suppose D ¢ U(®)* satisfies the injectivity
criterion. Suppose T ¢ &(G) and supp DT < V,(0). Then supp T < V,(0).

Proof. By convoluting with functions in C2(G), we see that it
suffices to prove this result for T = fe C>(G). Furthermore, it suffices
to assume that f(x) = L(F(x)) where F ¢ C>(G,7), V=End U, U is a K-
finite space of functions on K, Le V* and r is the double representation
induced on V by left translation on U.

By hypothesis for all N > 0 there is a Cy such that

[Vvor(w:v)| < Cy(1 + ”V“)—Ne"lllmp“

but as Ypp(w:v) = 7, _(D)yr(w:v) we have that z(w: v) satisfies the same
growth conditions. Thus, as F e C2(G,7) we have supp F < V,0) and
hence supp f < V,(0).
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