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COINCIDENCES AND FIXED POINTS IN
LOCALLY G-CONVEX SPACES

P.J. WaTsonN

A new coincidence point theorem is proved for a pair of multivalued mappings oper-
ating between G-convex spaces. From this theorem, a generalisation of the classical
Fan-Glicksberg fixed point theorem is established.

1. INTRODUCTION

In recent years many researchers have been interested in various notions of con-
vexity on topological spaces which do not rely on a linear structure of the underlying
space. The first work in this direction may be Aronszajn and Panitchpakdi [1] where the
authors introduced a convexity structure on metric spaces; hyperconvez metric spaces.
Subsequently this property has been found to be important in the study of nonexpansive
mappings, see [6, 14, 15].

Some time later Horvath [9, 10, 11] defined a convexity structure in topological
spaces and proved several important results in the theory of nonlinear analysis. The
structure determining convexity in this space is a multivalued monotone operator map-
ping the finite subsets to contractible subsets of the topological space. Note that a
contractible set in a topological space is one in which the identity map, restricted to the
set in question, is homotopic to a constant map. This structure replaces the convex hull
in vector spaces. Such a space has since been called an H-convex space (or simply H-
space) by Bardaro and Ceppitelli [2] where amongst other results, a KKM type theorem
is established.

The so—called G-convex spaces were introduced in [12] to allow for a convexity
structure that need not have contractible values. These spaces generalise the notion of
H-convexity (see Definition 1 below) as well as hyperconvexity. We refer to [18, 6] for
further discussion on the relations between these concepts of convexity.

This study examines the existence of coincidence points for multivalued operators
acting between different G-convex spaces. The first result, Lemma 1, is a fixed point result
for the composition of a single valued continuous function and a multivalued operator with
G-convex values. A selection theorem proved in [16], Theorem 2.1 below, is fundamental
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in the proof, and its use replaces linear approximation arguments used when the ambient
space is linear (see for example [8, Lemma 2]). From this, a coincidence point theorem
is proved and then a fixed point theorem which generalises the classical Fan-Glicksberg
fixed point theorem. This study concludes with a fixed point theorem in which the
compactness condition on the space is relaxed.

It should be noted that Yuan [18] has generalised the Fan-Glicksberg fixed point
theorem for multifunctions with acyclic values, and in Ding and Tarafdar [4], a coinci-
dence point theorem has been proved (in H-spaces) for a pair of multifunctions, one of
which has acyclic values. The emphasis of this work is to study multifunctions with G-
convex values instead of acyclic values. Therefore the results established here are proved
by different means and they do not compare with the results in [18, 4].

2. G-CONVEX SPACES

First we elucidate the notations and definitions used in this paper. Let X be a
set. 2% denotes the family of all nonempty subsets of the space X and F(X) denotes
the family of nonempty finite subsets of X. A, is the standard n-dimensional simplex

with verticies e, ... ,e, where e¢g = 0 and e;, for ¢ = 1,...,n, is the i-th unit vector
in R"; that is, A, = co{eg,...,es}. If @p,...,an are points in some vector space
X, then ag...a, will denote the simplex with verticies ay,...,a,. Let X and Y be

topological spaces. A multifunction T : X — 2¥ is said to be upper semicontinuous if
T-YC) = {z € X : T(x) N C # 0} is closed in X whenever C is closed in Y.

The following definition originally appeared in [12].

DEFINITION 1. A generalised convex, or G-convex space (X, D;T) is a topo-
logical space X, a nonempty subset D of X and a function T : F(X) — 2% with the
following properties:

1. for any A, B € F(X) with A C B, we have I'(A) C T(B);

2. for any A € F(X) with elements ay, . .. ,a, there exists a continuous func-
tion ¥ : A, — T'(A) such that for each 0 € iy < --- < 4 < n it follows
that

"/)(co {eiov"' ’eik}) C F({a,,-o,--- ’aik})'

(X,T) is an H-space when D = X, condition 1 is satisfied and the operator I' has
contractible values. It has been shown in {10, Theorem 1] that such an operator satisfies
condition 2.

A subset K of a G-convex space (X,D;T) is said to be G-convex if, for any A €
F(K n D), T'(A) C K. Note that the intersection of G-convex sets remains G-convex.
The G-convex hull of a subset ¥ of a G-convex space, denoted G-co (Y'), is defined to be
the intersection of all G-convex sets containing the set Y. So the G-convex hull of Y is
the smallest G-convex set containing Y, which is evidently G-convex. Further properties
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of G-convex spaces and sets can be found in [12] and [16]. In this study, the set D in
the definition of G-convex will be all of X and (X, X;T') will be denoted (X;I').

The following definition relates the G-convex sets with the topology of X, and it
generalises the concept of a locally convex topological vector space.

DEFINITION 2. A G-convex space (X;T) is said to be a locally G-convex uni-
form space if X is a uniform space with uniformity U having base 8 of open symmetric
entourages such that each W € (3 satisfies the property that

W(z)={yeX:(z,y) e W}

is G-convex.

An arbitrary entourage satisfying this property will be said to be G-convex.

An alternative definition of local G-convexity is to assume that for any W € §,
W(K)={z € X :(y,z) € W for some y € K} is G-convex whenever K is G-convex. A
locally G-convex space satisfying this property has fewer G-convex sets than one satisfying
Definition 2. This follows as Definition 2 implies each singleton is G-convex (simply note

{z} = N V(z) and the intersection of G-convex sets is G-convex), whereas the second
vep
notion does not necessarily imply this. Although the alternative definition gives rise to a

more general space, it may be the case that there are fewer multifunctions with G-convex
values (for example, single valued functions may not have G-convex values). Thus we
restrict our analysis to locally G-convex spaces as in Definition 2. Note that both concepts
coincide if the G-convex space (X;I') is such that I'(z) = {z} for all z € X.

It is well know that in uniform spaces, the closure of a set K C X is given by

K=(){V(K):Vep}
where 3 is any base for . It follows that in locally G-convex uniform spaces, the closure
of a G-convex set, being the intersection of G-convex sets, is G-convex.
The following selection theorem is a weaker formulation of [16, Theorem 2.4], though
sufficient for our purpose.
THEOREM 2.1. Let X be a compact topological space and (Y;I') a G-convex
space. Suppose T : X — 2Y satisfies
1. T(z) is G-convex for all z € X;
2. for each x € X there exists y € Y such that z € int(T~'(y)).
Then there exists A € F(Y) and continuous functions g : A, =+ Y and ¢ : X — A,

where n + 1 = |A|, such that the composition f = g o ¢ is a continuous selection of T;
that is, f(z) € T(z) for allz € X.

3. A COINCIDENCE THEOREM

The first result is the G-convex version of [8, Lemma 2] and is similar to the fixed
point theorems of Eilenberg and Montgomery [5], Gorniewicz [7] and Shioji [13], although
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the setting is a locally G-convex space and the multifunction has G-convex values rather
than contractible or acyclic values.

LEMMA 1. Let (X;T) be a compact locally G-convex uniform space. Suppose
p: X — A, is continuous and q : A, — 2% is upper semicontinuous with compact
G-convex values. Then poq: A, — 22" has a fixed point.

Proor: For k = 1,2,..., denote by S* the k-th barycentric subdivision of the
simplex A,. For each k define a multivalued mapping T} : A, — 2X by

Ti(v) = G-co {Uq (a}c)}
i=0
where ai, for i = 0,...,7, 0 < 7 < n, are the verticies of the simplex in S* of least
dimension containing the point v. The values of T}, are clearly G-convex.

We prove condition 2 of Theorem 2.1 is satisified for Tx. So we show each v € A,
belongs to the interior of 7} !(y) for some y € X. To this end, let v € A, be arbitrary.
For af ...a} the simplex in S* of least dimension containing v, choose € > 0 such that
e < dist(v, Ay) for all simplexes A € S* with v ¢ Ax. We claim the open ball B,(v) in
A, is a subset of

@=|J{Ar € S*:a]...a} is a face of A} and dimA} =n}.

To see this, suppose z is not an element of ®. Then z € A,\A} for all n-dimensional
A} € S* having a)...a} as a face. Hence z belongs to an n-dimensional simplex A7
and al...a] is not a face of A?. Either af...a] N A? = 0 or not. In the first case it
immediately follows that v ¢ Kz s0 z ¢ B,(v) from the definition of e. If al .. .a;ﬂx;c‘ #0
then the intersection is a face common to both. As a}...a} is not a face of K;‘, the
intersection must be a simplex of dimension strictly less than r. As r is the smallest
integer such that v € a2 ...a} then v ¢ K;‘ so again z ¢ B.(v).

Thus the inclusion B.(v) C ® has been established. This implies that for each
w € B.(v), Tk(v) C Ti(w) by the definition of Ty and ®. By choosing y € Ti(w), it
follows that B.(v) C Ty '(y) and condition 2 of Theorem 2.1 is satisfied.

By Theorem 2.1 there exists a continuous selection fi of Tx. The composition po f :
A, — A, is continuous and so by Brouwer’s fixed point theorem, there exists vy € A,
such that vg = p(fi(vi)). Let zx = fi(vx). As X is compact we may assume the net zi
converges to Zo € X. As p is continuous, v, = p(zx) = p(zo) = vo. We claim z4 € q(vp)
so that vy is a fixed point of the multivalued composition p o q.

As g(vp) is closed it is enough to show zo € V' (g(vo)) for any V in any base for the
uniformity Y. So let V be a fixed element of some base for the uniformity. As all the
closed symmetric entourages form a base for U/, there exists a closed symmetric entourage
W C V. Similarly as all the open symmetric G-convex entourages form a base for the
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uniformity, there exists an open symmetric G-convex W, C W. Therefore W, (q(vo)) is
an open G-convex neighbourhood of ¢g{v). By upper semicontinuity of g, there exists a
neighbourhood N(v) such that g(v) C Wi(q(vo)) for all v € N(wy).

For each barycentric subdivision S* of A, there exists an n-simplex al...a} con-
taining the point vy and moreover ai — vo for each i = 0,1,... ,n as k — oco. For k
sufficiently large, ai € N(vp) for each i =0,1,... ,n and

7 = fi(ux) € G-co {Oq (a;)} )

i=0

As Wi (g(vo)) is G-convex and a} € N(vp) it follows that

Tk € G-co {Uq (a}c)} C Wi(g(wo)) € W (g(wo)).
i=0
This implies o € W (g(vo)) C V(g(vo)) as W is closed and g(v) is compact. As V is
arbitrary, zo € q(vp). 0
Using this, the following coincidence point theorem is established.
THEOREM 3.1. Let (X;T) be a compact locally G-convex space and (Y;Z) an
arbitrary G-convex space. Suppose F : X — 2V is such that
1. F(z) is G-convex for all z € X;
2. F~(y) contains an open set O, (which may be empty for some y);
3 Uo,=X.

yeYy
Then for each upper semicontinuous g : ¥ — 2% with compact G-convex values there
exists a coincidence point; that is, a point g € X such that

F(zo) N g™ (zo) # 0.

Proor: By Theorem 2.1 there exists n € N and continuous maps h: A, = Y and
¢:X = A, such that f = ho ¢ is a continuous selection of F. The composition goh :
A, — 2% is upper semicontiuous with compact G-convex values. From Lemma 1 there
exists vg € A, with vy € ¢(g(h(w0))). Letting yo = h(vo), we have yo € h(¢(g(%0)));
that is, yo = h(#(2)) = f(2) for some z € g(yo). Hence yo € F(2)Ng~'(2) as required. 0

4. Fi1XEp PoOINTS

As an application of Theorem 3.1, the Fan-Glicksberg fixed point theorem is gener-
alised to locally G-convex spaces as follows.

THEOREM 4.1. Let (X;I') be a compact locally G-convex uniform space. Then
any upper semicontinuous g : X — 2% with closed G-convex values has a fixed point.
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PrOOF: For W € [ arbitrary, so W is an open symmetric G-convex entourage,
define a multifunction Fir : X — 2X by Fy(x) = W(z). It is clear that Fiy has G-
convex values. Also Fi5'(y) = W~l(y) = W(y) as W is symmetric. By Theorem 3.1
there exists zw € X such that g(zw) N Fy'(zw) # 0. Let 2z be an element of this
intersection. Thus zw € Fw(2w) C Fw (g(zw)) = W(g(zw)).

For each W € 3, let Hy = {z € X : z € W(g(z))} which is nonempty by the
above arguments. Moreover Hy is closed. Indeed, let {z;} be a net in Hw converging
to zo. Then there exists a net {us} such that z; € W(us) and us € g(zs). As X
is compact, without loss of generality we may assume us — up € X. As g is upper
semicontinuous, it has a closed graph so uy € g(zo). Also (zs,us) € W so (o, u0) € W,
that is, zo € W(uo) C W(g(zo)) and Hyw is closed.

As any finite intersection of elements in 3 is again an element of 3, the compactness
of X implies N{Hw : W € B} # 0. For zo a member of this intersection, zo € W (g(z0))
for all W € 3. We claim z; is a fixed point of g. As in the proof of Lemma 1, it is enough
to show z, € V(g(zo)) for any V in an arbitrary basis for the uniformity U. So let V be
arbitrary but fixed. We may choose a closed symmetric entourage W, and a W, € 8 such
that Wy ¢ Wi C V. Then 3o € Wa(g(zo)) € Wi(g(z0)) C V(g(z0)), which completes
the proof. 1]

This result extends [17, Theorem 2.1] to G-convex spaces as well as considering
upper semicontinuous rather that continuous multifunctions.

When the domain X is not compact, under stronger conditions for the mapping
g: X — 2X we have:

THEOREM 4.2. Let (X;TI') be a locally G-convex space, D C X closed and G-
convex, and g : D — 2P upper semicontinuous with compact G-convex values. If for
some e € D the following implication holds:

(V=G-og(V)orV C g(V)U{e}) =V is relatively compact

for any subset V of D,
then g has a fixed point.

PROOF: In the proof we employ some ideas from the paper of Danes [3]. Define a
net {y,} as follows: yo = e and yn11 € g(¥n). Let Y = {yo : n > 0}. Then Y C g(Y)U{e}
so by assumption, Y is relatively compact. The set Z of limit points of Y is therefore
nonempty and moreover Z C ¢g(Z). Indeed, for arbitrary zp € Z, there exists a subnet
Yn; — 20, Yn; € Y. By construction of the net Y, we have (y,,,yn;—1) € Graph(gly)
which is compact by the compactness of Y and upper semicontinuity of g. Therefore
(Yn;» Yn—1) = (20, 21) for some z, € Z. This means zp € g(z) and so Z C g(Z).

Let © be the family of all subsets K C D such that Z C K and G-cog(K) C K.
Then Q # Qas D € Q Let V=K : K € Q}, which is nonempty as Z C V.
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Also G-cog(V) C G-cog(K) C K for all K € Q. Therefore G-cog(V) C V and since
G-cog(V) € Q is clear, then V C G-cog(V). Thus V = G-cog(V) so by assumption, V
is relatively compact. Applying now Theorem 4.1 with X = V, we conclude the mapping

g has a fixed point. a
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