HOMOMORPHISMS ON AN ORTHOGONALLY DECOMPOSABLE HILBERT SPACE

Sadayuki Yamamuro

Dedicated to Professor B.H. Neumann for his eightieth birthday

> For a triple $\left(M, H, \xi_{0}\right)$ of a von Neumann algel,ra M on a Hilbert space H with a cyclic and separating vector ξ_{0}, every order isomorphism ϕ of H such that $\phi \xi_{0}=\xi_{0}$ is an orthogonal decomposition isomorphism if and only if ξ_{0} is a trace vector.

Let M be a von Neumann algebra on a Iilbert space H. We assume that there is a cyclic and separating vector ξ_{0} for M. Let J and $\Delta_{\xi_{0}}$ be the conjugation and modular operator respectively associaled with $\left(M, H, \xi_{0}\right)$, and let H^{+}be the natural cone, that is,

$$
H^{+}=\overline{\left\{x j(x) \xi_{0}: x \in M\right\}}=\overline{\left\{\Delta_{\xi_{0}}^{1 / 4} x \xi_{0}: x \in M^{+}\right\}}
$$

where $j(x)=J x J$ and M^{+}is the positive part of M. Let $L(H)$ be the set of all continuous linear operators on H, and $I^{J}=\{\xi \in H: J \xi=\xi\}$.

An operator $\phi \in L(H)$ is called an o.d. (orthogonal decomposition) homomorphism if the following condition is satisficd: if $\xi=\xi^{+}-\xi^{-}$, where $\xi^{+} \in H^{+}, \xi^{-} \in H^{+}$ and $\left(\xi^{+}, \xi^{-}\right)=0$, is the orthogonal decomposition of $\xi \in H^{J}$, then $\phi \xi \in H^{J}$ and $\phi \xi=\phi \xi^{+}-\phi \xi^{-}$is also the orthogonal decomposition of $\phi \xi$. It is easy to see that, for an operator $\phi \in L(H)$, the following conditions are equivalent:
(1) ϕ is an o.d. homomorphism;
(2) $|\phi \xi|=\phi|\xi|$ for every $\xi \in H^{+}$, where $|\xi|=\xi^{+}+\xi^{-}$;
(3) $\phi\left(H^{+}\right) \subseteq H^{+}$, and $(\phi \xi, \phi \eta)=0$ whenever $\xi \in H^{+}, \eta \in H^{+}$and $(\xi, \eta)=$ 0 .

It was proved in [2] that an operator $\phi \in L(I I)$ is an o.d. homomorphism if and only if $\phi\left(H^{+}\right) \subseteq H^{+}$and $\phi^{\star} \phi \in M \cap M^{\prime}$.

An order isomorphism is a bijective operator $\phi \in L(H)$ such that $\phi\left(H^{+}\right)=H^{+}$. If ϕ is a bijective o.d. homomorphism and ϕ^{-1} is also an o.d. homonorphism, ϕ is called an o.d. isomorphism.

[^0]The aim of this note is to consider the following property of $\left(M, H, \xi_{0}\right)$.
(\star) Every order isomorphism ϕ such that $\phi \xi_{0}=\xi_{0}$ is an o.d. isomorphism.

When M is commutative, H is lattice-ordered and o.d. homomorphisms are exactly the lattice homomorphisms. Generally, in Banach lattices, all order isomorphisms are lattice homorphisms. However, the corresponding result for H does not hold. It was proved in [6] that every order isomorphism of H is an o.d. isomorphism if and only if M is commutative.

The algebra M itself is also an ordered Banach space with respect to the positive cone M^{+}. A bijective linear operator $\alpha: M \rightarrow M$ such that $\alpha(1)=1$ is a Jordan isomorphism if and only if $\alpha(|x|)=|\alpha(x)|$ for all self-adjoint elements x of M ([4]). In other words, unital Jordan isomorphisms are exactly unital o.d. isomorphisms of this "orthogonally decomposable" ordered Banach space M. It is a well-known theorem of Kadison [3] that every order isomorphism α of M such that $\alpha(1)=1$ is a Jordan isomorphism. Thus the property (\star) for H corresponds to this theorem of Kadison's for operators on M.

Theorem. For (M, H, ξ_{0}), the following conditions are equivalent:
(i) $\left(M, H, \xi_{0}\right)$ satisfies (\star);
(ii) $\Delta_{\xi_{0}}=1$;
(iii) ξ_{0} is a trace vector;
(iv) $\left(\Delta_{\xi_{0}}^{1 / 4} x^{+} \xi_{0}, \Delta_{\xi_{0}}^{1 / 4} x^{-} \xi_{0}\right)=0$ for every self-adjoint $x \in M$;
(v) $\left|\Delta_{\xi_{0}}^{1 / 4} x \xi_{0}\right|=\Delta_{\xi_{0}}^{1 / 4}|x| \xi_{0}$ for every self-adjoint $x \in M$;
(vi) $x^{+} j\left(x^{-}\right)=0$ for every self-adjoint $x \in M$.

Proof: The equivalence of (ii) and (iii) is known ([5, E.10.5, p.300]). It is obvious that (ii) implies (iv) and (iv) is equivalent to (v). We shall prove that (i) and (ii) are equivalent, (iv) implies (vi), and (vi) implies (ii).
(i) \Rightarrow (ii). Let x be an arbitrary self-adjoint analytic element of M. Since x is analytic, $a=i \Delta^{1 / 4} x \Delta^{-1 / 4}$, where $\Delta=\Delta_{\xi_{0}}$, is an element of M and

$$
(a+j(a)) \xi_{0}=a \xi_{0}+J a \xi_{0}=i \Delta^{1 / 4} x \xi_{0}-i J \Delta^{1 / 4} x \xi_{0}=0
$$

because, since x is self-adjoint, $J \Delta^{1 / 4} x \xi_{0}=\Delta^{1 / 4} x \xi_{0}$. Then, by [1 , Theorem 3.4], the operator $e^{t \delta}$, for $\delta=a+j(a)$, is an order isomorphism for each real number t and it satisfies $e^{t \delta} \xi_{0}=\xi_{0}$, because $\xi_{0}=0$. Hence, by assumption, $e^{t \delta}$ is an o.d. isomorphism. Then, by [2, 4.2], we have $\delta+\delta^{\star} \in M \cap M^{\prime}$, and hence, $a+a^{\star} \in M \cap M^{\prime}$; that is, $a+a^{\star}=j(a)+j\left(a^{\star}\right)$. Then $a \xi_{0}+a^{\star} \xi_{0}=J a \xi_{0}+J a^{\star} \xi_{0}$. Since $a=i \Delta^{1 / 4} x \Delta^{-1 / 4}$, we
have $\Delta^{1 / 4} x \xi_{0}-\Delta^{-1 / 4} x \xi_{0}=-J \Delta^{1 / 4} x \xi_{0}+J \Delta^{-1 / 4} x \xi_{0}$, which holds for any self-adjoint element x of M. Then, for an arbitrary $x \in M$,

$$
\begin{aligned}
\Delta^{1 / 4} x \xi_{0}-\Delta^{-1 / 4} x \xi_{0} & =-J \Delta^{1 / 4} x^{\star} \xi_{0}+J \Delta^{-1 / 4} x^{\star} \xi_{0} \\
& =-\Delta^{1 / 4} x \xi_{0}+\Delta^{3 / 4} x \xi_{0}
\end{aligned}
$$

Thus we have $\Delta x \xi_{0}-2 \Delta^{1 / 2} x \xi_{0}+x \xi_{0}=0$. This implies $\Delta^{1 / 2} x \xi_{0}=x \xi_{0}$. Therefore $\Delta=1$.
(ii) \Rightarrow (i). Since ϕ is an order isomorphism such that $\phi \xi_{0}=\xi_{0}$, we can define a unital Jordan isomorphism α on M by

$$
\alpha(x) \xi_{0}=\phi\left(x \xi_{0}\right)
$$

This follows from (b) of Theorem 2.7 in [1]. Since $\Delta_{\xi_{0}}=1$, we have $\left|x \xi_{0}\right|=|x| \xi_{0}$ for every self-adjoint $x \in M$. Therefore

$$
\left|\phi\left(x \xi_{0}\right)\right|=\left|\alpha(x) \xi_{0}\right|=|\alpha(x)| \xi_{0}=\alpha(|x|) \xi_{0}=\phi(|x|) \xi_{0}=\phi\left(\left|x \xi_{0}\right|\right)
$$

for every self-adjoint $x \in M$. Hence, by the continuity of ϕ, we have $|\phi \xi|=\phi|\xi|$ for every $\xi \in H^{J}$. Thus, ϕ is a bijective o.d. homomorphism. Hence, by (3.1) of [2], ϕ is an o.d. isomorphism.

$$
\begin{aligned}
& \text { (iv) } \Rightarrow \text { (vi). For a self-adjoint } x \in M \\
& \begin{aligned}
&\left\|\left(x^{+}\right)^{1 / 2} j\left(x^{-}\right)^{1 / 2} \xi_{0}\right\|^{2}=\left(x^{+} j\left(x^{-}\right) \xi_{0}, \xi_{0}\right)=\left(J x^{-} \xi_{0}, x^{+} \xi_{0}\right) \\
&=\left(\Delta_{\xi_{0}}^{1 / 2} x^{+} \xi_{0}, x^{-} \xi_{0}\right)=\left(\Delta_{\xi_{0}}^{1 / 4} x^{+} \xi_{0}, \Delta_{\xi_{0}}^{1 / 4} x^{-} \xi_{0}\right)
\end{aligned}
\end{aligned}
$$

(vi) \Rightarrow (ii). It follows from the assumption that $(1-p) j(p) \xi_{0}=0$ for any projection p in M. Therefore,

$$
\left\|p \xi_{0}\right\|=\left\|j(p) \xi_{0}\right\|=\left\|p j(p) \xi_{0}+(1-p) j(p) \xi_{0}\right\|=\left\|p j(p) \xi_{0}\right\| .
$$

Hence, $J p \xi_{0}=p \xi_{0}$ and, by the spectral theory, we have $J x \xi_{0}=x^{\star} \xi_{0}$ for every $x \in M$. Hence $\Delta_{\xi_{0}}=1$.
M has a trace vector if and only if M is a finite algebra of countable type.
The isomorphism in the condition (i) cannot be replaced by a homomorphism. To see this, let us consider the following property:
($\star \star$) Every order homomorphism ϕ such that $\phi \xi_{0}=\xi_{0}$ is an o.d. homomorphism.
As the following theorem shows, this property is equivalent to the property that every bijective order homomorphism is an order isomorphism. This is in contrast with the fact ($[2,3.1]$) that a bijective o.d. homorphism is always an o.d. isomorphism.

Theorem. The following conditions are equivalent:
(i) $\left(M, H, \xi_{0}\right)$ satisfies ($\star \star$);
(ii) if ϕ is a bijective order homomorphism, ϕ is an order isomorphism;
(iii) if ϕ is a bijective order homomorphism such that $\phi \xi_{0}=\xi_{0}, \phi$ is an order isomorphism;
(iv) H^{J} is isomorphic to the one-dimensional ordered space \mathbf{R} of all real numbers.

Proof: It is obvious that (iv) implies (i) and (ii), and that (ii) implies (iii). Therefore, we need to prove that (i) implies (iii) and (iii) implies (iv).
(i) \Rightarrow (iii). If ϕ satisfies the assumption, it is a bijective o.d. homomorphism by (i). Then, by $[2,(3.1)]$, it is an o.d. isomorphism and hence an order isomorphism.
(iii) \Rightarrow (iv). We assume that $\left\|\xi_{0}\right\|=1$ and set

$$
\phi \xi=\frac{1}{2}\left(\xi+\left(\xi, \xi_{0}\right) \xi_{0}\right) \quad \text { for all } \xi \in H
$$

Then, $\phi\left(H^{+}\right) \subseteq H^{+}, \phi \xi_{0}=\xi_{0}$ and ϕ is bijective. Hence, by the assumption ϕ^{-1} satisfies $\phi^{-1}\left(H^{+}\right) \subseteq H^{+}$. Since $\phi^{-1} \xi=2 \xi-\left(\xi, \xi_{0}\right) \xi_{0}$ for all $\xi \in H$, this implies $2 \xi \geqslant$ $\left(\xi, \xi_{0}\right) \xi_{0}$ for all $\xi \in H^{+}$. For any $\xi \in H^{+}$, we then have $2\left(\xi^{+}, \xi^{-}\right) \geqslant\left(\xi^{+}, \xi_{0}\right)\left(\xi^{-}, \xi_{0}\right)$. Hence, we have either $\xi^{+}=0$ or $\xi^{-}=0$. This means that H^{J} is totally ordered and is therefore isomorphic to \mathbf{R}.

References

[1] A. Connes, 'Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann', Ann. Inst. Fourier, (Grenoble) 24 (1974), 121-155.
[2] T.B. Dang and S. Yamamuro, 'On homomorphisms of an orthogonally decomposable Hilbert space', J. Funct. Anal. 68 (1986), 366-373.
[3] R.V. Kadison, 'Isometries of operator algebras', Ann. Math. 54 (1951), 325-358.
[4] R.V. Kadison, 'A generalized Schware inequality and algebraic invariants for operator algebras', Ann. Math. 56 (1952), 494-503.
[6] S. Stratilia and L. Zsido, Lectures on von Neumann Algebras (Abacus Press, 1979).
[6] S. Yamamuro, 'Absolute values in orthogonally decomposable spaces', Bull. Austral. Math. Soc. 31 (1985), 215-233.

[^1]
[^0]: Received 15 March 1989

[^1]: Department of Mathematics
 Institute of Advanced Studies
 Australian National University
 Canberra ACT 2601
 Australia

