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Abstract

We answer a few questions raised by S. Fitzpatrick concerning the representation of maximal
monotone operators by convex functions. We also examine some other questions concerning
this representation and other ones which have recently emerged.

1. Introduction

The interest of the theory of monotone operators does not arise just from the elegance
of the results; it is also propelled by the number of applications, in particular for
partial differential equations and variational inequalities (see [1-3,7,10,24] and their
bibliographies).

Several proposals have established links between maximal monotone operators
and convex functions ([4-6,8,9,11,15,16,18,20]). Some of these contributions reap
advantage from these links in deriving the most important results of the theory of
maximal monotone operators from known facts in convex analysis ([16,18-20]). The
richness of the theory of monotone operators which has given rise to a great number
of works justifies an interest for these links. A first attempt along this line has been
proposed in the book of Simons [18]; the pioneering proposal of Fitzpatrick in [6] and
its recent avatars enable one to give a still simpler approach.

In the present paper we relate the different approaches mentioned above and we
try to answer some questions raised by Fitzpatrick in [6]. We also deal with some
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2 Jean-Paul Penot and Constantin Zaiinescu [2]

other questions, such as characterising the images or the inverse images of the corre-
spondences defined in [6,12] and [16]. Moreover, in Section 3 we consider a general
construction of maximal monotone operators and we provide a representative of the
new operator in terms of representatives of the operators from which it is built. This
construction can be specialised to sums and compositions. We show by a counter-
example that the Fitzpatrick representative of the sum of two maximal monotone
operators may be different from the natural candidate given as the lsc hull of the par-
tial infimal convolution of the representative of the summands. We also give in the last
section a formula yielding an auto-conjugate representative of a maximal monotone
operator under an additional assumption.

We hope that the clarifications we bring will make these correspondences more
usable and add to their lure.

2. Correspondences between operators and functions

Throughout the paper X is a reflexive Banach space with dual X*. For / :
X x T - > l : = KU{-oo,+oo}, the transpose/1 : X* x X -+ K of / is defined by
/T(JC*, x) := f(x, x*); similarly for g : X* x X - • 1 we set gi{x, x*) := g(x*, x).
Given a Banach space Z and a function h : Z —*• K, we say that h is proper if
domh := [z € Z | h(z) < +00} is nonempty and if h does not take the value —00.
We use the conjugate h* of h given by

**(z*) :=sup{(z , z* ) -* (z ) | zeZ}

and we set, for z e Z with h(z) e K,

dh(z) := [z* € Z* I Ww 6 Z : h(w) - h(z) > (z*. w - z))\

dh(z) •= 0 for h(z) & K. We often identify a multifunction M : X =4 X* from X
to X* (also called an operator) with its graph gph M := {(x, x*) € X x X* \ x* <= X*).
Its domain is the set dom M := {x 6 X \ M(x) £ 0}.

To any function / on X x X* we associate the set

77 := {(x,x*) e X x X* I (x*,x) e df(x,x*)}

introduced by Fitzpatrick in [6] in the case when / is convex; it is always a monotone
subset of X x X*. Since here, as above, the subdifferential 3 is taken in the sense of
convex analysis, it is natural to take / in the set A(X x X*) of convex functions on
X x X* as Fitzpatrick did in [6]. The Fenchel equality enables us to reformulate the
definition of Tf as

Tj = {(*,**) e X x X' I f(x,x*) + f(x\x) = 2{x,x')). (2.1)
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[3] Representation of monotone operators by convex functions 3

Observe that if Tf is nonempty then the lsc hull / of / is proper (since then / has
a continuous affine minorant) and Tf c Tf. So, if we are interested in obtaining a
large Tf (for example in order to get a maximal monotone multifunction), it is natural
to take / in the set T(X x X*) of closed proper convex functions on X x X*. On the
other hand, in several recent papers the classes

:= [f e A(X x X*) | / > c),

:= {/ 6 V(X x D | / > c),

: = { / e V(X x X*) | / > c , f * > c J ] ,

are considered, where c : XxX* -»• K is the coupling function ofthe dual pair (X, X*),
that is, c(x, x*) := (x, x') := x*(x) for x e X and x' e X". To any / e & one can
associate the set

Mf := {(x, x*) € X x X* | f(x, x*) = c(x, x*)}.

It has been shown in [16, Proposition 4] and [5, Theorem 3.1] that M/ is monotone.
In this case too, Mf c Mf since c < f < f and / € <$. So, also in this case, it is
natural to take / e V(X x X*). Observe that for / € A(X x X*) one deduces from
relation (2.1) that

Tf = Mgf, (2.2)

where

\ \ ) V(x,x')eXxX*; (2.3)

moreover, the definition ofthe conjugate shows that gf e &. Furthermore, Fitzpatrick
[6, Theorem 2.4] proved that for / € & one has Ms c Tf. This inclusion incites us
to prefer Ts to M/; however the passage from / to Mf has some advantages, too.

Passages in the reverse direction are also of interest. To any nonempty subset
5 C X x X* one can associate the function cps on X x X* given by

<ps(x,x*) :=sup{(;t*,u;) + {w*,x - w) | (to, u>*) 6 5},

as Fitzpatrick did for the case when 5 is the graph of a monotone operator ([6,
Definition 3.1]). In [6, Theorem 3.4] Fitzpatrick showed that if S is monotone then
5 C MVs and (in this case is not sure that c < cps) 5 C 7"w. Therefore equality holds
if S belongs to the class 9Jl(X) of maximal monotone subsets of X x X*.

On the other hand, simplifying a pioneering approach of Simons ([18]), Penot
([15,16]) pointed out that one can associate to any subset S of X x X' the functions
cs := c + is, where is is the indicator function of 5 given by is(z) = 0 if z € 5, +oo
else, and its convexified functions convcs and \j/s '•= convcs = (c5)** (denoted by ps
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in [ 16, Proposition 4]). Then S is monotone if and only if conv cs > c or, equivalently,
conv cs 6 & (see [16, Proposition 4], [23, Proposition 1]); of course, in such a case,
5 C A/convcj- Note that (c*s)

T is the Fitzpatrick function q>s associated to 5. Moreover,
by [16, Proposition 4], a nonempty subset S C X x X* is monotone if and only if
there exists / e & with 5 C Mf if and only if there exists / e <0 with 5 C Mf.

The following result is practically contained in [5, Theorem 3.1] and [16, Theo-
rem 6]. We give here another proof which does not need the renorming of X. It uses
the function S of the "perfect square trick" of [18, Section 7] given by

8(x, x*) := {\\x\\2 + (x, x') + {\\x*\\2, (x, x*) € X x X*.

This function, which is clearly nonnegative, plays an important role in [18, Section 7]
and [20].

PROPOSITION 2.1. For any f e <S, the operator Mf is maximal monotone if and
only if f belongs to Jif:

Mf € 9Jl(X) <=> / ' > cT.

PROOF. First observe that for M :— Mf, we have / < cM by the very definitions.
It follows that / * > c*M. Assume now that M € 9R(X). By [16, Theorem 5] we
have that c*M > cT, and so /* > cT. Conversely, assume that /* > cT. Consider
(u,u*) € Xx X* such that MU {(«,«*)} is monotone, that is, (u-x,u*-x*) > Ofor
every (x, x*) € M. Taking g := /*T, since S > 0, we have that g(x, x*) — (x, x*) +
8(u - x, u* - x*) > 0 for every (jt, x*) € X x X*. By [20, Lemma 1.3] we get
some (JC, x*) € X x X* such that g*(x\ x) - (x, x*) + 8(u - x, u* - x*) < 0. Since
g*(x*, x) = f(x, x*), it follows that f(x, x*) < (x, x*), hence (x, x*) 6 M and

S(u - x, u* - x*) = \\\u- x\\2 + (u - x, u* - x*) + {\\u* - x*\\2 = 0.

Because (u — x, u* — x*) > 0 by the choice of («, «*), we obtain that (M, U*) =
(JC, x*) 6 M. Hence M e 9Jl(X). •

Using Proposition 2.1 we can give an answer to [6, Problem 5.3] which is formulated
in the following way: For which convex functions f is Tf maximal monotone? Our
answer is given in the next corollary.

COROLLARY 2.2. For f e F(XxX') the following assertions are equivalent:

(i) Tfe<m(X);
(ii) g )>c T ;

(Hi) f(x,x*) + f'(y*,y) > {{x + y,x' + y*) for every x, y € X,x*,y* 6 X*.
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PROOF. The equivalence (i) o- (ii) is a consequence of the preceding proposi-
tion and of relation (2.2). The equivalence (ii) & (iii) follows from the fact that
gf = } / + | /*T , and so g*f = ( | / )*D( | /* T )* , where • denotes the infimal
convolution operation. Because c is norm-continuous, g*f > cT if and only if
( | / )*D( | /* T )* > cT, that is, (iii) holds, taking into account the definition of •
and the relation (AVi)*(z*) = Aft*(A."'z*) for any function h, A. > 0, z*. •

We complete Proposition 2.1 by the next result.

PROPOSITION 2.3. Let M C X x X* be nonempty. Then M e 9Jl(X) if and only if
there exists f e Jff such that M = Mf.

PROOF. The sufficiency is given by Proposition 2.1. For the necessity, take M e
93i(X); then, by [16, Theorem 5], we can take / := \j/M = conv cM or / := q>M =

(c*My. •

The property of ^rM and <pM mentioned in the proof of Proposition 2.3 when
M € 97t(X) is shared by any function in Jf?.

PROPOSITION 2.4. Let f e Jf and let g := /*T. Then Tf = Tg = Mf = Mg and
Tf €

PROOF. By [6, Theorem 2.4] (recalled above) we have Mf c Tf. Let (x, x') € 7),
that is, /(*,**) + f*(x*,x) = 2{x,x*). Since / > c and /* > cT, we obtain
that /*T(*,*•) = f*{.x*,x) = {x,x*) and so (x,x*) € Mg. Hence Mf C 7> c
Mg. Since g € ^f, we can substitute g for / and get Mg c Tg c Mg.T. As
g*T = / , the announced equalities follow. The fact that Mf 6 Wl(X) is given in
Proposition 2.3. D

COROLLARY 2.5. Let f e J(f. Then gf given by (2.3) is also in Jf? and Mf = Mg/.

PROOF. By (2.2) and Proposition 2.4 we have that M := Tf = Mg/ is maximal
monotone. Using Proposition 2.1 we obtain that g*f > cJ, that is, gf € Jtf. •

Having M € 9Jl(X), it is natural to ask which are those functions / e Jtf? with the
property that M — Mf; such a function will be called a representative of M. The next
result gives the answer.

PROPOSITION 2.6. Let M e 9Jt(X) and / e Jf . 77ze/i M = Mf if and only if
<PM < f < ^ M -
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PROOF. If <pM < / < \j/M, as MVM = M^,u = M by [16, Theorem 5], we obtain
that Mf = M. Conversely, assume that M = Mf. Then we have that cM > / and
so / < conv cM =• \\rM. By Proposition 2.4 we have also that M = Mf.r and so
/*T < ^M- By conjugation we get / > ( ^ ) * = <pM. •

Fitzpatrick's Problem 5.1 in [6] is formulated as follows: For which convex func-
tions f is (pTf = / ?

If <pT/ = / , then / is necessarily lsc; moreover, because for a monotone multi-
function M we have that <pM < \j/M = (<pM)*T [16, Proposition 4], we must have that
/ < /*T- Hence, if <pTf = f then / = conv / < /*T. However, this condition is
not sufficient: just take f{x,x*) := \\x\\2/2 + ||**||2/2 on a Hilbert space X; then
/*T = / > c, gf = f and thus 7> = Mgf = Mf = A* := {(JC.JC) | JC e X).
However <p&x {x, x*) = \\x + JC*||2/4 by [16, Example 2]. But we can give a complete
answer for functions / € Jff; in fact, part of it already appears in [6, Theorem 3.7] as
a necessary condition.

COROLLARY 2.7. Let f,g e Jf. Then <pT/ = / {respectively \jfTg — g) if and only
if f is minimal {respectively g is maximal) in Jff with respect to <.

PROOF. Assume first that <pT/ = / and take g e Jt? such that g < f. It follows that
Mf C Mg. By Proposition 2.3, Mf and Mg are maximal monotone and so Mf = Mg.
By Proposition 2.4, M := Tf = Mf = Mg. Then, by Proposition 2.6 we obtain that
/ = <PM £ g 5 ^M- Hence / is minimal.

Assume now that / is minimal in M'. By Proposition 2.3 we have that M :=
Mf is maximal monotone, from Proposition 2.4 we have that M = Tf, and from
Proposition 2.6 we have that (pM < / . Since <pM 6 Jf? and / is minimal, it follows
t h a t / = <pM =<pT,.

The assertion concerning g follows from what precedes by setting / = g*T and
using the fact that Tf = Tg by (2.1) and that <p*J = fM for every M c X x X*. •

Note that [/ € Jif, g e <0, g < / ]=>• g e 3V. This is because g" > /* > c.
Thus, if / € # is such that (pT/ = / then / is minimal in <£ with respect to <. Indeed,
as observed above we have / < /*T, and so / € Jf; the conclusion follows from
Corollary 2.7.

Let us subsume the preceding analysis in the following statement.

COROLLARY 2.8. The mappings <p : M i-> <pM and x// : M t-+ r//M define bijections
from the set 9Jl{X) of maximal monotone operators on X onto the sets Jf?m and jf?m of
minimal and maximal elements ofjtf?, respectively, with inverses T : f *-*• Tf = Mf.
Moreover <p is antitone {that is, reverses order) and x/f is homotone {that is, preserves
order). For each M € 9Jl{X), the inverse image T~l{M) ofT:Jf?-+ M{X) is the
segment [<pM,\lr»].
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Burachik and Svaiter [4,5] considered, for M e VJl(X), the class

Jif(M) := {/ € # | M C Mf).

In [6, Theorem 3.10] it is proved that cpM is minimal in the class Jff(M), a property
weaker than Corollary 2.7. Propositions 2.3 and 2.6 show that for M e

The first equality is the main result of [5]; since Mf is monotone for each / e &, as
recalled above, given / € Jif(M), we have M = Mf by maximality. The fact that
<pM G Jif(M) and <pM < f for every / € ^ f (M) was obtained in [6, Theorem 3.10]
(see also [5, Theorem 1.1]); the inequality / < rj/M can easily be deduced from [6,
Proposition 4.2].

From the preceding equality, we obtain also that / € Jf?(M) =• /*T <= Jf(M), a
result established in [4]. By Proposition 2.6, the function oT defined in the beginning
of [21, Section 2] coincides with xj/M when X is reflexive.

Martinez-Legaz and Thera [12] introduced the class of functions

<t(X) := {/ € F(X x X*) I ( / + LB(f))* = fJ],

where

B(f) := {(x, x*) € X x X* | f{x, x*) < (x, **)}. (2.4)

Note that for / e <t>(X) (see also [12, Proposition 1])

0, f>c, f + iBlf) =cB(/), f*>c\ (2.5)

Indeed, if fi(/) = 0 then / + iB(f) = oo, and so / = —oo. To prove that f >c,
we consider two cases. If (JC, J:*) £ £ ( / ) we have that f(x,x*) > (x,x*) =c(x,x*).
Let (*,*•) e f i ( / ) . Then

2f(x, x*) = (f + iB{f)){x, x*) + ( /

Hence /(JC, A:*) > {x, x*). Since / > c we have / + tB(/) = cfl(/) and conversely
this equality yields / > c. Because f < f + tst/). we have that

It follows that <t>(X) c ^ and B(f) = Mf. Moreover if / € <P(X) then, by
Proposition 2.3, we have that M := Mf is maximal monotone and M = B(f) since
/ > c;as f + iM = cM, by definition of M/, we get f = c*M, that is, / = <pM. Hence
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C{<pM\M <= D3l(X)}. Because for M e m(X) we have that <pM e T(X x X*)
and MVM = M as recalled above, we obtain that (<pM + iB{<pM)Y = c*u = <pj,, and so

This is practically [12, Theorem 2] which is stated for X a Banach space; one must
observe that in this case, in the definition of <P(X) one must endow X* with the weak*
topology (and the result remains valid for X a separated locally convex space).

Now let us introduce the class of functions

:= {g € F(X x X*) | (g* + („<,.,)" = g),

where, as above,

B{g*) : = { ( * , * * ) €XxX*\ g*(x',x) < (x,x*)}.

Note that for g € *(X) the function / := g*T belongs to <t>(X). Conversely, for any
/ e <P(X) we have /*T € *(X). It follows that

Thus, for each g e *(X) we have

L0, g>c,

3. Questions about operations

Let M, N : X =3 X* be monotone multifunction and or > 0. Then the multi-
functions aM and M + N are defined by (aM)(x) := a • M(x) and (M + N)(x) :=
M(x) + N(x). Of course, dom(aM) = dom M, dom(M + N) = dom M n dom Â ,
and a Af, M + N are monotone; aM is maximal monotone when M is so, but M + N is
not necessarily maximal monotone when M and N are so. For every (x, x*) e X x X*
we have

Vau(x, x*) = sup{(x, «•) + («, *•) - <«, «•) I («, «*) e gph(aM)}

= sup{(jt, aio*) -f (u;,ac*) — (io, aw') | (w, w*) € gphM)

= a<pM(x,a~lx*).

For what concerns the sum, we need to use a partial convolution for functions
on a product space, as in [16] and [20]. Consider g, h : X x Y —*• K and define
gU2h : X x y - > Kby

:= inf {^(JC, >,) +/I(JT, y2) I yi,yi e Y, y = yt + y2};
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gO\h is defined similarly. Then

(g\J2hY(x\ y*) = sup {(*, *• ) + <y, y*)

- inf{g(x, y ,) + h(x, y2) I y = y, + y2] \(x,y)€Xx

- g(x, y , ) - h(x, y2) \ x 6 X, yx,y2e Y)

< sup {{x, **) + (yu y*) - g(x, y,) | x s X, y, € K}

+ sup{{x,x*) + {y2,y*)-A(*.y2) U € X, y2 e Y]

for all x*, x* € X* with x*t + x* = **. Hence

(gD2ft)*(x*, y*) < (f*D,A')(**,/) V(*',y*) e X* x T. (3.1)

It would be interesting to know when (gO2h)* = g*Oih*. In [20, Theorem 4.2] it
is shown that equality holds in (3.1) and the infimum is attained in the definition of
g*Dxh* when X, Y are Banach spaces, g, h e V(X x Y) and 0 € "(Prx(domg) -
Prx(dom/i)); hereafter, as in [22, page 15], for a subset S of X we write x 6 1C5 to
mean that the affine manifold A := aff 5 generated by 5 is closed and x belongs to
the relative algebraic interior 'S of 5 (that is the algebraic interior of 5 in A: x e '5
if and only if for every a € A there exists some e > 0 such that x + t(a — x) € S for
t € [—e, e]). Thus ICS is empty when aff S is not closed.

As observed in [16], from the very definitions, we have that cM+N = cMO2cN, and
so, by (3.1), and the fact that \lrMD2\(rN is convex and less than cM+N,

< <pMU2<pN, \j/M+N > fMU2fN. (3.2)

In the next result we adapt the proof of [20, Lemma 5.3 (b)] to the case of a maximal
monotone multifunction defined on X x Y, where Y is another reflexive Banach space.

LEMMA 3.1. Let F e 9Jl(X x Y), let Yo C Y be a closed linear subspace and
yoe Ybe such that PrY(F) CyQ+ Yo. Then PTY(dom(pF) Cyo+ Yo.

PROOF. Lety 6 PrK(dom <?,?); then there exist* € X,x* € X*,y* e Y* andy e K
such that (x, y,x*, y*, y) € epi^f . Fix («, v, u*, v*) € F and take an arbitrary
(«', v', u", v*') e F. Then, for every z* e Yf one has (v - v', z*) = 0 and

((«, v) - («', v'), («*, v* + zf) - («*', v*'))

= {(«, v) - («', v'), («', «•) - (M*', i/')) + (w - u', 2*) > 0.

Since F is maximal monotone, we obtain that («, v, u*, v* + z*) 6 F. Hence the
definition of <pF as c*F and the choice of x, x*, y*, y show that

y > {(x, y), («*, v- + *•)) + {(«, w), (x\ y*)) - <(«, U), («*, w* + z*))
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for every z* e Y^, which implies that (y-v,z*) = 0 for each z* e yo
x. It follows that

y-ve (Y0
±)1 = Y0. Hence>'€u + yoCPrK(F) + yoCyo + }'o + yo = vo + y0- •

The next result is an easy consequence of [22, Theorem 2.8.6].

LEMMA 3.2. Let f (= A(X x Y x X* x Y*)andletg : X x X* ^>W be given by

g{x, x*) := inf{/(jt, 0, x\ y') | y* e Y*).

Then g is convex; moreover, if f is Isc and 0 € lc(PrK(dom / ) ) then

g*(u\u) = min{f *(u*, v*, u, 0) \ v* eY*} VH e X, V«* e X*. (3.3)

PROOF. It is obvious that g is convex (as the performance function associated with
a convex function).

Assume that / is Isc and 0 e 'c(Pry(dom / ) ) . Consider

& : X x X* =i X x Y x X* x Y*, tf(x,x*) := [x] x {0} x {x*} x Y*.

Then ^ is a closed convex process (in fact its graph is a closed linear subspace) and
g(x, x*) = inf{/(«, v, u*, v*) | («, v, u\ «•) e tf(x, x*)}. Moreover,

d o m / - I m ^ = X x PTY(F) X X* X Y*,

which shows that 0 6 lc(dom / - Im <£). Applying [22, Theorem 2.8.6 (v)] we obtain
thatg*(M*,n) = min{/*(x*,y*,A:,y) | («*,«) € ^*{x\ y*, x, y)}. But a simple
calculation shows that ^*{x\ y*, x, y) = {(x*, x)} if y = 0 and #*(jt*, y*, x, y) = 0
else. The conclusion is now obvious. •

ANOTHER PROOF. Observe that -g*(u*, u) is equal to

inf {/(*, y, x*, y*) - {«, **) - (x, u*) \ y = 0, x e X,x* <E X', y* e Y*}

so that, using the Lagrange multiplier rule which is satisfied under the assumption
0 € IC(Prv(dom / ) ) in order to get rid of the linear constraint PrK(jc, y, x*, y*) = 0,
there exists some multiplier u* e Y* such that

-*•(«*, u) = inf [f(x, y, x*. f) - (ii, x*) - (x, u') - (y, v*) \

x € X,yeY,x* €X*,y' € Y*}
= max inf \f(x,y,x', y*) - («, x*) - (x, uf) - <y, v') \

WeY' l

x e X,yeY,x* e r , / e r}
= - min{/*(«*, w*. u, 0) | w* € r } .
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[11] Representation of monotone operators by convex functions 11

The next result corresponds to [17, Theorem 4.1] and [20, Lemma 5.1]; we use the
notation ri 5 for the topological interior of 5 w.r.t. A := cl(aff 5) (so ri 5 is empty if
aff S is not closed). Thus one always has ri 5 C icS. In the proof, we use the facts
that when C is convex and icC is nonempty, we have aff C = aff icC and moreover,

"C C 5 C C = > icC = icS. (3.4)

LEMMA 3.3. Let F C X x Y x X* x Y* be monotone. Then

G:= {(x,x*) eX x X* \3y* e Y* : (x,0,x*,y*) e F} (3.5)

is monotone, too. Moreover, if F is maximal monotone, then

lc(Pr,(dom cpF)) = /c(PrK(F)) = ri (PrY(F)) . (3.6)

Furthermore, ifO € IC(PTY(F)) then G is maximal monotone.

PROOF. For showing the monotonicity of G consider (x,x*), («, u*) e G; then
there exist y*, v* e Y* such that (x, 0, x*, y*), (M, 0, «*, v*) 6 F. We obtain that

0 < {(x, 0) - («, 0), (JC*. y*) - («•, «*)) = (x - u, x* - «*).

Let F be maximal monotone. Assume first that 0 € lr(Pr>'(dom^/r)) and consider
the function

Then, by Lemma 3.2, we obtain that

£*(H*, U) = min{^(«*, u*. M, 0) | v* € Y*} V « € X, «* e X*. (3.7)

Since <pF > c, <p*F > cT, one has <pF(x,0,x*, y*) > ((x, 0), (x\ y*)) = (x,x*),
whence S(x,x*) > (x,x*), and ^ (u* , v*, u, 0) > ((ii,0), («•, w*)) = <«,«*),
whence f *(u*, u) > («, «*>. Hence £*T € JF. In order to have that G € 9tt(X),
by Proposition 2.3, it is sufficient to show that G = M(.T. If (x,x*) e G then
(x, 0, x*, y*) € F for some y* e Y*. Hence, by Proposition 2.3 with f =\{rF = (p*F,

which implies that (x, x*) e MK-,. Conversely, if (x, x*) € A/f.T then £*T(*,**) =
(x,x*). From (3.7) we get some y* € Y* with (p*F(x*, y*, x, 0) = (AT.J:') =
((x, 0), (x*, y*)). Again using Proposition 2.3 with / = ijrF = (p*F, we obtain
that (x, 0, x*, y*) e F, and so (x,x*) e G. Hence G is maximal monotone. In
particular, G is nonempty, and so 0 € PTY(F).
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Let y 6 'c(PrK(dom<pF)). Replacing F by F' := F - (0, y, 0,0), it is obvious
that G is replaced by G' = {(*, x*) e X x X* \ 3y* e Y* : (x, y, x*, y*) e F}, and,
by [20, Lemma 5.4 (b)], 0 e ic(PrY(dom<pr)). By what precedes, it follows that G' is
maximal monotone. In particular y e Pry(F). Hence "(Pry (dom ̂ >f)) c Pry(F) c
Prr(dom0>F). Thus, if lc(PrK(dom^/r)) is nonempty, by (3.4) the first equality in (3.6)
holds.

Assume now that ic(PrY(F)) is nonempty and take y e 'c(PrK(F)). Then Yo :=
aff(Pr>'(F)) —y is a closed linear space. ByLemma3.1 we obtain that PTY(dom<pF) c
;y + Ko- Since PrK(F) c PrK(dom <pF), we obtain that

y + Yo = aff(PrK(F)).

It follows thatic(PrK(F)) C lc(PrK(dom^)), and so ' ^ ^ ( d o m ^ ) ) ^ 0. Thus, the
argument of the preceding paragraph shows that the first equality in (3.6) holds.

Since <PF is lsc and the spaces are complete, by [22, Proposition 3.1.5] (with A = 0),
we have that "(PrK(dom^/r)) = rKPr^donnp/r)) and so (3.6) holds. •

The preceding proof yields £*T as a representative function of the new operator G.
That output and the whole of the preceding lemma can be given with an arbitrary
representative f of F instead of (pF.

PROPOSITION 3.4. Let F e Wl(X x Y) and f e T(X x Y x X* x Y*) be such that
<PF < / < &F- Then

ri(Pry(F)) = "(PrK(F)) = IC(PrK(dom / ) ) . (3.8)

Moreover, ifO e IC(Prj-(F))( or equivalently 0 € IC(PrK(dom/)), then G defined by
(3.5) is maximal monotone, the function g : X x X* —• K, given by

g(x, x*) := inf {/(*, 0, JC*. / ) | y* e Y*} (3.9)

is a representative of G (that is, g € Jtf and G = Mg) and the infimum in (3.9) is
attained.

PROOF. We first prove that (3.8) holds. Because cF > ij/F > / > <pF, we have that
F C dom yjfF C dom / C dom <pF, and so

PrK(F) C PrK(dom yjrF) c Prj-(dom / ) c ?xY(dom(pF). (3.10)

When lc(PrK(F)) is nonempty (3.8) is immediate from (3.10) and (3.6).
Assume now that y € lc(PrK(dom/)). Then Ao := aff C, with C := Pry(dom/),

is a closed affine manifold and the relative algebraic interior' C of C in Ao coincides
with ICC. Again applying Lemma 3.1 (with Yo := Ao — _y) we obtain

PTY(dom<pF) C Ao = y + Yo.
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From (3.10) we obtain first that aff(PrK(dom<pf)) = Ao, then that

' ( IMdom/)) C '(PrK(dom^)).

Again using (3.6) we have that lc(Pry(F)) is nonempty, and so (3.8) holds.
Now assume that 0 e ic(Prr(F)), or equivalently 0 e IC(PrK(dom/)). Then

Lemma 3.2 ensures that

g\x\ x) = minf/'Oc*. / , x, 0) | y* e Y*} Vx e X, Vx* e X*.

But, by Proposition 2.4, /*T is also a representative of F, and so, applying the preced-
ing argument with /replaced by /*T, we find that g**(x,x*) = min{/**(;c, 0,x*, y*) |
y* € Y*} = g(x, x*) as / = /** and the infimum in (3.9) is attained. Thus
g € T(X x X*) and, as in the proof of the preceding lemma, we check that g > c and
g* > cT, that is, g € Jif and that Mg = G. U

Now, let us focus our attention on a construction which involves an element A
of the space L(X, Y) of continuous linear operators from X into Y and a monotone
multifunction F : X x Y =t X* x Y*. It is inspired by a classical scheme in convex
duality. As in [17, Section 5], define FA : X x Y =t X* x Y* by

gphFA:={(x,y,xt,y*)eXxYxX*xYt\(x*-A-'y*,y*)eF(x,Ax+y)}.

Thus, setting B(x, y) := (x, y + Ax), we have FA(x, y) = BJFB(x, y) and FA is
monotone. Moreover, since B is an isomorphism with inverse given by B~l(u, v) =
(u,v — Au), FA is maximal monotone whenever F is maximal monotone. Indeed,
if M : X x Y ^4 X* x Y* is a monotone operator whose graph contains the graph
of FA, then (B"')TA/B~' is a monotone operator whose graph contains the graph of
F. Now, since for an isomorphism L : U -*• V between two Banach spaces one has

V(M, U*) e U x U* : c (Lu, (L~')TM*) = c(u, u*)

and since for g : V —*• K

(g o LY =-g* o (L"')T,

as easily checked, taking U := V := X x Y x X* x Y* and L := B x (B~ly, we
get that for any representative function f of F the function / o L is a representative
function of FA. Applying Proposition 3.4 to FA we get the next result.

COROLLARY 3.5. Let F e 9Jl(X x Y), A e L(X, Y) and let f be a representative
ofF. Then

n{{Ax -y\(x,y)e dom F}) = ic[Ax -y\(x,y)€ dom F}

= ic{Ax - y \ (x,y) ePTXxY(domf)}.
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Assume that 0 6 >c{Ax — y | (x, y) e dom F}. Then the multifunction GA whose
graph is {(*, x*) € X x X* | 3y* 6 Y* : (*• - AJ>>*, / ) e F(;c, A*)} is maximal
monotone. Moreover, the function g : X x X* -*• R given by

g(x, x*) = inf {f(x, Ax, x' - A T / , / ) 1 / e T )

is a representative ofGA and the infimum in its definition is attained for every (x, x*) €
X x X*.

An important special case is when M e ffl(X), N € Wl(Y) and F := M x W, that
is, F(x, y) := M(x) x A^(^). It is easy to prove that F is (maximal) monotone if M and
N are so. Moreover, it is quite obvious that <PF(X, y,x*, y*) = (pM(.x,x*) + <pN(y, y*).

COROLLARY 3.6. Let M e Wl(X), N g 9Jl(Y), A e L(X, Y), and let f and g be
representatives for M and N, respectively. Then

ri (/4(dom M) - dom N) = IC(A(dom M) - dom N)

= "(A (Prx(dom/)) - PrK(domg)).

Assume that 0 € lc(A(domM) — domN). Then the multifunction M + AJNA is
maximal monotone. Moreover, if

h : X x X* -» I , h(x, x*) := inf {f(x, x* - AJy*) + g(Ax, y*) \ y* € Y*},

then h is a representative for M + AJ N A and the infimum in its expression is attained.

PROOF. For F := M x N we have that domF = domM x domN, and so the
inferiority assumption in the preceding corollary is satisfied. Hence GA is maximal
monotone. But

GA = {(x, x') | 3 / e r : x* - ATv* e M(x), y* € N(Ax)}

The first conclusion follows from the preceding corollary.
Assume that / and g are representatives for M and N, respectively. It is an easy

task to verify that the function / defined by l(x, y, x*, y*) := f(x, x*) + g(y, y*)
is a representative of F. Applying again the preceding corollary we find that h is a
representative of M + A1 N A and the infimum in its definition is attained. D

Taking X — Y and A to be the identity of X, we get the next result for the sum of
multifunctions.
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COROLLARY 3.7. Let M,N € VJl(X) and let f, g be representatives for M and N,
respectively. Then

ri (dom M — dom N) = lc(dom M — dom N)

= I C(Pr*(dom/) - P r x (doms) ) .

AssumethatO e ic(domM-domN). ThenM+N e DJl(X). Moreover, ifh := fU2g,
that is, h(x, x*) := inf{/(;t, M*) + g(x, v*) \ u*, v* e X*, u* + v* = x*\, then h is a
representative for M + N, h* = f*D\g* and the infima in the expressions ofh and h*
are attained.

The fact that M + N e ffl(X) under the condition 0 e l c (domM - domAO has
been known for a long period (see [18]). Corollary 3.7 shows that <pM02<PN is a
representative for M + N when M, N e 9Jl(X) and 0 e 'c(dom M — dom N), and so
<PM+N < <PMO2<PN; applying the result for \j/M and xfrN, we obtain that i/rMD2T/0v is also
a representative of M + N. Hence

<PM+N < (PMO2<PN < irMD2ifN = (<pM\32(pN)*J < irM+N.

The fact that A1 N A is maximal monotone under the condition

0 € >c(dom N - Im A)

is obtained by Pennanen [13] using a result for the sum; a proof using the Fitzpatrick
function is given in [23] under the same condition, and by Penot [16, Theorem 14]
under the condition Y = K+(conv(dom AO — Im A), which is equivalent to

0 € core(dom N — Im A),

the core or algebraic interior of dom A' — Im A.
In [6], Fitzpatrick formulated Problem 5.4 in the following way: If M and N are

monotone operators, characterise <PM+N. It is not clear what kind of characterisation
is meant, but a natural related question is: what is the relation between <pM+N and <pM,
<pN? By an example we show that in general <pM+N does not coincide with the natural
candidate <pM\32(pN (see (3.2) and the relations above).

EXAMPLE 1. Let X be a Hilbert space (identified with its topological dual),
M = 3(|| • | |2/2), N = d\\ • || and 5 = M + N. Then 5 = 8(|| • ||2/2 + || • ||),
so that M, N and 5 are maximal monotone. We have that <PM(X, **) = II* + **H2/4
&ndcpN(x, x*) = \\x\\+iBx(x*) (see [16, Examples 2 and4]), where tBx is the indicator
function of the closed unit ball Bx of X, and so

(<pMn2<pN)(x, x*) = inf{||jc +x* - u*\\2/4 + \\x\\ + tBx(u*) \ u* e X)

= I H*H if II*+ * ! < • ! .
| - l ) 2 / 4 if \\x+x*\\> 1.
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It is clear that (pM\J2(pN is continuous. Since 5(0) = Bx and S(x) = {(1 + 1/1|JC(|)JC}
for * ,£ 0, we obtain that

= max _ ,. „ (x, u) + (w, * * ) —-— (u, u) I I
II "II II" II )\

= max {||*||, sup ((t + 1)(*,M) +/(«,**) — t(t + 1]

= max
/>0

But ||0 + 1)JC -f- rjc*|| < Ĥ ll + r||*+jt*|| and so

MO •= ll(r + 1)* + ' * ! -t{t + l)< ||*|| + r | |* + **|| - t(t + 1)

=: n(t) Vr > 0.

If ||* + **|| < 1, then n(t) < ||*|| = ij(0) = /x(0), and so <ps(x,x*) = \\x\\ =
((PMO2(PN)(X,X*). Assume that ||* +**|| > 1. Then there exists some t0 > 0
such that <ps(x,x*) = /z(f0) < n(t0) < J?(r,), where *, := (||* +**| | - l)/2. But
f?('i) = (<PMO2<PN)(X, **). Hence, in order to have that (ps(x, **) = (pM\32<pN(x, **),
we need that t0 = tx > Oand ||(fo+ l)*+ro**|| = ||*|| +ro||* +**ll- Because X is a
Hilbert space, the last equality is equivalent to the existence of some a > 0 such that
* = a (* + **), and so * and ** are collinear. So, if* and ** are not collinear then
<ps(*,**) < (<pMn2<pN)(x,x*).

4. Looking for autoconjugate representatives

Fitzpatrick [6] formulated his Problem 5.5 as follows (with our notation): Given a
monotone operator T on X, find a convex function f on X x X* such that gph T C
gph Tf and / T = /*. For which such f is Tf maximal monotone!

First, observe that if f = /* then / € Jf. Indeed, / is lsc, because /*T is
so. Then gf = f = /*T > c, and so / e Jff. It follows that Tf = Mg/ = Mf.
By Proposition 2.3 we have that Mf e 9Jt(X). Hence Tf e 9Jt(X) for every / 6
A(X x X*) with / T = /*. That result answers the last part of the problem. For the
first part of the problem, the answer is practically given by [16, Theorem 10], [14]
and [21]. Indeed, given a monotone operator T : X =1 X*, there exists M € 97l(X)
such that gph T c gph M. By [16, Theorem 10] or [21, Theorem 2.4] there exists

https://doi.org/10.1017/S1446181100009731 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009731


[17] Representation of monotone operators by convex functions 17

f eT(X x X*) such that q>M < f < \I/M and / T = /*. By Propositions 2.4 and 2.6
gph T c gph M = gph Mf = gph Tf so that any such / does the job.

The existence of such a function / in [16, Theorem 10] and [21, Theorem 2.4]
is obtained using Zorn's lemma. Under the additional assumption on M e VJl(X)
that aff(dom M) is closed, it is possible to provide a formula for this / , as shown in
Proposition 4.2.

Before stating the next result observe that having / e & (respectively &) and
a > 0, then the function g := /„ defined by g(x, x*) := af(x,a~lx*) is in &
(respectively &) and Mg(x) = aMf(x) for every x e X; moreover, Pr^(dom^) =
PrHdom/) and g*(x*,x) = af*{a~xx\x) for x e X and x* e X*. This last
relation shows that g e J%? if / € Jff. Moreover, given a nonempty monotone
multifunction M c X x X* and a > 0, the preceding calculation of the conjugate
of /„ shows that <paM(x,x*) = a<pM{x,a^x*), faM(x,x*) = a^M(x,a^x*) for
every (x, x*) e X x X*. Given two monotone multifunctions M, N c X x X*
with domM D dom TV ^ 0, since cM+N = cM\32cN, as observed before, we have
<PM+N < <PiuO2(pN. Moreover, if / , g e & (respectively / , g e &) are such that
Prx(dom/) n Prx(domg) ^ 0, we easily see that k := /D 2 g 6 «̂ " (respectively
h:=ke&) and gph(M7 + Ms) C gph M* c gph Mh: if (JC, A:*) e gph(M7 + M4)
and if «*, v* € X* are such that (x, u*) e Mf, (x, v*) e Mg and x* := u* + v*, then
/ ( * , M*) = (x, «*), ^(J:, U*) = (x, v*) and so

(x, x*) < h(x, x*) < k(x, x*) < f(x, u*) + g(x, v*)

hence (x, x*) e Mk C Mh. In particular, if Mf + Mg is maximal monotone then Mh

is maximal monotone, too (and so h e d? by Proposition 2.1). Taking N = M will
yield the following result. *

PROPOSITION 4.1. Let M € 9K(.Y) W fef / , g be representatives ofM. Then, for
every a € (0, 1), h := / an2^i_a is a representative of M, too.

PROOF. By what precedes, Mfa = aM and Mg^ = (1 — a)M. Since A/(JC) is
convex for every x e X,we have that M(x) = aM(x) + (1 — a)A/(jc) = Mfa(x) +
Mg,_a(x) C MA(x). Since M is maximal monotone we obtain that M = Mh, and so
h e Jf, whence h is a representative of M. D

A special choice of / , g, a leads to the following construction giving a general
answer to the problem raised above.

PROPOSITION 4.2. Let M € 9Jl(X) be such that aff (dom M) is closed and let f
be a representative ofM. Then for ft and f2 given by f\(x, x*) :— xf(x, 2x*) and
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f2(x, x*) :=' {f*r(x, 2x*) = \f*(2x*, x), the function h := f\U2f2 is a representa-
tive ofM andh* = hJ.

PROOF. Let Xo := aff(dom M) — x for some x e dom M. Then Xo is a closed
linear space. By [20, Lemma 5.3 (b)] (or Lemma 3.1 with Y = {0}) we have that

and so

aff (Prx(dom <pu)) = aff (dom M) = x + Xo.

It follows that 0 € 'c(Prx(dom<pM) — Prx(dom^w)), whence, by Corollary 3.7,

0elc(domA/ -domM).

We have that / € Jf? and M = Mf. Then M = Mf.T, too. It follows that
Mfl(x) = Mh(x) = \M(x) for every x e X. Moreover, by Corollary 3.7, 0 e
/c(Prx(dom/,) - Prx(dom/2)), h e 3tf and Mh(x) - Mf,(x) + Mh(x) = M(x) for
every x € X, and soM = Mh. Again using Corollary 3.7 we obtain that

1
A(JC, **) = min { - / ( * , 2x\) + -ft(2x*2,x) x* =x\ + x*2\ =h\x*,x)

for all (x, x*) € X x X*. The proof is complete. •

The preceding result suggests that we introduce a new representation of maximal
monotone operators. We call it the balanced representation. For M e 97t(X) it is
given by

where M/2 denotes the operator given by (M/2)(x) = ^M(x) for x e X. Proposi-
tion 4.1 shows that fiM is a representative of M. If M e 9Jl(X) is such that aff (dom M)
is closed, then by Proposition 4.2

What precedes show that under qualification conditions such a representative has good
behaviour with respect to the usual operations.

In this paper we answered some of the questions raised by Fitzpatrick [6], at least
partially. We close the paper with some questions which complete those raised by
Fitzpatrick:

(1) What are the images under the mappings <p and ^ of the set J({X) of monotone
operators?
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(2) What are the images under the mappings T and M of the set # 7
(3) What about the compositions To<p, M o<p, <poT, (poMl Idem with <p changed

into \jrl
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