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A GENERAL ‘BANG–BANG’ PRINCIPLE
FOR PREDICTING THE MAXIMUM
OF A RANDOM WALK

PIETER ALLAART,∗ University of North Texas

Abstract

Let (Bt )0≤t≤T be either a Bernoulli random walk or a Brownian motion with drift, and
let Mt := max{Bs : 0 ≤ s ≤ t}, 0 ≤ t ≤ T . In this paper we solve the general optimal
prediction problem sup0≤τ≤T E[f (MT −Bτ )], where the supremum is over all stopping
times τ adapted to the natural filtration of (Bt ) and f is a nonincreasing convex function.
The optimal stopping time τ∗ is shown to be of ‘bang–bang’ type: τ∗ ≡ 0 if the drift of
the underlying process (Bt ) is negative and τ∗ ≡ T if the drift is positive. This result
generalizes recent findings of Toit and Peskir (2009) andYam,Yung and Zhou (2009), and
provides additional mathematical justification for the dictum in finance that one should
sell bad stocks immediately, but keep good stocks as long as possible.
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1. Introduction

Suppose that you buy a share of stock at time t = 0, which you must sell on or before
some finite time T > 0. Your goal is to sell the stock at such a time τ so as to maximize the
expectation of some function g of the ratio Pτ/HT , where Pt denotes the price of the stock at
time t and HT := max{Pt : 0 ≤ t ≤ T }, the highest price over the time interval [0, T ]. What
is the optimal selling time?

Under the model of geometric Brownian motion and withg the identity function, this problem
was formulated and partially solved by Shiryaev et al. [5], and was soon afterwards solved
completely by Du Toit and Peskir [1]. The solution is as simple as it is natural: if the logarithm
of the stock price trends upward, the stock should be held until the time horizon, and if it trends
downward, the stock should be sold immediately. Thus, in the words of Du Toit and Peskir,
the optimal strategy is of ‘bang–bang’ type. Shortly after their paper appeared, an analogous
result was obtained by Yam et al. [6] for exponentiated random walks in discrete time.

The purpose of the present paper is to generalize these results to a larger class of functions g.
It will be shown that the ‘bang–bang’ principle holds, under both the geometric Brownian
motion and exponentiated random walk models, whenever g is increasing and convex. Rather
than directly considering price ratios, however, it is more convenient to study the logarithms
of the price process. For instance, if {Pt } is a geometric Brownian motion then we can write

Received 10 February 2010; revision received 28 June 2010.
∗ Postal address: Department of Mathematics, University of North Texas, 1155 Union Circle #311430, Denton, TX
76203-5017, USA. Email address: allaart@unt.edu
Supported in part by the Japanese GCOE Program G08: ‘Fostering Top Leaders in Mathematics—Broadening the
Core and Exploring New Ground’.

1072

https://doi.org/10.1239/jap/1294170520 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170520


Predicting the maximum of a random walk 1073

Pt = exp(σBλt ), where Bλt is Brownian motion with a suitable drift λ ∈ R, and σ > 0. Setting
Mλ
t := max{Bλs : 0 ≤ s ≤ t} and f (x) = g(e−σx), the problem described in the first paragraph

can then be put in the form
sup

0≤τ≤T
E[f (Mλ

T − Bλτ )], (1.1)

the supremum being over all stopping times 0 ≤ τ ≤ T adapted to the process {Bλt }. It is not
difficult to verify that if g is nondecreasing and convex, then f is nonincreasing and convex.
A similar transformation can of course be made for random walks in discrete time. Thus, for
the remainder of this paper we will study (1.1) and its discrete-time analog (2.1) below for a
nonincreasing convex f , keeping in mind that via the above transformation the problem has a
practical financial interpretation.

For the specific function f (x) = e−σx , where σ > 0, our results reduce to those of [1]
and [6]. The proofs involve only a minimum of technicalities, and bring to the foreground the
essential feature hidden within the arguments in the aforementioned papers, namely convexity
of the function f . In addition, we present simple conditions on f in order for the optimal
stopping rules to be unique.

To end this introduction, we point out that problems of the type (1.1) were first formulated
(albeit as a penalty-minimization problem) in the paper by Graversen et al. [2], where f was the
(nonconvex) functionf (x) = −x2. Their results were extended by Pedersen [4] tof (x) = −xq
for arbitrary q > 0. Note that, for 0 < q < 1, Pedersen’s result is a special case of Theorem 2.3
below.

2. Main results

This section is devoted to a precise formulation of the problem and statements of the main
results. First, let {Sn}n=0,1,... be a Bernoulli random walk with parameter p ∈ (0, 1). That is,
S0 ≡ 0, and, for n ≥ 1, Sn = X1 + · · · + Xn, where X1, X2, . . . are independent, identically
distributed random variables with P(X1 = 1) = p, and P(X1 = −1) = q := 1 − p. Let a
finite time horizon N ∈ N be given, let f : {0, 1, . . . , N} → R be nonincreasing, and consider
the optimal stopping problem

sup
0≤τ≤N

E[f (MN − Sτ )], (2.1)

where MN := max{S0, S1, . . . , SN } and the supremum is over the set of all stopping times
τ ≤ N adapted to the natural filtration {F k}0≤k≤N of the process {Sk}0≤k≤N .

As a concrete example, taking f (0) = 1 and f (k) = 0 for k ≥ 1 turns the expectation
in (2.1) into the probability P(Sτ = MN), so that (2.1) becomes a ‘best-choice’ or ‘secretary’
problem for the random walk, where the goal is to maximize the probability of stopping at
the ultimate maximum of the walk; see [3], where this problem is solved in a somewhat more
general setting for the case p = 1

2 . Yam et al. [6] recently solved the problem for arbitrary p,
and showed the (unique) optimal rule to be τ ≡ 0 when p < 1

2 and τ ≡ N when p > 1
2 . When

p = 1
2 , it is optimal to stop at time 0, or at time N , or at any time at which the walk is at its

running maximum. (For a continuous-time analog of this problem, where the objective is to
stop a Brownian motion within a distance ε > 0 from its ultimate maximum, see [4].)

Curiously, as shown by Yam et al. [6] in the second half of their paper, the same rule is
optimal when f (k) = dk for a constant 0 < d < 1. This leads one to believe that there must be
some general principle at work. A brief look at the graphs reveals that in both examples, f is
in fact convex. The first aim of this paper is to show that the optimal rule is of the above simple
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form for any nonincreasing convex objective function f , thereby generalizing the results of [6].
Recall that a function f : {0, 1, . . . , N} → R is convex if f (k − 1) − 2f (k) + f (k + 1) ≥ 0
for all k with 0 < k < N , and is strictly convex if the inequality is strict for all such k.

Theorem 2.1. Let f : {0, 1, . . . , N} → R be nonincreasing and convex, and consider the
optimal stopping problem (2.1).

(i) If p ≤ 1
2 , the rule τ ≡ 0 is optimal.

(ii) If p ≥ 1
2 , the rule τ ≡ N is optimal.

(iii) If p = 1
2 , any stopping time τ satisfying P(Sτ = Mτ or τ = N) = 1 is optimal.

Thus, in the words of Du Toit and Peskir [1], the optimal strategy τ ∗ is of ‘bang–bang’ type:
τ ∗ ≡ 0 if p < 1

2 and τ ∗ ≡ N if p > 1
2 .

Convexity of f is essential, as the following example shows.

Example 2.1. Let f (0) = f (1) = 1 and f (k) = 0 for k ≥ 2. Thus, there are two possible
outcomes, ‘winning’ and ‘losing’, and we win if we stop with one of the two highest values of
the walk. Let N = 2. It is easy to see that the rule τ ≡ 1 gives a winning probability of 1. On
the other hand, the winning probability for the rule τ ≡ 0 is 1 − p2 and, for the rule τ ≡ 2, it
is 1 − q2.

We might ask when the optimal rules in Theorem 2.1 are unique. The next theorem gives
simple sufficient conditions to this effect.

Theorem 2.2. Let f be as in Theorem 2.1.

(i) If p < 1
2 and f is nonconstant, then τ ≡ 0 is the only optimal rule.

(ii) If p > 1
2 and f is strictly decreasing, then τ ≡ N is the only optimal rule.

(iii) If p = 1
2 and f is strictly convex, then the only optimal rules are those that satisfy

P(Sτ = Mτ or τ = N) = 1.

It is left to the interested reader to verify that the above conditions cannot be substantially
weakened.

Next, let B := (Bt )t≥0 be a standard Brownian motion, and let λ be a real parameter.
Then the process (Bλt )t≥0 defined by Bλt := Bt + λt is a Brownian motion with drift λ. Let
Mλ
t := max{Bλs : 0 ≤ s ≤ t}. We seek a stopping time τ (with respect to the natural filtration

(F B
t )t≥0 of B) that will attain the maximum in (1.1). Since Brownian motion is the scaling

limit of the Bernoulli random walk, we might expect the result to be the same as in Theorem 2.1.
This is indeed the case, except that the conditions for uniqueness of the optimal rules are weaker.

Theorem 2.3. Let f : [0,∞) → R be nonconstant, nonincreasing, and convex, and consider
the optimal stopping problem (1.1).

(i) If λ < 0, the rule τ ≡ 0 is the unique optimal rule.

(ii) If λ > 0, the rule τ ≡ T is the unique optimal rule.

(iii) If λ = 0, any stopping time τ satisfying

P(Bλτ = Mλ
τ or τ = T ) = 1 (2.2)
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is optimal. (In particular, the rules τ ≡ 0 and τ ≡ T are optimal.) If, furthermore, f is
not linear, then all optimal rules satisfy (2.2).

Theorem 2.3 was proved in [1] for the case f (x) = e−σx , after the problem was first
discussed in [5]. Note that if f is constant, or if f is linear and λ = 0, then any stopping
time is optimal in view of the optional sampling theorem. Thus, the uniqueness conditions
in Theorem 2.3 are the best possible. That they are weaker than in the discrete case is due
essentially to the fact that the increments of Brownian motion can be arbitrarily large, whereas
the increments of the Bernoulli random walk are bounded.

Finally, we note that by putting f̃ := −f , problems (1.1) and (2.1) may be formulated equiv-
alently as penalty-minimization problems. For instance, (1.1) can be represented alternatively
in the form

inf
0≤τ≤T E[f̃ (Mλ

T − Bλτ )], (2.3)

where f̃ : [0,∞) → R is nondecreasing and concave. Thus, the above results apply to a variety
of natural penalty functions, including f̃ (x) = xq , where 0 < q ≤ 1, f̃ (x) = log(1 + x), etc.

For nonconcave f̃ , the solution of (2.3) is generally of a more intricate form, and is usually
found by applying the principle of ‘smooth fit’ and solving an appropriate free boundary
problem. See [2] for f̃ (x) = x2, [4] for f̃ (x) = xq with q > 1, or Section 3 of [1] for
f̃ (x) = eσx , where σ > 0.

Theorems 2.1 and 2.2 are proved in Section 3, and Theorem 2.3 is proved in Section 4.
Many of the ideas of the proofs are adapted from [1] and [6], and some details, in as far as
they can be found in these papers, are therefore omitted here. The novel contributions of the
present paper are the explicit use of the convexity of f (see Lemmas 3.1 and 4.1 below) and
the investigation of uniqueness of the optimal stopping times, which requires some finesse in
the case of general f .

3. The maximum of the Bernoulli random walk

This section is devoted to the proofs of Theorems 2.1 and 2.2. It will be useful to consider
an infinite family of random walks, defined on the same probability space. The following con-
struction is standard. Let U1, U2, . . . be independent random variables, uniformly distributed
on the interval [0, 1]. For k ∈ N and p ∈ (0, 1), define

X
p
k :=

{
1 if Uk ≤ p,

−1 if Uk > p.

Set Sp0 ≡ 0 and Spk := X
p
1 +· · ·+Xpk for k ≥ 1. Then, for each p ∈ (0, 1), {Spk }

k
is a Bernoulli

random walk with parameter p. Furthermore, if p ≥ p′ then Xpk ≥ X
p′
k for all k.

Let Mp
k := max{Sp0 , . . . , Spk } and Zpk := M

p
k − S

p
k . Observe that, for each p, the process

{Zpk }
k

is Markovian. Moreover, it is easy to see that

p ≥ p′ 	⇒ Z
p
k ≤ Z

p′
k for all k. (3.1)

Finally, and most importantly, the Bernoulli random walk satisfies the well-known reflection
property

(M
p
n − S

p
n , S

p
n )

d= (M
q
n ,−Sqn ) (3.2)

for each fixed n ∈ N. (The easiest way to see this is to observe that the time-reversed process
S̃k := S

p
n−k − S

p
n , k = 0, 1, . . . , n, is a Bernoulli random walk with parameter q, starting at
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0 and ending at −Spn , with maximum value Mp
n − S

p
n .) In particular (reversing the roles of p

and q),
M
p
n

d= M
q
n − S

q
n = Z

q
n. (3.3)

It is almost amusing to see how many times this identity must be used in order to prove
Theorem 2.1.

The following lemma holds the key to the proof of Theorem 2.1.

Lemma 3.1. Let f : {0, 1, . . . , N} → R be nonincreasing and convex.

(i) If p ≥ 1
2 then

E[f (i ∨Mp
n − S

p
n )] ≥ E[f (i ∨ (Mp

n − S
p
n ))] (3.4)

for all 0 ≤ n ≤ N and 0 ≤ i ≤ N − n.

(ii) Ifp > 1
2 andf is strictly decreasing, then strict inequality holds in (3.4) for all 0 < n ≤ N

and 0 < i ≤ N − n.

(iii) If p ≥ 1
2 and f is strictly convex, then strict inequality holds in (3.4) for all 0 < n ≤ N

and 0 < i ≤ N − n.

Proof. (i) Let p ≥ 1
2 . We begin by writing

E[f (i ∨Mp
n − S

p
n )− f (i ∨ (Mp

n − S
p
n ))]

=
∑
l∈Z

∑
k≥l

[f (i ∨ k − l)− f (i ∨ (k − l))]P(Mp
n = k, S

p
n = l)

=
(∑
l>0

∑
k≥l

+
∑
l<0

∑
k≥0

)
[f (i ∨ k − l)− f (i ∨ (k − l))]P(Mp

n = k, S
p
n = l)

=: �+ +�−.

(Note that the terms with l = 0 vanish.) By (3.2) and the change of variables k′ = k − l,
l′ = −l, the second summation becomes

�− =
∑
l<0

∑
k≥0

[f (i ∨ k − l)− f (i ∨ (k − l))]P(Mq
n = k − l, S

q
n = −l)

=
∑
l′>0

∑
k′≥l′

[f (i ∨ (k′ − l′)+ l′)− f (i ∨ k′)]P(Mq
n = k′, Sqn = l′).

The key to further progress is that, for l > 0,

P(Mp
n = k, S

p
n = l) ≥ P(Mq

n = k, S
q
n = l).

(This follows easily by considering the probability of a single path ending at l with maximum k.)
Since f is nonincreasing and i ∨ k − l ≤ i ∨ (k − l), we have

f (i ∨ k − l)− f (i ∨ (k − l)) ≥ 0,

and, therefore,

�+ ≥
∑
l>0

∑
k≥l

[f (i ∨ k − l)− f (i ∨ (k − l))]P(Mq
n = k, S

q
n = l). (3.5)

https://doi.org/10.1239/jap/1294170520 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170520


Predicting the maximum of a random walk 1077

Combining these results, we conclude that

�+ +�− ≥
∑
l>0

∑
k≥l

ψ(i, k, l)P(Mq
n = k, S

q
n = l), (3.6)

where
ψ(i, k, l) := [f (i ∨ k − l)− f (i ∨ (k − l))] + [f (i ∨ (k − l)+ l)− f (i ∨ k)]

= [f (i ∨ k − l)− f (i ∨ k)] − [f (i ∨ (k − l))− f (i ∨ (k − l)+ l)].
Since i ∨ k − l ≤ i ∨ (k − l) and f is convex, it is easy to see that ψ(i, k, l) ≥ 0. This
yields (3.4).

(ii) Suppose that p > 1
2 and f is strictly decreasing. Let n > 0 and i > 0, and set k = l = n.

Then
f (i ∨ k − l)− f (i ∨ (k − l)) = f ((i − n)+)− f (i) > 0.

Since P(Mp
n = S

p
n = n) > P(Mq

n = S
q
n = n), strict inequality holds in (3.5), and, hence,

in (3.4).
(iii) Finally, suppose that p ≥ 1

2 and f is strictly convex. Let n > 0 and i > 0. Since
i ∨ n− n = (i − n)+ < i = i ∨ (n− n), the strict convexity of f implies that ψ(i, n, n) > 0.
This, together with (3.6) and the obvious fact that P(Mq

n = S
q
n = n) > 0, gives strict inequality

in (3.4).

Corollary 3.1. Let f be as in Lemma 3.1. If p ≥ 1
2 then

E[f (i ∨Mp
n − S

p
n )] ≥ E[f (i ∨Mp

n )] (3.7)

for all 0 ≤ n ≤ N and 0 ≤ i ≤ N − n. Moreover, if p > 1
2 and f is strictly decreasing, then

strict inequality holds in (3.7) for all 0 < n ≤ N and 0 ≤ i ≤ N − n.

Proof. Let p ≥ 1
2 . Note that in view of (3.2), inequality (3.4) can be stated alternatively as

E[f (i ∨Mp
n − S

p
n )] ≥ E[f (i ∨Mq

n )]. (3.8)

Since Mq
n ≤ M

p
n and f is nonincreasing, we furthermore have

E[f (i ∨Mq
n )] ≥ E[f (i ∨Mp

n )]. (3.9)

This, together with (3.8), gives (3.7). Ifp > 1
2 and f is strictly decreasing, then strict inequality

holds in (3.9) for i = 0, since P(Mq
n < M

p
n ) > 0 for n > 0. Furthermore, Lemma 3.1(ii) gives

strict inequality in (3.7) for all i > 0.

Proof of Theorem 2.1. Define the σ -algebras Fk := σ({U1, . . . , Uk}), k = 0, 1, . . . , N .
We prove that even among stopping rules that can use complete information about the Uks, the
rules given in the statement of the theorem are optimal. Recall that, for a stopping time τ adapted
to {Fk}, the sigma algebra Fτ is defined by the rule A ∈ Fτ if and only if to A∩ {τ ≤ k} ∈ Fk
for all k.

(i) Consider first the case p ≤ 1
2 . The argument below is adapted from [6]. Let τ be a

stopping time relative to {Fk}. By conditioning on Fτ we can write

E[f (Mp
N − Spτ )] = E[G(N − τ, Zpτ )],
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where
G(k, i) := E[f (i ∨Mp

k )]. (3.10)

Using (3.3) and the stationary and independent increments of the random walk, we similarly
obtain

E[f (Mp
N)] = E[f (ZqN)] = E[E[f (ZqN) | Fτ ]] = E[D(N − τ, Zqτ )],

where
D(k, i) := E[f (i ∨Mq

k − S
q
k )].

(See [6, pp. 654, 660] for the details of these calculations in the case f (k) = e−δk .) Since
f is nonincreasing, G(k, i) is nonincreasing in i for fixed k, which, by (3.1), implies that
G(N − τ, Z

p
τ ) ≤ G(N − τ, Z

q
τ ). But, by (3.8), with the roles of p and q reversed,

D(k, i) ≥ G(k, i)

for all k and all i. It follows that

E[f (Mp
N − Spτ )] = E[G(N − τ, Zpτ )] ≤ E[G(N − τ, Zqτ )] (3.11)

≤ E[D(N − τ, Zqτ )] = E[f (Mp
N)]

for any stopping time τ . Thus, the rule τ ≡ 0 is optimal.
(ii) Assume next that p ≥ 1

2 . Define G(k, i) by (3.10), and let

D̃(k, i) := E[f (i ∨Mp
k − S

p
k )].

By Corollary 3.1, D̃(k, i) ≥ G(k, i), and, hence, for any stopping time τ ,

E[f (Mp
N − Spτ )] = E[G(N − τ, Zpτ )] ≤ E[D̃(N − τ, Zpτ )] (3.12)

= E[f (ZpN)] = E[f (Mp
N − S

p
N)].

Therefore, the rule τ ≡ N is optimal.
(iii) Finally, consider the case p = 1

2 . Observe that G(0, i) = D(0, i) = f (i) for all i, and
G(k, 0) = E[f (Mp

k )] = E[f (Zqk )] = D(k, 0) for all k. Thus, for any stopping time τ with
Sτ = Mτ or τ = N almost surely,

G(N − τ, Zpτ ) = D(N − τ, Zpτ ) = D(N − τ, Zqτ )

(since p = q), and, hence, for any such τ ,

E[f (Mp
N − Spτ )] = E[f (Mp

N)] = sup
τ ′

E[f (Mp
N − Sτ ′)], (3.13)

where the last equality follows by part (i).

Proof of Theorem 2.2. (i) Let p < 1
2 , and suppose that f is not constant. Since f is

nonincreasing and convex, this implies that f (0) > f (i) for all i > 0. It follows that
G(k, 0) > G(k, i) for all i > 0 and all k, since, obviously, f (Mp

k ) ≥ f (i ∨Mp
k ), and

P(f (Mp
k ) > f (i ∨Mp

k )) ≥ P(Mp
k = 0) > 0.
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Now consider a stopping time τ with τ > 0. Then

P(Zqτ = 0, Zpτ > 0) ≥ P(Zqk = 0 and Zpk > 0 for k = 1, . . . , N)

≥ P(Xqk = 1 and Xpk = −1 for k = 1, . . . , N)

= (q − p)N

> 0.

(Note that this holds for any random time τ , not just for stopping times.) It therefore follows
that E[G(N − τ, Z

q
τ )] > E[G(N − τ, Z

p
τ )], which is the strict inequality in (3.11).

(ii) Suppose next that p > 1
2 and f is strictly decreasing. Then strict inequality holds in

Corollary 3.1 for n > 0 and all i. But this yields strict inequality in (3.12) for any stopping
time τ with P(τ < N) > 0.

(iii) Finally, assume that p = 1
2 , and let f be strictly convex. If N = 1, the only stopping

times are τ ≡ 0 and τ ≡ 1, which both satisfy the condition in Theorem 2.1(iii). So assume
that N ≥ 2. By Lemma 3.1(iii), strict inequality holds in (3.4) for all i > 0. Thus, if τ is a
stopping time with the property that P(Mp

τ − S
p
τ > 0 and τ < N) > 0 then

E[D(N − τ, Zpτ )] > E[G(N − τ, Zpτ )],

and so the first equality in (3.13) is replaced with ‘<’.

4. The maximum of Brownian motion

The key to the proof of Theorem 2.3 is the following analog of Lemma 3.1. It makes use of
the well-known fact, analogous to (3.2), that

(Mλ
t − Bλt , B

λ
t )

d= (M−λ
t ,−B−λ

t ) (4.1)

for every fixed t ≥ 0.

Lemma 4.1. Let f : [0,∞) → R be nonincreasing and convex.

(i) If λ ≥ 0 then

E[f (x ∨Mλ
t − Bλt )] ≥ E[f (x ∨ (Mλ

t − Bλt ))] (4.2)

for all t ≥ 0 and all x ≥ 0.

(ii) If λ > 0 and f is not constant, then strict inequality holds in (4.2) for all t > 0 and all
x > 0.

(iii) If λ = 0 and f is not linear, then strict inequality holds in (4.2) for all t > 0 and all
x > 0.

Proof. (i) The inequality is trivial when t = 0, so assume that t > 0. Let h(s, b; λ) be the
joint density function of (Mλ

t , B
λ
t ). Note that in view of (4.1), or by (4.4) below,

h(s, b; λ) = h(s − b,−b; −λ). (4.3)
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As in the proof of Lemma 3.1, we begin by writing

E[f (x ∨Mλ
t − Bλt )− f (x ∨ (Mλ

t − Bλt ))]
=

∫
b∈R

∫
s>b

[f (x ∨ s − b)− f (x ∨ (s − b))]h(s, b; λ) ds db

=
(∫

b>0

∫
s>b

+
∫
b<0

∫
s>0

)
[f (x ∨ s − b)− f (x ∨ (s − b))]h(s, b; λ) ds db

=: I+ + I−.

Using (4.3) and the change of variables z = s − b, b′ = −b, we can write I− as

I− =
∫
b′>0

∫
z>b′

[f (x ∨ (z− b′)+ b′)− f (x ∨ z)]h(z, b′; −λ) dz db′

=
∫
b>0

∫
s>b

[f (x ∨ (s − b)+ b)− f (x ∨ s)]h(s, b; −λ) ds db,

where the last equality follows simply by renaming the variables. Recall (see, e.g. Equation (3.2)
of [1]) that, for fixed t , h(s, b; λ) is given by the formula

h(s, b; λ) =
√

2

π

2s − b

t3/2
e−(2s−b)2/2teλ(b−λt/2) (4.4)

for all s ≥ 0 and b ≤ s. It follows that, for all b > 0 and s ≥ b,

h(s, b; λ) ≥ h(s, b; −λ),
with strict inequality if λ > 0. (Note that there does not seem to be a direct probabilistic
argument for this last inequality; instead, we must rely on the specific form of the density
formula (4.4).) Since f is nonincreasing and x ∨ s − b ≤ x ∨ (s − b) for b > 0, we have

f (x ∨ s − b)− f (x ∨ (s − b)) ≥ 0 for b > 0.

Thus,

I+ ≥
∫
b>0

∫
s>b

[f (x ∨ s − b)− f (x ∨ (s − b))]h(s, b; −λ) ds db. (4.5)

Putting these results together, we conclude that

I+ + I− ≥
∫
b>0

∫
s>b

ψ(x, s, b)h(s, b; −λ) ds db, (4.6)

where

ψ(x, s, b) := f (x ∨ s − b)− f (x ∨ (s − b))+ f (x ∨ (s − b)+ b)− f (x ∨ s).
As in the proof of Lemma 3.1, the convexity of f implies that ψ(x, s, b) ≥ 0. Thus, the proof
of (4.2) is complete.

(ii) Suppose now that λ > 0 and f is not constant. Fix x > 0. Since f is nonincreasing and
convex, we can choose δ > 0 so small that 2δ < x, and f (2δ) > f (x). But then, on the small
square x − δ < b < x < s < x + δ, we have

f (x ∨ s − b)− f (x ∨ (s − b)) = f (s − b)− f (x) ≥ f (2δ)− f (x) > 0.
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Since h(s, b; λ) > h(s, b; −λ) on this small square, strict inequality results in (4.5), and, hence,
in (4.2).

(iii) Finally, suppose that λ = 0 and f is not linear. Then there exists a point x0 > 0 such
that, for all x > x0 and all u > 0, f (0)− f (u) > f (x)− f (x + u). Choose n ∈ N such that
nx > x0. Then, for s = b = nx, ψ(x, s, b) = f (0) − f (x) + f ((n + 1)x) − f (nx) > 0.
By continuity of ψ , it follows that ψ > 0 on a small square of positive h(s, b; −λ)-density.
Putting this back in (4.6) gives strict inequality in (4.2).

Remark 4.1. Inequality (4.2) was derived by Du Toit and Peskir [1] for the special case f (x) =
e−σx . In fact, for this choice of f , (4.2) holds even if − 1

2 ≤ λ < 0; for this and other related
inequalities for the exponential case, see Remark 4 of [1].

Corollary 4.1. Let f be as in Lemma 4.1. If λ ≥ 0 then

E[f (x ∨Mλ
t − Bλt )] ≥ E[f (x ∨Mλ

t )] (4.7)

for all t ≥ 0 and all x ≥ 0. If λ > 0 and f is not constant, then strict inequality holds in (4.7)
for all t > 0 and all x ≥ 0.

Proof. Let λ ≥ 0. In view of (4.1), inequality (4.2) is equivalent to

E[f (x ∨Mλ
t − Bλt )] ≥ E[f (x ∨M−λ

t )]. (4.8)

(Note that (4.8) generalizes the key inequality (4.28) of [1].) Since M−λ
t ≤ Mλ

t and f is
nonincreasing, we have

E[f (x ∨M−λ
t )] ≥ E[f (x ∨Mλ

t )]. (4.9)

This, together with (4.8), gives (4.7).
Now suppose that λ > 0 and f is not constant. By Lemma 4.1(ii), it suffices to verify strict

inequality for x = 0. Since f is nonincreasing and convex, f is strictly decreasing on [0, x0]
for some x0 > 0. Clearly, P(M−λ

t < Mλ
t < x0) > 0 for t > 0. As a result, strict inequality

holds in (4.9) for x = 0.

Proof of Theorem 2.3. Optimality. Let

Zλt := Mλ
t − Bλt , t ≥ 0,

and note that, for fixed t , Zλt is pointwise nonincreasing in λ.
(i) Assume first that λ ≤ 0. Define the functions

G(t, x) := E[f (x ∨Mλ
t )], D(t, x) := E[f (x ∨M−λ

t − B−λ
t )].

Let τ ≤ T be any stopping time adapted to the filtration (F B
t ). As in the proof of Theorem 2.1,

we have
E[f (Mλ

T − Bλτ )] = E[G(T − τ, Zλτ )].
Using (4.1), the stationary and independent increments of Brownian motion, and the strong
Markov property of the process (Zt ), we obtain

E[f (Mλ
T )] = E[f (Z−λ

T )] = E[D(T − τ, Z−λ
τ )].

(For the details of these calculations, see [1, pp. 987, 1004].) Since f is nonincreasing,
G(t, x) is nonincreasing in x for fixed t . It follows that G(T − τ, Zλτ ) ≤ G(T − τ, Z−λ

τ ).
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Furthermore, (4.8), with λ replaced by −λ, gives D(t, x) ≥ G(t, x) for all t and all x. As a
result,

E[f (Mλ
T − Bλτ )] = E[G(T − τ, Zλτ )] ≤ E[G(T − τ, Z−λ

τ )] (4.10)

≤ E[D(T − τ, Z−λ
τ )] = E[f (Mλ

T )]. (4.11)

Since this holds for any stopping time τ , it follows that the rule τ ≡ 0 is optimal.
(ii) Next consider the case λ ≥ 0. Let

D̃(t, x) := E[f (x ∨Mλ
t − Bλt )].

Then Corollary 4.1 implies that D̃(t, x) ≥ G(t, x), and, hence,

E[f (Mλ
T − Bλτ )] = E[G(T − τ, Zλτ )] ≤ E[D̃(T − τ, Zλτ )] (4.12)

= E[f (ZλT )] = E[f (Mλ
T − BλT )]

for any stopping time τ . Thus, the rule τ ≡ T is optimal.
(iii) Finally, suppose that λ = 0. Then G(0, x) = D(0, x) for all x and G(t, 0) = D(t, 0)

for all t . Thus, for any stopping time τ satisfying (2.2),

G(T − τ, Zλτ ) = D(T − τ, Zλτ ) = D(T − τ, Z−λ
τ ),

so that (see (4.10) and (4.11))

E[f (Mλ
T − Bλτ )] = E[f (Mλ

T )]. (4.13)

By part (i) of the theorem, this implies that τ is optimal.
Uniqueness. We next verify the uniqueness claims in Theorem 2.3.
(i) Assume first that λ < 0. While Lemma 4.1 provides strict inequality in (4.11) for the

majority of stopping times, it does not do so for stopping times τ of the form (2.2). Therefore,
we establish strict inequality in (4.10) instead. First, since f is nonconstant, nonincreasing,
and convex, there exists a point x0 > 0 such that f is strictly decreasing on [0, x0]. It is easy
to see that the same is then true for G(t, ·) for any fixed t , including t = 0. Let τ ≤ T be a
stopping time with P(τ > 0) > 0. We show first that

P(0 < Zτ < x0) > 0, (4.14)

where we write Zt for Zλt . Choose t0 > 0 so that P(τ > t0) > 0, and let

τ0 := min

{
t0, τ

(
x0

2

)}
,

where τ(x) := inf{t > 0 : Zt ≥ x} for x > 0. Then τ0 is a stopping time adapted to (F B
t ), and

so {τ > τ0} ∈ F B
τ0

. Moreover, P(τ > τ0) ≥ P(τ > t0) > 0 and P(Zτ0 > 0) = P(Zt0 > 0) = 1.
Thus, the set {τ > τ0, Zτ0 > 0} lies in F B

τ0
and has positive probability. On this set,

P(0 < Zτ < x0 | F B
τ0
) ≥ P(0 < Zt < x0 for τ0 ≤ t ≤ T | F B

τ0
) > 0,

by the strong Markov property of (Zt ) and the fact that (Zt ) behaves like Brownian motion
with drift as long as it does not hit 0. But then

P(0 < Zτ < x0) = E[P(0 < Zτ < x0 | F B
τ0
)] > 0,

proving (4.14).
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Next, a moment of reflection shows that Zλt = Z−λ
t if and only if Zλt = 0. Thus, by (4.14),

P(Z−λ
τ < Zλτ < x0) = P(0 < Zλτ < x0) > 0.

Along with the fact that G(t, ·) is strictly decreasing on [0, x0] for all t ≥ 0, this yields strict
inequality in (4.10).

(ii) Consider next the case λ > 0. Then strict inequality holds in Corollary 4.1 for t > 0 and
all x. But this yields strict inequality in (4.12) for any stopping time τ with P(τ < T ) > 0.

(iii) Finally, assume that λ = 0, and f is not linear. By Lemma 4.1(iii), strict inequality
holds in (4.2) for all t > 0 and all x > 0. Thus, for any stopping rule τ such that P(Mλ

τ −Bλτ >
0 and τ < T ) > 0,

E[D(T − τ, Zλτ )] > E[G(T − τ, Zλτ )],
and so the equality in (4.13) is replaced with ‘<’.
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