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A note on spaces of almost periodic
functions with values in Banach spaces

Juan Matías Sepulcre and Tomás Vidal

Abstract. In this paper, we consider an equivalence relation on the space AP(R, X) of almost periodic
functions with values in a prefixed Banach space X. In this context, it is known that the normality or
Bochner-type property, which characterizes these functions, is based on the relative compactness of
the family of translates. Now, we prove that every equivalence class is sequentially compact and the
family of translates of a function belonging to this subspace is dense in its own class, i.e., the condition
of almost periodicity of a function f ∈ AP(R, X) yields that every sequence of translates of f has a
subsequence that converges to a function equivalent to f. This extends previous work by the same
authors on the case of numerical almost periodic functions.

1 Introduction

The definition of an almost periodic function given by Bohr in his pioneering work [6]
is based on two properly generalized concepts: the periodicity to the so-called almost
periodicity, and the periodic distribution of periods to the so-called relative density of
almost periods. Specifically, a continuous function f ∶ R→ C is almost periodic if for
every ε > 0, there corresponds a number l = l(ε) > 0 such that each interval of length
l contains a number τ satisfying ∣ f (t + τ) − f (t)∣ < ε for all t. In particular, this notion
yields that f is bounded and uniformly continuous. We will denote as AP(R,C) the
space of almost periodic functions in the sense of this definition (Bohr’s condition). It
is noteworthy that almost periodic functions occur frequently and they are more often
encountered in the study of various phenomena than the rather special periodic ones.
For example, note that the sum of the two periodic functions of a real variable t ↦ e i t

and t ↦ e i
√

2t is not periodic, but it is almost periodic.
In the course of time, Bohr’s work was studied by several mathematicians, such

as Amerio, Besicovitch, Bochner, Corduneanu, Favard, Fink, Levitan, Lusternik,
Pontryagin, Prouse, Stepanov, and Von-Neumann, Weyl, who also contributed to
develop and expand this theory completely. Moreover, several variants and extensions
of Bohr’s concept were introduced, most notably by Besicovitch, Stepanov, and Weyl.
In this context, we can cite, among others, the papers [1–3, 5, 7, 8, 10–15, 21, 22] and
the references therein.
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Without a doubt, almost periodic functions have played an important role in
various branches of mathematics since their introduction by Bohr during the 1920s.
Indeed, as the literature about this topic shows, this theory has many important
applications in problems of ordinary and partial differential equations, dynamical
systems, stability theory, nonlinear oscillations theory, and so on, which have at the
same time a wide scope of applications in various fields of science and technology.
Moreover, the theory of almost periodic functions opened a way to study a wide class
of trigonometric series of the general type and even exponential series.

In this paper, we focus our attention on the case when the values taken by such
functions belong to a Banach space, which were defined and studied by Bochner
in 1933 [4]. Let (X , ∥ ⋅ ∥) be an arbitrary Banach space over R or C, and we shall
briefly present the basic properties of AP(R, X), which is defined, in terms of Bohr’s
property, as the set of continuous functions f ∶ R→ X such that, fixed ε > 0, there
corresponds a relatively dense set {τ j} of real numbers satisfying ∥ f (t + τ j) − f (t)∥ <
ε for t ∈ R and τ j ∈ {τ j}. This theory is, in its essential lines, similar to the theory of
numerical almost periodic functions. It is plain that all functions f in AP(R, X) are
bounded and uniformly continuous. Moreover, AP(R, X) is a Banach space equipped
with the uniform convergence norm which, by abuse of language, is denoted as
∥ f ∥ ∶= sup{∥ f (t)∥ ∶ t ∈ R}.

On the one hand, as in the case of AP(R,C), Bohr’s definition of almost periodicity
of a function f ∈ AP(R, X) is also equivalent in this case to the property of relative
compactness, called normality or Bochner-type property, for the family { f (t + h) ∶
h ∈ R} of translates of f [10, Section 3.5].

On the other hand, another very important result of this theory is the approxima-
tion theorem according to which the class of almost periodic functions AP(R, X)
coincides with the class of limit functions of uniformly convergent sequences of
trigonometric polynomials of the type

a1e i λ1 t +⋯+ an e i λn t ,(1.1)

with arbitrary real exponents λ j and arbitrary coefficients a j ∈ X [10, Sections 3.5
and 4.5]. These approximating exponential polynomials can be found by Bochner–
Fejér’s summation (see, in this regard, [3, Chapter 1, Section 9], [10, Section 4.5],
or [1, Chapter 2, Section 3]). In fact, if a function f (t) belongs to AP(R, X), then
there exists a (Bochner–Fejér’s) sequence P f

k (t) = ∑
n
m=1 rm ,k am e i λm t of trigonometric

polynomials of type (1.1) which satisfies the condition ∥ f (t) − P f
k (t)∥ → 0 as k →∞,

where the rational numbers rm ,k depend on m and k, but not on am , and rm ,k → 1 as
k →∞.

Moreover, for any function f ∈ AP(R, X), the mean value

M( f (t)) = lim
l→∞

1
l ∫

a+l

a
f (t) dt

exists uniformly with respect to a ∈ R, and, at most, a countable set of values of λk ∈ R
such that ak = a( f , λk) = M( f (t)e−λk t) ∈ X is different from the null element in X
[10, Sections 3.5 and 4.5]. In this way, the series∑k≥1 ak e i λk t is called the Fourier series
of f [10, Section 4.5]. The elements ak and λk are also called the Fourier coefficients
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and exponents of f, respectively. It is worth noting that if two functions f1(t) and
f2(t) in AP(R, X) have identical Fourier series, then they are equal (see [1, p. 25] or
[10, Section 4.5]).

In this paper, we consider an equivalence relation on the functions with values in a
Banach space X which can be represented with a Fourier-like series (see the comments
before Definition 3.2), and which satisfies the important property consisting of that
an equivalence class is completely contained in the space AP(R, X)when at least one
of its functions is almost periodic (see Corollary 3.3). In this way, by analogy with
the recent developments which we made for the space AP(R,C), the Besicovitch
almost periodic functions, and other spaces of generalized almost periodic functions
(see [16, 17, 19], respectively), this equivalence relation leads to refine the Bochner-
type property or normality in the sense that the condition of almost periodicity in
AP(R, X) implies that every sequence of translates has a subsequence that converges,
with respect to the topology of AP(R, X), to an equivalent function (see Theorem 3.7
and Corollary 3.8). This extends our previous work on the case of numerical almost
periodic functions (see [16, 17], but also [18, 20]). Moreover, we point out that the
proof given here of the main result, and specifically that of Lemma 3.2, is different
from those of previous papers.

2 Preliminaries

Let (X , ∥ ⋅ ∥) be an arbitrary Banach space over C. We shall refer to the expressions of
the type

a1e i λ1 p +⋯+ a j e i λ j p +⋯

as exponential sums, where the λ j ’s are real numbers, the a j ’s are in X, and p is the
variable. For our purposes, we next consider the following classes.

Definition 2.1 Let Λ = {λ1 , λ2 , . . . , λ j , . . .} be an arbitrary countable set of distinct
real numbers, which we will call a set of exponents or frequencies. We will say that an
exponential sum is in the class SX

Λ if it is a formal series of type

∑
j≥1

a j e i λ j p , a j ∈ X , λ j ∈ Λ.

In the next section of this paper, we are going to consider some functions which are
associated with a concrete subclass of these exponential sums, where the parameter p
will be changed by t ∈ R.

By analogy with [17, Definition 2], we next consider the following equivalence
relation on the classes SX

Λ .

Definition 2.2 Given an arbitrary countable set Λ = {λ1 , λ2 , . . . , λ j , . . .} of distinct
real numbers, consider A1(p) and A2(p) two exponential sums in the class SX

Λ , say
A1(p) = ∑ j≥1 a j e i λ j p and A2(p) = ∑ j≥1 b j e i λ j p . We will say that A1 is ∗-equivalent to
A2 (in that case, we will write A1

∗∼ A2) if for each integer value n ≥ 1, with n ≤ ♯Λ,
there exists a Q-linear map ψn ∶ Vn → R, where Vn is the Q-vector space generated by
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{λ1 , λ2 , . . . , λn}, such that

b j = a j e iψn(λ j) , j = 1, . . . , n.

As we next show, this equivalence relation can be characterized in terms of a basis
for the set of exponents Λ. Let GΛ = {g1 , g2 , . . . , gk , . . .} be a basis of the vector space
over the rationals generated by a set Λ of exponents, which yields that GΛ is linearly
independent over the rational numbers and each λ j is expressible as a finite linear
combination of terms of GΛ , say

λ j =
q j

∑
k=1

r j,k gk , for some r j,k ∈ Q.(2.1)

By abuse of notation, we will say that GΛ is a basis for Λ. Moreover, we will say that GΛ
is an integral basis for Λ when r j,k ∈ Z for any j, k. For completeness, we will provide
the proof of the following result that allows us to characterize the equivalence relation
introduced in Definition 2.2.

Proposition 2.1 Given Λ = {λ1 , λ2 , . . . , λ j , . . .} a set of exponents, consider A1(p)
and A2(p) two exponential sums in the classSX

Λ , say A1(p) = ∑ j≥1 a j e i λ j p and A2(p) =
∑ j≥1 b j e i λ j p . Fixed a basis GΛ for Λ, for each j ≥ 1, let r j be the vector of rational
components satisfying (2.1). Then A1

∗∼ A2 if and only if for each integer value n ≥ 1,
with n ≤ ♯Λ, there exists a vector xn = (xn ,1 , xn ,2 , . . . , xn ,k , . . .) ∈ R♯GΛ such that b j =
a j e<r j ,xn>i for j = 1, 2, . . . , n. Furthermore, if GΛ is an integral basis for Λ, then A1

∗∼ A2
if and only if there exists x0 = (x0,1 , x0,2 , . . . , x0,k , . . .) ∈ R♯GΛ such that b j = a j e<r j ,x0>i

for every j ≥ 1.

Proof For each integer value n ≥ 1, let Vn be the Q-vector space generated by
{λ1 , . . . , λn}, V the Q-vector space generated by Λ, and GΛ = {g1 , g2 , . . . , gk , . . .}
a basis of V. If A1

∗∼ A2 and n is a positive integer number with n ≤ ♯Λ, by
Definition 2.2, there exists a Q-linear map ψn ∶ Vn → R such that b j = a j e iψn(λ j) , j =
1, 2 . . . , n. Hence, b j = a j e i∑

i j
k=1 r j,k ψn(gk), j = 1, 2, . . . , n, or, equivalently, b j =

a j e i<r j ,xn>, j = 1, 2, . . . , n, with xn ∶= (ψn(g1), ψn(g2), . . . , ψn(gp), 0, . . .), where
p =max{i1 , i2 , . . . , in}. Conversely, suppose the existence, for each integer value
n ≥ 1, of a vector xn = (xn ,1 , xn ,2 , . . . , xn ,k , . . .) ∈ R♯GΛ such that b j = a j e<r j ,xn>i ,
j = 1, 2, . . . , n. Thus, a Q-linear map ψn ∶ Vn → R can be defined from ψn(gk) ∶= xn ,k ,
k ≥ 1. Therefore, ψn(λ j) = ∑i j

k=1 r j,kψ(gk) =< r j , xn >, j = 1, 2, . . . , n, and the result
follows.

Now, suppose that GΛ is an integral basis for Λ and A1
∗∼ A2. By above, for each

given integer value n ≥ 1, let xn = (xn ,1 , xn ,2 , . . .) ∈ R♯GΛ be a vector such that b j =
a j e i<r j ,xn>, j = 1, 2, . . . , n. Since each component of r j is an integer number, without
loss of generality, we can take xn ∈ [0, 2π)♯GΛ as the unique vector in [0, 2π)♯GΛ

satisfying the above equalities, where we assume xn ,k = 0 for any k such that r j,k = 0,
for j = 1, . . . , n. Therefore, under this assumption, if m > n, then xm ,k = xn ,k for any k,
so that xn ,k ≠ 0. In this way, we can construct a vector x0 = (x0,1 , x0,2 , . . . , x0,k , . . .) ∈
[0, 2π)♯GΛ such that b j = a j e<r j ,x0>i , for every j ≥ 1. Indeed, if r1,k ≠ 0, then the
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component x0,k is chosen as x1,k , and if r1,k = 0, then each component x0,k is defined
as xn+1,k , where r j,k = 0, for j = 1, . . . , n, and rn+1,k ≠ 0. Conversely, if there exists
x0 = (x0,1 , x0,2 , . . . , x0,k , . . .) ∈ R♯GΛ such that b j = a j e<r j ,x0>i , for every j ≥ 1, then it
is clear that A1

∗∼ A2 under Definition 2.2. ∎

3 Main results

Depending on the set of Fourier exponents, we next consider the following classes of
almost periodic functions in AP(R, X).

Definition 3.1 Let Λ = {λ1 , λ2 , . . . , λ j , . . .} be an arbitrary countable set of distinct
real numbers. We will say that a function f ∶ R→ X is in the class FX

Λ if it is an almost
periodic function in AP(R, X) whose associated Fourier series is of the form

∑
j≥1

a j e i λ j t , a j ∈ X , λ j ∈ Λ.(3.1)

In the particular case that Λ = {λ1 , . . . , λn} is finite, the functions in FX
Λ are finite

exponential sums of the form

a1e i λ1 t +⋯+ an e i λn t , a j ∈ X , λ j ∈ Λ, j = 1, . . . , n.

In terms of Definition 2.2, we next define an equivalence relation on a certain space
of functions with values in a Banach space X which can be represented by exponential
sums of the form (3.1), and in particular on the classes FX

Λ . More specifically, the next
equivalence relation is defined on the set, say A(R, X), of functions f from R to X for
which there exists the mean value

M{ f (t)} ∶= lim
l→∞

1
2l ∫

l

−l
f (t)dt ∈ X ,

f (t)e−i λt ∈ A(R, X) for any λ ∈ R, and there always exists at most a countable
infinite set of real values λk for which a( f , λk) ∶= M{ f (t)e−i tλk} ≠ 0. In this way, we
can associate to f ∈ A(R, X) a unique exponential sum ∑λk∈Λ a( f , λk)e i λk t , where
Λ = {λk ∈ R ∶ a( f , λk) ≠ 0}, which is of the form (3.1) and which we will call its
Fourier series. It is clear that AP(R, X) ⊂ A(R, X), where X stands for a Banach
space, satisfies this property (diverse types of almost periodic functions with values in
Banach spaces which can be represented by its Fourier-like series can be seen in [9]).
Furthermore, if X = C, every function in the Besicovitch space B(R,C) ⊃ AP(R,C)
satisfies this property (see [10, Section 3.4]).

Definition 3.2 Given Λ = {λ1 , λ2 , . . . , λ j , . . .} a set of exponents, let f1 and f2 denote
two functions in A(R, X) which are, respectively, associated with exponential sums
of the form

∑
j≥1

a j e i λ j t and ∑
j≥1

b j e i λ j t , a j , b j ∈ X , λ j ∈ Λ.

We will say that f1 is ∗-equivalent to f2 if for each integer value n ≥ 1, with n ≤ ♯Λ,
there exists a Q-linear map ψn ∶ Vn → R, where Vn is the Q-vector space generated by
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{λ1 , λ2 , . . . , λn}, such that

b j = a j e iψn(λ j) , j = 1, . . . , n.

In that case, we will write f1
∗∼ f2.

Recall that if two functions f1(t) and f2(t) in AP(R, X) have identical Fourier
series, then they are equal. As we can see, restricted to actual series of almost periodic
functions, the ∗-equivalence of formal series (Definition 2.2) reduces to that on the
functions in the classes FX

Λ . That is why we use the same notation for them.
In the context of finite exponential sums (when Λ is finite), the following propo-

sition is useful to get the subsequent results in this paper. By analogy with the case
of AP(R,C) with the topology of the uniform convergence, its proof is based on the
fact that the functions in FX

Λ are also equipped with the uniform convergence norm.
Hence, the proof of the next result is analogous to that of [16, Theorem 1].

Proposition 3.1 Given Λ = {λ1 , λ2 , . . . , λn} a finite set of exponents, let f1(t) =
∑n

j=1 a j e i λ j t and f2(t) = ∑n
j=1 b j e i λ j t be two ∗-equivalent functions in the class FX

Λ .
Fixed ε > 0, there exists a relatively dense set of real numbers {τ} such that

∥ f1(t + τ) − f2(t)∥ < ε ∀τ ∈ {τ}.

We next prove the following result which is essential in our subsequent develop-
ment. Given an arbitrary set Λ of exponents and two exponential sums A1(t), A2(t) ∈
SX

Λ , suppose that A1(t) is associated with an almost periodic function in AP(R, X)
and A1(t)

∗∼A2(t) (under Definition 2.2), then is the exponential sum A2(t) associated
with an almost periodic function in AP(R, X)? The next lemma answers affirmatively
this question.

Lemma 3.2 Let f1(t) ∈ AP(R, X) be an almost periodic function whose Fourier
series is given by ∑ j≥1 a j e i λ j t , a j ∈ X, where {λ1 , . . . , λ j , . . .} is a set of distinct expo-
nents. Consider b j ∈ X such that ∑ j≥1 b j e i λ j t and ∑ j≥1 a j e i λ j t are ∗-equivalent. Then
∑ j≥1 b j e i λ j t is the Fourier series associated with an almost periodic function f2(t) ∈
AP(R, X) satisfying f1

∗∼ f2.

Proof Take Λ = {λ1 , . . . , λ j , . . .}. By hypothesis, f1 ∈ FX
Λ ⊂ AP(R, X) is deter-

mined by a series of the form ∑ j≥1 a j e i λ j t , a j ∈ X , λ j ∈ Λ. In virtue from [1, p.
29] or [10, Section 4.5], let P f1

k (t) = ∑ j≥1 p j,k a j e i λ j t , k = 1, 2, . . ., be the Bochner–
Fejér trigonometric polynomials which converge to f1 with respect to the topology
of AP(R, X) (and converge formally to its Fourier series on R). Now, take τ ∈ R,
then P f1,τ

k (t) = ∑ j≥1 p j,k a j e i λ j(t+τ), k = 1, 2, . . ., are the Bochner–Fejér trigonometric
polynomials which converge to f1,τ(t) ∶= f1(t + τ), t ∈ R. On the other hand, consider
the finite exponential sums∑ j≥1 p j,k b j e i λ j t , with t ∈ R and k = 1, 2, . . .. Take a positive
sequence {ε l}l≥1 tending to 0. By Proposition 3.1, given l ∈ {1, 2, . . .}, there exists a
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relatively dense set of real numbers τ l such that
�����������
∑
j≥1

p j,k a j e i λ j(t+τ l ) −∑
j≥1

p j,k b j e i λ j t
�����������
< ε l

3
∀t ∈ R ∀τ l .

Furthermore, by the Bochner–Féjer property, for each l = 1, 2, . . ., there exists k l ∈ N
such that

∥P f1,τl
k (t) − f1(t + τ l)∥ =

�����������
∑
j≥1

p j,k a j e i λ j(t+τ l ) − f1(t + τ l)
�����������
≤ ε l

3
, for each k > k l .

Finally, by the property of normality applied to the sequence { f1(t + τ l)}τ l , we can
extract a subsequence { f1(t + τ lm)}τ lm

which converges to a certain function f2 with
respect to the topology of AP(R, X). In this way, we assure the existence of m l ∈ N
such that

∥ f2(t) − f1(t + τ lm)∥ ≤
ε
3

, for each m > m l .

Now, given l ≥ 1, let k > k l and m > m l . We deduce from above that
�����������
∑
j≥1

p j,k b j e i λ j t − f2(t)
�����������
≤
�����������
∑
j≥1

p j,k b j e i λ j t −∑
j≥1

p j,k a j e i λ j(t+τ lm )
�����������

+
�����������
∑
j≥1

p j,k a j e i λ j(t+τ lm ) − f1(t + τ lm)
�����������
+ ∥ f1(t + τ lm) − f2(t)∥ ≤ ε l .

Making l tend to infinity, we deduce that∑ j≥1 p j,k b j e i λ j t , k = 1, 2, . . ., converges to f2
with respect to the topology of AP(R, X). Likewise, since AP(R, X) is the closure of
the trigonometric polynomials with respect to the uniform convergence norm, we get
that f2 ∈ AP(R, X). Finally, by Definition 3.2, it is clear that f1

∗∼ f2. ∎

The reader can note that the proof of the previous result given here is different from
those of [16, Lemma 2] and [17, Lemma 1].

As an immediate consequence of Lemma 3.2, the following result justifies the fact
that an equivalence class (under Definition 3.2) is completely contained inFX

Λ/
∗∼when

one of its functions is in FX
Λ .

Corollary 3.3 Let Λ be a set of exponents and G an equivalence class of functions in
A(R, X) (under Definition 3.2). If f ∈ G ∩FX

Λ , then G ⊂ FX
Λ/
∗∼.

As it can be seen below, the statements of many of the subsequent results include
the condition that G is an equivalence class in FX

Λ/
∗∼. It is worth noting that Corollary

3.3 assures that this condition is satisfied when one of the functions in G belongs to
AP(R, X).

We next prove that if f1(t) and f2(t) are two ∗-equivalent almost periodic func-
tions in some FX

Λ , then f2(t) can be approximated by translates { f1(t + τ) ∶ τ ∈ R}
of f1(t). This generalizes Proposition 3.1 for the case of a (nonnecessarily finite)
arbitrary set of exponents. The main ingredient in order to prove this result for the

https://doi.org/10.4153/S0008439522000042 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000042


960 J. Sepulcre and T. Vidal

case of functions with an infinite Fourier expansion is the Bochner–Fejér’s summation
method, which was mentioned in the introduction of this article (and already used in
Lemma 3.2).

Theorem 3.4 Let Λ be a set of exponents, G an equivalence class in FX
Λ/
∗∼, and f1 , f2 ∈

G. Fixed ε > 0, there exists a relatively dense set of real numbers {τ} such that

∥ f1(t + τ) − f2(t)∥ ≤ ε ∀τ ∈ {τ}.

Proof Let f1(t), f2(t) ∈ AP(R, X) be two ∗-equivalent almost periodic functions
whose Fourier series are given by ∑ j≥1 a j e i λ j t , a j ∈ X, and ∑ j≥1 b j e i λ j t , b j ∈
X, respectively. Likewise, consider P f1

N (t) = ∑
N
m=1 rm ,N am e i λm t and P f2

N (t) =
∑N

m=1 rm ,N bm e i λm t the (Bochner–Fejér’s) sequences of trigonometric polynomials
associated with f1(t) and f2(t), respectively, where the rational numbers rm ,N depend
on m and N, but not on am and bm , and rm ,k → 1 as k →∞. In this way, fixed ε > 0,
there exists Nε which satisfies the condition

∥ f1(t) − P f1
Nε
(t)∥ < ε/3 and ∥ f2(t) − P f2

Nε
(t)∥ < ε/3.(3.2)

Furthermore, since P f1
Nε
(t) and P f2

Nε
(t) are ∗-equivalent (because f1 , f2 ∈ G) by Propo-

sition 3.1, there exists a relatively dense set of real numbers {τ} such that

∥P f1
Nε
(t + τ) − P f2

Nε
(t)∥ < ε/3 ∀τ ∈ {τ}.(3.3)

Consequently, from (3.2) and (3.3), we conclude for any τ ∈ {τ} that

∥ f1(t + τ) − f2(t)∥ ≤ ∥ f1 − P f1
Nε
∥ + ∥P f1

Nε
(t + τ) − P f2

Nε
(t)∥ + ∥P f2

Nε
− f2∥ < ε.

That is, f2(t) can be approximated by translates of f1(t). ∎

What is more, by taking Lemma 3.2 into account, Theorem 3.4 can be more
generally stated as follows.

Corollary 3.5 Let Λ = {λ1 , . . . , λ j , . . .} be a set of exponents and f1 ∈ FX
Λ whose

Fourier series is given by ∑ j≥1 a j e i λ j t , a j ∈ X. Consider b j ∈ X such that ∑ j≥1 b j e i λ j t

and ∑ j≥1 a j e i λ j t are ∗-equivalent. Fixed ε > 0, there exists a relatively dense set of real
numbers {τ} such that

∥ f1(t + τ) − f2(t)∥ ≤ ε ∀τ ∈ {τ},

where f2 ∈ FX
Λ is an almost periodic function whose Fourier series is given by

∑ j≥1 b j e i λ j t .

The following result, which extends [16, Proposition 3], concerns the concept of
convergence in AP(R, X). With respect to the topology of AP(R, X), it is satisfied
that the equivalence classes of FX

Λ/
∗∼ are closed. In fact, more specifically, they are

sequentially compact. The proof is based on Lemma 3.2, and it is analogous to that
of [16, Proposition 3] (where the last statement is deduced from Helly’s selection
principle).
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Proposition 3.6 Let Λ be a set of exponents and G an equivalence class in FX
Λ/
∗∼. Then

G is sequentially compact.

Regarded as members of a metric space, sequential compactness is the same as
compactness (in the topology induced by the metric), and it implies being closed. So,
as a consequence of Proposition 3.6 and with respect to the topology of AP(R, X), we
state that the family of translates of a function f ∈ FX

Λ is closed on its equivalence class
of FX

Λ/
∗∼. In fact, this result can be improved in the sense that, fixed a function f ∈ FX

Λ ,
the limit points of the set of the translates T f = { f (t + τ) ∶ τ ∈ R} of f are precisely
the almost periodic functions which are ∗-equivalent to f. The proof is rather similar
to that of [16, Theorem 2].

Theorem 3.7 Let Λ be a set of exponents, G an equivalence class in FX
Λ/
∗∼, and f ∈ G.

Then the set of functions T f = { fτ(t) ∶= f (t + τ) ∶ τ ∈ R} is dense in G.

We have seen in the introduction that the functions in AP(R, X) satisfy the
Bochner-type property consisting of the relative compactness of the set { f (t + τ)},
τ ∈ R, associated with an arbitrary function f ∈ AP(R, X). As an important conse-
quence of Theorem 3.7, we have refined this property in the sense that we show that
the condition of almost periodicity of a function f (t) ∈ AP(R, X) yields that every
sequence { f (t + τn)}, τn ∈ R, of translates of f has a subsequence that converges with
the topology of AP(R, X) to a function which is ∗-equivalent to f.

Corollary 3.8 Let f ∈ A(R, X). Then f is in AP(R, X) if and only if the closure of
its set of translates is compact. Furthermore, in this case, this closure coincides with its
equivalence class.
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