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Abstract
A theoretically consistent structural model facilitates definition and measurement of use
and non-use benefits of ecosystem services. Unlike many previous approaches that utilize
multiple stated choice situations, we apply this conceptual framework to a travel cost
random utility model and a consequential single referendum contingent valuation research
design for simultaneously estimating use and non-use willingness to pay for environmental
quality improvement. We employMonte Carlo generated data to evaluate properties of key
parameters and examine the robustness of this method of measuring use and non-use
values associated with quality change. The simulation study confirms that this new
method, combined with simulated revealed and stated preference data can generally, but
not always, be applied to successfully identify use and non-use values of various ecosystems
while consistency is ensured.

Keywords: ecosystem services; Monte Carlo simulation; nonmarket valuation; structural estimation

JEL classifications: Q57; Q26; C15; C13

Introduction

Economists define the benefits of environmental quality in terms of willingness to pay
(WTP). The types of benefits are determined by the purpose for which the public are
willing to pay. In a typical taxonomy of total economic values, use values involve direct
enjoyment or consumption of ecological services, while non-use values involve benefits
derived from the existence of an environmental amenity, independent of its present or
future use. Leonard et al. (2021) point to biases toward direct uses in past rules governing
public natural resources, which highlights the importance of including both use and non-
use values for efficient resource use and management.

To address this bias problem, this paper used Monte Carlo methods to examine a
utility-theoretic structural approach designed to measure use and non-use values of
nonmarket environmental resources. Specifically, we propose a structural estimation
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method that involves measures of use values and those of non-use values, by combining
revealed preference and stated preferences from consequential referenda. For the revealed
preference part where we derive demands from which to infer use values for
environmental quality, we simulate individuals’ recreational trip behavior and use their
trip costs, the latter of which were estimated based on survey data collected in 2019. Then,
with simulated stated preference data, we decompose the total value into use value and
non-use value that people are willing to pay to improve environmental conditions of
ecosystem services. In our conceptual framework, we choose a consequential, incentive-
compatible, single referendum contingent valuation method to elicit total WTP. Non-use
WTP can be simultaneously and separately identified by the identification strategy we will
introduce in the model section.

This approach is motivated by the policy demand and legal mandate that are required
for public managed resources (Arrow et al., 1996), as well as practical concerns for research
design (Smith et al., 2022) in ecosystem services valuation. U.S. Environmental Protection
Agency calls for improving the measurement of non-use benefits for proposed rules in the
regulatory impact assessment and benefit-cost analysis noting that there has been a limited
number of studies that U.S. Environmental Protection Agency (EPA) could draw non-use
benefit estimates from for regulatory decision-making (Griffith et al. 2012). Also, the
structural approach in this paper can be applied further to estimate a complex package of
ecological benefits derived from the quality changes of services that ecosystems provide.
Building on the work by Day et al. (2019), we test the new method that combines a multi-
site random utility recreation demand system with the referendum contingent valuation
method. Unlike some ad hoc proposals for measuring use and non-use values, this
approach can estimate individuals’ use WTP and non-use WTP portions of total value
over a variety of choice alternatives within a single utility-theoretic approach.

In the model section, we define use and non-use utilities at the individual level and
derive a formula for valuing use and non-use WTP. In doing so, we challenge the
assumption sometimes appearing in the literature that users have only use values and non-
users have only non-use values, especially since some empirical evidence shows that
individuals hold both use and non-use values, regardless of their direct use of nature. Thus,
we incorporate a theoretically consistent empirical framework as an alternative to ad hoc
approaches to define non-use values. Then, we present Monte Carlo simulations that
compare the bias and root mean squared error (RMSE) of parameter estimates for different
generated data. With the data generated from these experiments, we show the consistency
of the empirical method. Simulation results show that the structural method is robust but
has bias under certain conditions. The upshot is that researchers pursuing this approach
should be cautious with its power if they have preliminary data or priors that non-use
values are small relative to use values, as our simulations show those cases are prone to
some bias, whereas bias is small for a broad range of cases. We conclude the paper with a
discussion of the limitations of this research and some future research topics.

Literature and background

Nonmarket valuation is a tool for economic valuation of ecosystem services based on a link
between changes in the quantity or quality of the resource and the changes in the stated or
observed behavior of people. The measurement of this relationship facilitates the
comparison of values of nonmarket goods in monetary units. For example, contingent
valuation studies have been used to assess the damages to waterbodies caused by accidents
such as oil spills and inform administrative and judicial decisions (Loomis, 1997; Carson
et al., 2003; Bishop et al., 2017; English et al., 2018). Use and existence values of
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environmental quality changes can be measured in a hypothetical market, consistent with
economic theory, and they can be used as a starting point for resource management
decision of government agencies (Carson, 2012; Kling et al., 2012).

Of the myriad benefits that the natural environment provides, some of the values are
relatively straightforward to measure through revealed market transactions (Arrow et al.,
1993). For example, use values are reflected in observed behavior of individuals who
actively use natural resources (recreational fishers, boaters, swimmers, hikers, and others).
Individuals use environmental amenities to enhance their welfare by producing utility-
yielding goods or services, or by using them as substitutes for, or complements to, market
goods such as recreation trips (Freeman III et al. 2014). Non-use values, however, are
independent of a person’s present or future use of the resource. Broadly defined, non-users
are individuals who do not use a particular site but may derive utility from its existence or
for others’ use. Although alternative views exist on the definition of, classification of, and
boundary between use and non-use values, Smith (1987) conceptualizes non-use benefits
as option and existence value, the latter of which includes bequest value.

A key challenge that arises in estimating the benefits is to conceptualize non-use values
and distinguish them from use values, where it is the combined use and non-use values
that sum to the total economic value of resources. This is especially important for meta-
analyses of values seeking to isolate the value types and for filling in gaps in literature in
other areas where it becomes useful to draw upon ratios of use and non-use found in the
literature (Griffiths et al., 2012). Yet, at times a fuzzy definition of use and non-use values
prevails in literature and makes it difficult to select a legitimate empirical model to
determine non-use values. Some of various methods to measure non-use value are
reviewed and discussed by Johnston et al. (2003).

A common ad hoc approach to define use and non-use is to treat use values as the value
held by users and non-use values as the values held by non-users and compare total
willingness to pay (WTP) for non-users with total WTP for users. For example, Croke et al.
(1987) classify survey respondents who currently use rivers as users and find that the mean
willingness to pay for water quality improvements is higher among users than non-users.
Whitehead et al. (1995) find the WTP of on-site users is greater than WTP of off-site users
or WTP of non-users when comparing WTP of three groups (on-site users, off-site users,
and non-users). Similarly, Bockstael et al. (1989)’s contingent valuation survey results
show that users are more willing to pay a tax for water quality improvements in the
Chesapeake Bay, with the sample comprised of 43% users and 57% non-users. Whittington
et al. (1994) also find that a typical user of Galveston Bay is more likely to support the plan
for environmental quality improvement than a typical non-user. A shortcoming of this
approach is that it could imply users do not have non-use values. Even the definition of
“users” differs across studies. Some papers define users as visitors and non-users as non-
visitors. Similarly, users may have non-use values for other recreation alternatives that they
do not use. Non-users in a specific time period may hold use values for any resource at
different places and times.

Another method that has been used in previous literature is to compare the WTP for
different purposes: use purposes and non-use purposes. Lant and Roberts (1990) let the
WTP for recreational use represent use values and the WTP for intrinsic values be non-use
values. They find that non-use value benefits of river quality improvement exceed the
benefits for direct use. Other studies rely on the respondent’s decomposition of values into
categories of use and non-use values (Roberts and Leitch 1997). For example, after
respondents report their total, a follow-up question would ask them to apportion the total
WTP into use, option, and existence values categories (Sutherland and Walsh, 1985;
Sanders et al. 1990; Kaoru, 1993).
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A few examples venture to estimate non-use values as the total WTP of a survey sample
who were asked to assume they would not use the resource being valued. Magat et al.
(2000) examine the rate of trade-off between water quality improvements in the person’s
own region versus water quality improvements in a region that the respondent will not
visit. They also analyze the potential values of water quality based on the probability that
the respondent will visit another region. This type of research design attempts to take non-
use and probabilistic use values into account.

More recently, researchers have devised more delicate survey designs and estimation
strategies as methods evolve. Under a combined revealed and stated preference setting, the
models estimate non-use values as total WTP of the sample of users minus estimated WTP
for the direct use of the resource estimated based on revealed preference data (Eom and
Larson 2006; Whitehead et al. 2008; Egan, 2011). Landry et al. (2020) jointly estimate
models of beach recreation demand and total WTP. They find evidence of significant
welfare gains from beach erosion control policies that affect beach width and coastal
environmental quality with a large component for existence values.

Structural model of use and non-use values
The objective of the econometric model that is introduced here is to simultaneously
estimate use and non-use values using both simulated RP and SP data (Day et al. 2019). In
this paper, the conceptual framework incorporates a single dichotomous contingent
valuation question into a random utility recreation demand model, rather than repeated
choice experiments as used in Day et al. (2019). We use a single referendum question
because the approach is consequential and explore its abilities to identify the distinction of
use and non-use values since a single question is less efficient than a panel of responses for
each individual. The RP portion of the model uses a repeated RUM approach that captures
total trips and site allocations (Freeman III et al. 2014) and incorporates a full set of site-
specific constants. For each individual i choosing site j with the state of environmental
quality s at each choice occasion t, the joint conditional indirect utility function can be
specified in an additively separable form.

ui;t;sjj � vUsei;t;sjj � vNonUsei;t;s � votheri;t;sjj � εi;j;t;s (1)

where the first term on the right-hand side is the conditional indirect utility from
recreation activities at site j and the second term is the non-use utility gain from J different
sites, independent of the recreation activity, and the third term is the utility from a
composite good. All the conditional indirect utility terms besides the errors are constant
over choice occasions, which will substantially simplify some terms below. The error terms
are allowed to vary over choice occasions.

When individual i evaluates the option of visiting visit site j on a choice occasion t, the
conditional use utility of visiting site j among J sites is a linear combination of alternative
specific constant (ASC) αijt and site quality qjs. When individual i evaluates the option to
“not go” to any site at a choice occasion at t, the conditional use utility for such opt-out
choice J� 1 does not include quality and is given by αi; J�1; t .

vUsei;t;sjj �
αijt � qjsβ if j � 1; 2; . . . ; J
αi; J�1; t if j � J � 1

�
(2)

Non-use utility is characterized by the distance-weighted sum across all the non-use
utility gained from sites j= 1 to J as follows:
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vNonUsei;t;s �
XJ

j�1

dij � 1
� �

λ�aijt � qjsb� (3)

where λi is a parameter of the rate of distance decay in non-use utility. The value of λ
determines how non-use utility may change with respect to distance.

Finally, the conditional utility from other consumption at choice occasion t is assumed
to be linear in expenditure.

votheri;t;sjj � γ yi;t � pi;j � cs
� �

(4)

where γ is a parameter of the marginal utility of money and yi,t−pi,j−cs is the expenditure
available for other goods. Note that pi,j is a travel cost of individual i for visiting site j and cs
is the per-occasion lump-sum cost from the referendum for environmental quality change.

Revealed preference portion of the structural model (RP-only model)
To simulate travel cost data, we assume the trips occur in the baseline period (i.e., without
environmental quality change, qj,0). Under the current environmental condition (s= 0),
there is no fee so ci,0= 0 for all i. In this case, the probability that individual i will choose
trip alternative j on choice occasion t is given by:

Pri;j;t;0 � Pr ui;t;0jj � ui;t;0jk > 0
� �

� Pr vUsei;0jj � vNonUsei;0 � votheri;0jj
� �

� vUsei;0jk � vNonUsei;0 � votheri;0jk
� �

> εi;k;t;0 � εi;j;t;0

h i
(5)

for all k≠ j 2 1; � � � ; Jf g. Non-use utility vNonUsei;0 cancels out of the per choice occasion
trip probabilities as it is constant for each individual i at choice occasion t, that is, an
individual’s trip decision is not influenced by non-use values.

We normalize the no trip utility to zero because only the difference between the trip
utilities of choice alternatives matters in discrete choice models.

Pri;j;t;0 � Pr ui;t;0jj � ui;t;0jk > 0
� � � Pr vRPi;0jj � vRPi;0jk > εi;k;t;0 � εi;j;t;0

h i
� Pri;j;0 (6)

Adding SP data with non-use values to the structural model (Joint RP-SP model)
Next, we add simulated SP data with both use and non-use values in the model. The annual
joint utility that individual i receives from choosing from a state of the world s (s= 0, 1) is

ui;�;s � ṽi;�;s � ε̃i;�;s �
XT
t�1

ṽi;s �
XT
t�1

ε̃i;s � Tṽi;s �
XT
t�1

ε̃i;s (7)

where the deterministic term of the annual utility is the expected maximum utility per-
choice occasion times the number of choice occasions.

The expected maximum joint utility of each individual i receiving use value from taking
trips and non-use under a state of the world s can be written as

ṽi; � E max
j2 1;2;���;J�1f g

vUsei;sjj � votheri;sjj � εUsei;j;t;s

� �� �
� vNonUsei;0

σSP (8)

For specification of the trip-taking random utility model, the errors εUsei;j;t;s are assumed to
follow a Type 1 extreme value error term with a scale factor of σRP , which is not separately
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identified in conditional logits and is normalized σRP to be 1. While εUsei;j;t;s has a t subscript,
the expectation does not depend on t since the εUsei;j;t;s’s are identically distributed over time.
Following assumptions made in Day et al. (2019) paper, the joint use and non-use utility
function takes a log sum form, plus a constant κ.

ṽi;s �
1
σSP ln

XJ�1

j�1

exp vUsei;sjj � votheri;sjj
� �" #

� κ� vNonUsei;0

σSP (9)

where κ is a constant of integration for the expected value of a maximum of extreme values
(Johnson and Kotz, 1969). The scale parameter σSP characterizes the relative variation in
the SP data compared to the RP data. From empirical studies in the literature, we expect SP
data to show greater variability than RP data (i.e., σSP > 1).

Then, we can derive the choice probability that individuals would choose the proposed
quality change scenario (s= 1) in terms of the difference between joint utilities before and
after the change.

Pr�ui;�;1 > ui;�;0� � Pr�ṽi;�;1 � ṽi;�;0 > ε̃i;�� (10)

To derive the choice probability of individuals choosing the quality change scenario
(s= 1) compared to the baseline environmental condition (s= 0), kappa is the same in
ṽi;�;1 and ṽi;�;0 and cancels out. This choice probability can be rewritten as the cumulative
distribution function for the difference in errors eεi;� � ε̃i;t;0 � ε̃i;t;1. Assuming that eεi;�
follows a logistic distribution of (0, 1), the difference in error term eεi;� approximately

follows a t-distribution t5T�4 0; τ� � where τ � π 15T�12
5T2�2T

� ��1
2 (George and Mudholkar, 1983;

Day et al., 2019).
The resulting likelihood function characterizes individual i’s revealed preference for

recreational sites along with their stated preference choices when choosing the sites to visit
and the vote to make in the referendum. Specifically,

Li θi� � �
Y
t

Y
j

Pri;j;t θ
Use; γ

� �
Yi;j;t

Y
s

Pri;s θUse; θNonUse; γ
� �

Yi;s (11)

where θ � θUse; θNonUse; λ
	 


are parameters of interest in the structural model of use and
non-use values. θUse � α1; . . . ; αJ ; β

	 

denote the parameters of the use utility, and

θNonUse � b; λ� 	 denote the identifiable parameters of the non-use utility. The maximum
log-likelihood estimation program solves

LSP � log�Li�θi�� � YSP
i ln�Fε̃�ṽi;�;1 � ṽi;�;0�	 � �1 � YSP

i �ln�1 � Fε̃�ṽi;�;1 � ṽi;�;0�	 (12)

Once we have estimated parameters, we can compute welfare measures. Since
researchers do not observe true utilities, welfare changes are taken using expectations of
outcomes from the random utilities with and without a change (Freeman III et al. 2014).
The per-choice occasion willingness to pay for the use benefits from the policy change
takes the form

WTPUse � 1
γ
ln

PJ�1
j�1 exp α̃j �Δi;j;1β � γpi;j

� �PJ�1
j�1 exp α̃j � γpi;j

� �" #
(13)

where the marginal use utility divided by the marginal utility of money (γ) and Δ

represents a change in quality. Likewise, the per-choice occasion willingness to pay for the
non-use benefits from the environmental quality change is calculated by the change in
non-use utility. The division by γ translates utility into dollars and yields
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WTPNonuse � 1
γ
ln

XJ

j�1

di;j � 1
� �

λ
Δi;j;1b

" #
(14)

Monte Carlo simulation

This section evaluates the performance of the structural estimation program to measure
use and non-use values for improved environmental quality. We follow the modeling
procedures to generate the data and set up the maximum likelihood function. We first
estimate the structural model assuming that the non-use component of overall utility is
zero. We then incorporate a non-use component into overall utility. The primary reason
for the Monte Carlo simulation is that given the single SP observation per person, the full
set of recreation site-specific fixed effects, and the highly nonlinear nature of the model and
the corresponding log-likelihood function, the Monte Carlo exercise provides potentially
useful insights into difficulties one might encounter in estimating the structural model,
including potential problems with identification or local optima. This will be useful for
future valuation efforts in considering whether to apply the method.

Monte Carlo simulation set-up
The key idea of the Monte Carlo (MC) exercise is to generate simulated data to estimate
two models in sequence: (1) a discrete choice random utility model of recreation demand
based on the revealed preference portion of the structural model (i.e., RP model) for
starting values and (2) a joint revealed and stated preference model for use and non-use
values (i.e., joint RP-SP model). Portions of the simulated data are drawn to represent the
types of preferences and range of some of some existing studies. The data are also drawn
using information from the survey used in Lupi et al. (2023) and are designed to mimic
some characteristics of a general population survey which will be used in a future empirical
application (the survey was recently used in Sandstrom-Mistry et al., 2023).

After drawing simulated data, the algorithm uses GAUSS’s maximum likelihood
routine to estimate a repeated random utility maximization (RUM) model using revealed
reference data alone. This program estimates the ASCs, which are site-specific fixed effects
for the site attributes, and the parameter of marginal utility of income given by the negative
of the parameter on travel costs to each site. Then, those parameters are used as initial
values in the joint estimation of the structural model of use and non-use values.
Specifically, the program uses the joint log-likelihood function and both simulated RP and
SP data to estimate the marginal use utility of environmental quality improvement (β), the
marginal non-use utility of environmental quality improvement (b), the distance decay
parameter (λ), and the scaling factor for the variation of error terms (σ), as well as
updating the ASCs (α’s) and the marginal utility of income parameters (γ).

In conducting the Monte Carlo exercise, we consider a variety of parameter configurations
defined in terms of alternative levels for β, b, and σ. For each of these parameter combinations,
the MC exercise proceeds in seven steps reported in Table 1. In addition, the MC exercise
produces mean and median estimates of the parameters of interest and their 90% confidence
interval. It also calculates four key variables: (1) the implied stay-at-home probabilities under
the proposed parameter configuration, (2) the implied average probabilities of responding yes
to the SP scenario for environmental quality change, (3) willingness to pay (WTP) for the use
benefits from the scenario, and (4) WTP for the non-use benefits from the scenario. For each
of these, minimum, mean, and maximum values are reported.
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Table 2 presents the design for some of the levels used in the Monte Carlo analyses. The
design is intended to cover a range for relative use and non-use values similar in spirit to
the mixed results found in the literature.

Table 1. Monte Carlo steps for each parameter configuration {β, b, and σ}

Step Description

Step 1 The basic characteristics of the Monte Carlo exercise are set
• The number of observations (N)
• The number of choice alternatives (J)
• The number of choice occasions (T)
• The number of Monte Carlo replications (R)

We chose R= 1,000 so that the program simulates 1,000 different data sets and
goes through 1,000 iterations of estimation under each specification.

Step 2 True values for the parameters are set to be constant within each of the 1,000
iterations

Step 3 For each iteration (r= 1, : : : , R), we draw random values for travel costs, the
changes in environmental quality under the proposed scenario and the cost.

Step 4 The RP site choice utilities and probabilities for the underlying RUM model of
recreation demand are computed for each individual and used to draw site the
simulated choice decisions for each individual on each choice occasion.

Step 5 The RP site choices are used to estimate the parameters of the RP RUM model for
use as starting values of the joint estimation.

Step 6 The SP choice probabilities based on the use and non-use values are computed for
each individual following the structural model and used to draw their
dichotomous choice response to the proposed scenario.

Step 7 The SP choice outcomes, together with the RP site choices, are used to jointly
estimate the alternative specific constants, the marginal utility of income
parameter, and three sets of additional parameters: the marginal use utility of
environmental quality, the marginal non-use utility of environmental quality, and
the scaling factor.

Table 2. Monte Carlo design

Experiment Design
A Set of True Values or the True
Value

Number of
Variants

Number of observations N = {2,000, 5,000} 2

Marginal utility of money γ = −0.4 1

Marginal use utility of environmental
quality

β = {0.1, 0.2} 2

Marginal non-use utility of environmental
quality

b = {0.05, 0.1, 0.2, 0.3, 0.4} 5

Scale parameter σ = {2, 3} 2

Distance decay parameter λ = −1 1

Total 40
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Additional details and rationale for the Monte Carlo design follow:

• Number of observations (N): Since the sample size of some valuation studies
focusing on environmental resources is around 300 for smaller studies (Caudill
et al., 2011), about 2,000 for many studies (Kotchen et al. 2006; Knoche and
Lupi 2007; Melstrom et al. 2015), with only a few national-level studies gather
samples with more than 10,000 observations (English et al., 2018; Day, 2020),
we use 2,000 to represent common empirical studies. To ensure that estimators
of parameters converge in probability to the true value of each parameter,
simulations were also run with larger sample size (N= 5,000), in which case
the magnitude of bias diminished. The simulation results implied the
structural method generally preserves the consistency of estimator.

• Number of recreational sites (J): we set the number of sites to be 38. We also
tested the estimation routine and found similar results in a setting with a small
number of sites, as well as a larger number of sites.

• Number of choice occasions (T): In recreation demand literature, a sufficiently
large number, and sometimes the maximum number of trips taken during the
study period, is typically chosen for the number of choice occasions to avoid
trimming the trip data. Here we choose T= 30 to match a typical study for
summer trips (Lupi et al., 2022).

• The travel costs (pij): Travel costs were randomly drawn from an existing
survey sample trip data set that contain residence locations, site travel
distances, site travel times, incomes of Michigan residents (Lupi et al., 2023).
The cost of not taking a trip is zero for everyone. In the simulation, travel costs
are drawn independent of unobserved site characteristics.

• The marginal utility of income parameter (γ): In our MC exercise, we set γ to
be −0.40. Initial values for this parameter value are estimated from a logit
recreation demand model, in which the travel cost parameter is estimated
using revealed preference data from other survey data (Kim et al., 2023).

• Alternative Specific Constants (ASCs): The ASCs are set to ensure that the
average probability that an individual will stay at home on a given choice
occasion (i.e., Probi,J�1) is approximately 0.17, which amounts to about 5 trips
per person per year based on other existing survey data (Lupi et al., 2023).
These site-fixed effects are assumed to be the same for all individuals. We use a
full set of fixed effects (ASCs) for each of the J sites in the Monte Carlo exercise.

• Proposed stated preference scenarios: The simulation scenarios vary parameter
configurations along two dimensions: the change in environmental quality
improvement (Δq), and the contingent valuation cost levels (C). The change in
environmental quality at each site is drawn randomly in the range of 0 to 10. The
value for the change in environmental quality is heterogeneous across individuals.
That mimics the experimental design in recent contingent valuation setting, where
individuals face different scenarios of one proposed environmental quality
improvement and corresponding cost (Sandstrom-Mistry et al., 2023). In Monte
Carlo simulation exercise, the contingent valuation cost level is also drawn
randomly across individuals. The range of the contingent valuation scenario cost is
[0, 50] per-choice occasion. It means that individuals agree to pay the per-choice
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occasion policy cost if individuals decide to vote for a proposed environmental
quality change.

• Scaling Parameter (σ): Estimation of the joint RP-SP model provides estimates
of the common parameters along with any RP-specific and SP-specific model
parameters. A “scale” parameter represents the relative scale of the coefficients
of the RP-only model and joint RP-SP model since the variances of the random
components of the RP and SP utility functions are likely to differ (Ben-Akiva
et al., 1994). The scale parameter was set at σ = [1, 2, 3] with the one implying
equal variance in the RP and SP data and the larger levels mirroring or
exceeding levels found in other studies, such as Day et al. (2019).

• Distance (dij): Distance is the straight-line distance from an individual’s home
to trip destination j. In the simulation, we set this straight-line distance to be a
random proportion of travel cost based on an examination of existing data. We
set the non-use distance decay parameter λ to a negative value (i.e., λ = −1) as
is often found in the literature. It means that sites closer to an individual’s
home have more non-use value than more distant sites. That is, the non-use
utility from improved environmental quality benefits at site j diminishes as
individuals live far from the site.

Monte Carlo simulation results
The RP-only model estimation produces the estimates of common parameters: the
parameter estimates of ASCs (each αj) and the marginal utility of income (γ). The joint
RP-SP model adds four additional parameters to those identified in the RP-only model:
marginal use utility of environmental quality (β), marginal non-use utility of
environmental quality (b), a non-use distance decay (λ), and a scaling factor (σ). We
summarize the result of the Monte Carlo simulation experiments and compare four tables
for the generalized structural RP-SP model in this section.

In this section, we primarily focus our attention on the two environmental quality
parameters (β and b) to check the model performance when estimating the key parameters of
interest (Table 3). Then, in the second table (Table 4), we investigate the extent of estimation
errors on the travel cost parameter (γ) and the ASCs (each αj) as they are also key
determinants of welfare measures. Both tables include the root mean square errors (RMSEs)
and percentage RMSEs results for two versions of joint RP-SP models. In the first sub-column,
denoted as “λ fixed,” the distance decay parameter λ is fixed as a constant at the true level and
is not estimated. The second sub-column, denoted as “λ est.,” estimates the distance decay
parameter.

Table 3 presents true values of key parameters of interest (β, b, σ, λ), root mean squared
error (RMSE), and the percentage root mean squared error (%RMSE) of estimates of each
parameter. The first three columns are true values. The latter columns compare RMSE and
%RMSE of two models. Compared to the RMSE of the use quality parameter estimates, the
RMSE of the non-use quality parameter estimates is slightly larger in both “λ fixed” and “λ
est.”models. The same is true for %RMSE. It implies that the use quality parameter is more
precisely estimated than the non-use quality parameter or the scaling factor parameter.
Both RMSE and %RMSE values are larger when λ is estimated than when λ is known. The
magnitude of RMSE and %RMSE of the distance decay parameter diminish as the true
value of the non-use quality parameter estimates increases. When the marginal utility gain
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Table 3. Monte Carlo simulation results – Key parameter estimates of interest

Root Mean Squared Error

(1) (2) (3) (4)

Use Quality b� Non-use Quality bb Scaling Factor b� Distance Decay b�
True � True b True � True � λ fixed λ est. λ fixed λ est. λ fixed λ est. λ fixed λ est.

0.2 0.05 2 −1 0.02 0.02 0.03 2.01 0.13 3301.79 NA 1.01

0.2 0.1 2 −1 0.02 0.02 0.03 1.89 0.07 1.98 NA 1.05

0.2 0.2 2 −1 0.01 0.02 0.03 1.66 0.11 1.90 NA 0.24

0.2 0.3 2 −1 0.02 0.03 0.03 1.56 0.14 1.79 NA 0.15

0.2 0.4 2 −1 0.03 0.04 0.04 1.51 0.15 1.65 NA 0.10

% Absolute Root Mean Squared Error

λ fixed λ est. λ fixed λ est. λ fixed λ est. λ fixed λ est.

0.2 0.05 2 2 8.02 11.11 64.17 4011 6.42 165,089 NA −101.27

0.2 0.1 2 2 8.47 9.42 33.21 1868 3.55 99.23 NA −104.80

0.2 0.2 2 2 7.30 10.27 14.85 829.43 5.54 94.85 NA −24.02

0.2 0.3 2 2 10.02 16.69 8.98 519.28 6.76 89.36 NA −15.15

0.2 0.4 2 2 14.49 19.42 9.22 376.47 7.31 82.53 NA −10.33

Note: All runs with sample set at N= 2,000 using R= 1,000 replications.
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Table 4. Monte Carlo simulation results – Site fixed effects and cost coefficient

Root Mean Squared Error

(1) (2) (3) (4)

min (ASC) median (ASC) max (ASC) Cost b�
True � True b True � λ fixed λ est. λ fixed λ est. λ fixed λ est. λ fixed λ est.

0.2 0.05 2 0.01 0.01 0.05 0.05 0.03 0.03 6E-05 6E-05

0.2 0.1 2 0.01 0.01 0.05 0.05 0.03 0.03 6E-05 6E-05

0.2 0.2 2 0.01 0.01 0.05 0.05 0.03 0.03 6E-05 6E-05

0.2 0.3 2 0.01 0.01 0.05 0.05 0.03 0.03 6E-05 6E-05

0.2 0.4 2 0.01 0.01 0.05 0.05 0.03 0.03 6E-05 0.00

% Absolute Root Mean Squared Error

λ fixed λ est. λ fixed λ est. λ fixed λ est. λ fixed λ est.

0.2 0.05 2 0.68 0.67 1.92 1.95 1.07 1.06 0.32 0.31

0.2 0.1 2 0.68 0.66 1.93 1.93 1.07 1.07 0.32 0.31

0.2 0.2 2 0.67 0.66 1.92 1.92 1.07 1.07 0.31 0.30

0.2 0.3 2 0.67 0.67 1.91 1.92 1.08 1.07 0.32 0.31

0.2 0.4 2 0.67 0.67 1.92 1.93 1.07 1.07 0.31 0.31

Note: All runs with sample set at N= 2,000 using R= 1,000 replications. True λ is −1 for all cases.
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from the non-use portion is particularly large, the distance decay effect seems to be more
easily detected.

There are some notable findings we can draw from the simulations. First, the joint
RP-SP approach with constant distance decay parameter (λ fixed) successfully recovers
the underlying use and non-use quality parameters, with a RMSE of 0.03. However,
converting RMSEs into the % RMSE terms, we find the %RMSE of use quality
parameter increases as the true value of the non-use quality parameter increases.
Conversely, the %RMSE of non-use quality parameter decreases as the true value of the
non-use quality parameter increases.

Second, the joint RP-SP model that estimates a distance decay parameter (λ est.) also
performs quite well on estimating the use quality parameter, with a RMSE less than 0.02
for (β̂). However, it does not do as well on estimating non-use quality parameter (b̂) or
scaling factor (σ̂), particularly when the true value of the non-use quality parameter is very
small. Adding additional dimension into the model by estimating the distance decay
parameter results in 10 times larger %RMSE.

Table 4 provides the RMSE and the %RMSE of estimates of three ASCs and the
marginal utility of cost parameter γ. As in Table 3, assumed true values of two key
parameters of interest (β, σ) remain unchanged while we vary the marginal non-use
utility of quality changes (b). Of 38 ASCs, column (1) reports the RMSE and %RMSE
values of the minimum ASC; column (2) reports them for the median ASC; and column
(3) reports them for the maximum ASC. Starting with the results for the travel cost
coefficient in the column (4), both joint RP-SP models (with λ fixed and λ est.) do an
excellent job recovering the underlying price coefficient, with the RMSE less than
0.001, perhaps to the variation across people and sites that exists for travel costs. The
models also do a good job in recovering the underlying ASCs, regardless of the
magnitude of the ASCs.

The RMSE remains very low in all cases and the % absolute RMSE also very small
regardless of the true values of parameters of the interest. Although we report only the
results of three ASCs, no obvious relationship has been found between the magnitude
of true ASCs and their RMSEs/%RMSEs for each of the ASCs. Across different
parameter spaces, the RMSE and %RMSE of ASCs and the cost parameter remain at
similar levels. It implies that ASCs and the cost parameter estimation are quite stable
across various true values of the non-use quality parameter. While the overall use and
non-use model is not mean fitting for site choices, that property would hold for the use
value portion of the use value only portion of the joint utility, so it is perhaps
unsurprising that the approach replicates the ASCs well.

Table 5 reports the difference between the medians of true WTP and WTP estimates.
We find that the magnitude of the WTP estimates is similar to that of true WTP when we
evaluate at the median of the estimated parameters. The distribution of WTP estimates
also remains close to the true distribution of WTP.

Conclusion

Ecosystem services generally provide both use and non-use economic values. We began
by noting an existing discrepancy among the valuation methods to measure non-use
values, especially for environmental resources. We highlighted a structural estimation
framework that allows decomposition of use and non-use values. WTP estimates from
this model provide specific information to policy makers and federal agencies, by
linking the change of ecosystem services to individual WTPs for use and non-use.
Information on ratios of use and non-use values for different ecosystem services is
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often critical when time pressures or budgets restrict the available information for
decision-making in the extant literature.

We use data-generated experiments to demonstrate that the proposed structural model
generally, but not always, provides consistent results in estimating true values of parameters of
interest and recovering true WTPs, which can be applied to a wide range of valuation studies.
ThisMonte Carlo study indicates that the structural model estimates of use and non-use values
have the lowest bias when the marginal utility of use and non-use quality are at a comparable
level, and the performance in situations where the relative use and non-use value are more
divergent is poor for some parameters of interest. We recognize that the structural model can
be sensitive to research design (e.g., the variation in environmental quality within RP or SP
data), while the conceptual framework can be applied to any setting involving pooling different
types of choice data (i.e., portfolio choices and general purchase decisions) or requiring testing
of estimator properties with complex empirical data. Since having rich revealed preference data
and appropriate stated preference data enables and helps to quantify use and non-use WTP at
the same time, the results show attention should be paid to these in the data collection and
survey design of studies implementing the approach.

Future work should focus on addressing two concerns: (1) choice of the type of stated
preference data and (2) revealed preference model specification. As many previous works
find a trade-off between incentive compatibility and the number of choices, some research
designs will work well with this type of model, but others do not. In cases where there is
limited variation in stated choices (i.e., in a consequential single referendum choice per
person), the results may provide biased value estimates. Second, future research would
assist with understanding whether and to what extent use and non-use values would be
impacted by other revealed preference model specifications (i.e., single site demand model,
Kuhn-Tucker model, or count models).

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.
1017/age.2023.26

Data availability statement. The data that support the findings of this study are available on request from
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Table 5. Difference between median WTP estimates and median true WTP ($’s)

True � True b True �
True
λ

Difference in Use
WTP ($)

Difference in
Non-use WTP ($)

Difference in Total
WTP ($)
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0.2 0.3 2 −1 −2.7 0.6 −1.4

0.2 0.4 2 −1 −3.8 28 23.6

Note: N= 2000, R= 1000. Note that the difference in true WTP and estimated WTP was calculated based on the median of
true WTP and the median of parameter estimates in the joint RP-SP models which mutes the underlying variation that
would be seen if I calculate WTP for each of the 2000 people for the 1000 runs (authors can provide this if desired).
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