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COINCIDENCES AND FIXED POINTS IN
LOCALLY G-CONVEX SPACES

P.J. WATSON

A new coincidence point theorem is proved for a pair of multivalued mappings oper-
ating between G-convex spaces. Prom this theorem, a generalisation of the classical
Fan-Glicksberg fixed point theorem is established.

1. INTRODUCTION

In recent years many researchers have been interested in various notions of con-
vexity on topological spaces which do not rely on a linear structure of the underlying
space. The first work in this direction may be Aronszajn and Panitchpakdi [1] where the
authors introduced a convexity structure on metric spaces; hyperconvex metric spaces.
Subsequently this property has been found to be important in the study of nonexpansive
mappings, see [6, 14, 15].

Some time later Horvath [9, 10, 11] defined a convexity structure in topological
spaces and proved several important results in the theory of nonlinear analysis. The
structure determining convexity in this space is a multivalued monotone operator map-
ping the finite subsets to contractible subsets of the topological space. Note that a
contractible set in a topological space is one in which the identity map, restricted to the
set in question, is homotopic to a constant map. This structure replaces the convex hull
in vector spaces. Such a space has since been called an //-convex space (or simply H-
space) by Bardaro and Ceppitelli [2] where amongst other results, a KKM type theorem
is established.

The so-called G-convex spaces were introduced in [12] to allow for a convexity
structure that need not have contractible values. These spaces generalise the notion of
//-convexity (see Definition 1 below) as well as hyperconvexity. We refer to [18, 6] for
further discussion on the relations between these concepts of convexity.

This study examines the existence of coincidence points for multivalued operators
acting between different G-convex spaces. The first result, Lemma 1, is a fixed point result
for the composition of a single valued continuous function and a multivalued operator with
G-convex values. A selection theorem proved in [16], Theorem 2.1 below, is fundamental
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in the proof, and its use replaces linear approximation arguments used when the ambient
space is linear (see for example [8, Lemma 2]). From this, a coincidence point theorem
is proved and then a fixed point theorem which generalises the classical Fan-Glicksberg
fixed point theorem. This study concludes with a fixed point theorem in which the
compactness condition on the space is relaxed.

It should be noted that Yuan [18] has generalised the Fan-Glicksberg fixed point
theorem for multifunctions with acyclic values, and in Ding and Tarafdar [4], a coinci-
dence point theorem has been proved (in H-spaces) for a pair of multifunctions, one of
which has acyclic values. The emphasis of this work is to study multifunctions with G-
convex values instead of acyclic values. Therefore the results established here are proved
by different means and they do not compare with the results in [18, 4].

2. G-CONVEX SPACES

First we elucidate the notations and definitions used in this paper. Let X be a
set. 2X denotes the family of all nonempty subsets of the space X and T{X) denotes
the family of nonempty finite subsets of X. An is the standard n-dimensional simplex
with verticies eo, • • • ,en where eo = 0 and e^ for i = 1 , . . . , n, is the i-th unit vector
in Rn; that is, An = co{e0 , . . . , e n } . If a0,... ,an are points in some vector space
X, then a0.. .an will denote the simplex with verticies a0,... ,an. Let X and Y be
topological spaces. A multifunction T : X —t 2Y is said to be upper semicontinuous if
T~l{C) = {x &X : T(x) n C ^ 0} is closed in X whenever C is closed in Y.

The following definition originally appeared in [12].

DEFINITION 1 . A generalised convex, or G-convex space (X,D;T) is a topo-
logical space X, a nonempty subset D of X and a function T : F{X) —»• 2X with the
following properties:

1. for any A,B e F(X) with AcB,we have T{A) C T(B);

2. for any A € T(X) with elements oo,. . . ,an there exists a continuous func-
tion ip : An —> r(A) such that for each 0 ^ IQ < • • • < ik ^ n it follows
that

</>(co{eio,--- ,eik}) c r ( { a i o , - - - ,aik}).

(X, F) is an iJ-space when D = X, condition 1 is satisfied and the operator F has
contractible values. It has been shown in [10, Theorem 1] that such an operator satisfies
condition 2.

A subset K of a G-convex space (X,D;T) is said to be G-convex if, for any A e
T(K fl D), V(A) C K. Note that the intersection of G-convex sets remains G-convex.
The G-convex hull of a subset Y of a G-convex space, denoted G-co (Y), is defined to be
the intersection of all G-convex sets containing the set Y. So the G-convex hull of Y is
the smallest G-convex set containing Y, which is evidently G-convex. Further properties
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of G-convex spaces and sets can be found in [12] and [16]. In this study, the set D in

the definition of G-convex will be all of X and (X, X; F) will be denoted (X\ F).

The following definition relates the G-convex sets with the topology of X, and it

generalises the concept of a locally convex topological vector space.

DEFINITION 2 . A G-convex space (X; F) is said to be a locally G-convex uni-

form space if X is a uniform space with uniformity U having base @ of open symmetric

entourages such that each W € (3 satisfies the property that

W(x) = {yeX:{x,y)€W}

is G-convex.

An arbitrary entourage satisfying this property will be said to be G-convex.

An alternative definition of local G-convexity is to assume that for any W 6 /?,

W(K) — {x e X : (y, x) € W for some y G K} is G-convex whenever K is G-convex. A

locally G-convex space satisfying this property has fewer G-convex sets than one satisfying

Definition 2. This follows as Definition 2 implies each singleton is G-convex (simply note

{x} = n V(x) and the intersection of G-convex sets is G-convex), whereas the second

notion does not necessarily imply this. Although the alternative definition gives rise to a

more general space, it may be the case that there are fewer multifunctions with G-convex

values (for example, single valued functions may not have G-convex values). Thus we

restrict our analysis to locally G-convex spaces as in Definition 2. Note that both concepts

coincide if the G-convex space (X; F) is such that F(x) = {x} for all x € X.

It is well know that in uniform spaces, the closure of a set K c X is given by

K = f){V(K):Vef3}

where P is any base for U. It follows that in locally G-convex uniform spaces, the closure

of a G-convex set, being the intersection of G-convex sets, is G-convex.

The following selection theorem is a weaker formulation of [16, Theorem 2.4], though

sufficient for our purpose.

THEOREM 2 . 1 . Let X be a compact topological space and (Y; F) a G-convex

space. Suppose T : X —¥ 2Y satisfies

1. T(x) is G-convex for all x € X;

2. for each x € X there exists y €Y such that x e int(T~l(y)).

Then there exists A € T{Y) and continuous functions g : An -> Y and (j> : X -4 An,

wiere n + 1 = |A|, such that the composition f = g o <f> is a continuous selection ofT;

that is, f(x) £ T{x) for allxeX.

3. A COINCIDENCE THEOREM

The first result is the G-convex version of [8, Lemma 2] and is similar to the fixed

point theorems of Eilenberg and Montgomery [5], Gorniewicz [7] and Shioji [13], although
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the setting is a locally G-convex space and the multifunction has G-convex values rather
than contractible or acyclic values.

LEMMA 1. Let (X;T) be a compact locally G-convex uniform space. Suppose
p : X —¥ An is continuous and q : An -> 2X is upper semicontinuous with compact
G-convex values. Then p o q : An -> 2A" has a fixed point.

PROOF: For k = 1 ,2, . . . , denote by Sh the A;-th barycentric subdivision of the
simplex An. For each k define a multivalued mapping Tk : An -» 2X by

where a\, for i = 0 , . . . ,r , 0 ^ r ^ n, are the verticies of the simplex in 5* of least
dimension containing the point v. The values of Tk are clearly G-convex.

We prove condition 2 of Theorem 2.1 is satisified for Tk- So we show each v £ An

belongs to the interior of Tk~
1(y) for some y £ X. To this end, let v £ An be arbitrary.

For a°k.. .aT
k the simplex in 5* of least dimension containing v, choose e > 0 such that

s < dist(i!, Afc) for all simplexes A* £ Sk with v £ At. We claim the open ball Be(v) in
An is a subset of

$ = ( J {A£ e 5* : a°k ... a\ is a face of A£ and dimAJJ = n) .

To see this, suppose z is not an element of $. Then z € An\A]J for all n-dimensional
A£ £ Sk having a\... aT

k as a face. Hence z belongs to an n-dimensional simplex A£
and a°k. ..a

r
k is not a face of A£. Either a°k... a

T
k n A£ — 0 or not. In the first case it

immediately follows that v £ A£ so z g Be(v) from the definition of e. If â  . . . a£nA£ ^ 0
then the intersection is a face common to both. As a!k...a

T
k is not a face of A£, the

intersection must be a simplex of dimension strictly less than r. As r is the smallest
integer such that v £ a\ ... ar

k then v ^ AjJ so again z £ BE(v).

Thus the inclusion Be(v) C $ has been established. This implies that for each
w £ Be(v), Tk(v) c Tk(w) by the definition of Tk and $. By choosing y £ Tk{w), it
follows that Be(v) C Tk~

l(y) and condition 2 of Theorem 2.1 is satisfied.

By Theorem 2.1 there exists a continuous selection fk of Tk. The composition pofk :
An —> An is continuous and so by Brouwer's fixed point theorem, there exists vk £ An

such that Vk = p(fk(vk))- Let Xk = /*("*)• As X is compact we may assume the net Xk
converges to x0 £ X. As p is continuous, Vk = p{xk) -*• p{xo) = v0. We claim x0 £ q(v0)
so that v0 is a fixed point of the multivalued composition p o q.

As q(v0) is closed it is enough to show x0 £ V(q(v0)) for any V in any base for the
uniformity U. So let V be a fixed element of some base for the uniformity. As all the
closed symmetric entourages form a base for U, there exists a closed symmetric entourage
W C V. Similarly as all the open symmetric G-convex entourages form a base for the
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uniformity, there exists an open symmetric G-convex Wi C W. Therefore Wx (q{v0)) is
an open G-convex neighbourhood of q(v0). By upper semicontinuity of q, there exists a
neighbourhood N(vQ) such that q(v) C Wi(q{v0)) for all v £ N(v0).

For each barycentric subdivision Sk of An there exists an n-simplex 0%. ..a% con-
taining the point vk and moreover a\ —> VQ for each i = 0 , 1 , . . . ,n as k —t oo. For k
sufficiently large, ak € N(v0) for each i = 0 , 1 , . . . , n and

xk = fk(vk) £ G-co <{Jq{4) \-

As Wi(q(vo)) is G-convex and a\ € N(VQ) it follows that

xk € G-co JU? (4) I C W^o))
li=0 J

This implies x0 € ^(9(^0)) C V(q(v0)) as W is closed and q(v0) is compact. As V is
arbitrary, x0 £ q{vo). D

Using this, the following coincidence point theorem is established.

THEOREM 3 . 1 . Let (X; T) be a compact locally G-convex space and (Y; S) an

arbitrary G-convex space. Suppose F : X —> 2Y is such that

1. F(x) is G-convex for all x € X;

2. F~1(y) contains an open set Oy (which may be empty for some y);

3. \JOy= X.

Then for each upper semicontinuous g : Y -> 2X with compact G-convex values there
exists a coincidence point; that is, a point XQ € X such that

P R O O F : By Theorem 2.1 there exists n € N and continuous maps h : An —> Y and
4>: X -> An such that / = h o <f> is a continuous selection of F. The composition g oh :
An —> 2X is upper semicontiuous with compact G-convex values. From Lemma 1 there
exists v0 € An with v0 € <f>(g(h(v0))). Letting y0 = h(v0), we have y0 € h(<j>(g(y0)));
that is, y0 — h((p(z)) = f(z) for some z € 5(2/0)- Hence y0 € F(z)C\g~1{z) as required. D

4. FIXED POINTS

As an application of Theorem 3.1, the Fan-Glicksberg fixed point theorem is gener-
alised to locally G-convex spaces as follows.

THEOREM 4 . 1 . Let (X; T) be a compact locally G-convex uniform space. Then
any upper semicontinuous g : X —¥ 2X with closed G-convex values has a fixed point.
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PROOF: For W G /? arbitrary, so W is an open symmetric G-convex entourage,
define a multifunction Fw • X —>• 2X by Fw(x) = W(x). It is clear that Fw has G-
convex values. Also F^{y) — W~1(y) = W(y) as W is symmetric. By Theorem 3.1
there exists xw G X such that g{xw) n F^(xw) i1 0- Let zw be an element of this
intersection. Thus xw G Fw{zw) C Fw(g{xw)) = W{g{xw))-

For each W G /?, let i/w = {x G X : x G W(<7(a;))} which is nonempty by the
above arguments. Moreover Hw is closed. Indeed, let {x$} be a net in Hw converging
to x0. Then there exists a net {us} such that xs € W^uj) and uj € fl^ia)- As X
is compact, without loss of generality we may assume u^ —> uo 6 X. As g is upper
semicontinuous, it has a closed graph so u0 G <?(:EO)- Also ( l a , ^ ) G W so (xo,wo) G W,
that is, a;0 G W(u0) C 1^(5(2:0)) and i?vv is closed.

As any finite intersection of elements in p is again an element of /?, the compactness
of X implies f\{Hw :WeP}j£®. For x0 a member of this intersection, x0 G W(g(x0))
for all W G /?. We claim x0 is a fixed point of g. As in the proof of Lemma 1, it is enough
to show XQ G V(g(xo)) for any V in an arbitrary basis for the uniformity U. So let V be
arbitrary but fixed. We may choose a closed symmetric entourage Wi and a W2 G (3 such
that W2 C Wi C V. Then z0 G M^(5(x0)) C Wi((/(a:o)) C V(g(x0)), which completes
the proof. D

This result extends [17, Theorem 2.1] to G-convex spaces as well as considering
upper semicontinuous rather that continuous multifunctions.

When the domain X is not compact, under stronger conditions for the mapping
g : X —> 2X we have:

THEOREM 4 . 2 . Let (X; F) be a locally G-convex space, D C X closed and G-
convex, and g : D -4 2D upper semicontinuous with compact G-convex values. If for
some e G D the following implication holds:

( y = G-cog(V) or V C g(V) U {e}) =>• V is relatively compact

for any subset V of D,
then g has a fixed point.

P R O O F : In the proof we employ some ideas from the paper of Danes [3]. Define a
n e t {yn} as follows: y0 = e a n d y n + i G g(yn)- Let Y = {yn:n> 0 } . T h e n Y C g{Y)\j{e}
so by assumption, Y is relatively compact. The set Z of limit points of Y is therefore
nonempty and moreover Z C g(Z). Indeed, for arbitrary ZQ G Z, there exists a subnet
2/ni —> zo, 2/ni G Y. By construction of the net Y, we have (yni,yni-i) G Graph(p|y)
which is compact by the compactness of Y and upper semicontinuity of g. Therefore
(yni, J/ni-i) -»• (ZOJ ZI) for some z\ G Z. This means z0 G g(z\) and so Z C <?(•£).

Let ft be the family of all subsets K c D such that Z C K and G-cog{K) c if.
Then fi ^ 0 as £> G H. Let V = (){K : K € to}, which is nonempty as Z c V.
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Also G-cog(V) C G-cog{K) C K for all K G fi. Therefore G-cog{V) c V and since
G-cog{V) € Q is clear, then F C G-cog(F). Thus V = G-cog(V) so by assumption, V
is relatively compact. Applying now Theorem 4.1 with X — V, we conclude the mapping
g has a fixed point. D

REFERENCES

[1] N. Aronszajn and P. Panitchpakdi, 'Extensions of uniformly continuous transformations
and hyperconvex metric spaces', Pacific J. Math. 6 (1956), 405-439.

[2] C. Bardaro and R. Ceppitelli, 'Some further generalisations of the Knaster-
Kuratowski-Mazurkiewicz theorem and minimax inequalities', J. Math. Anal. Appl. 132
(1998), 484-490.

[3] J. Danes, 'Some fixed point theorems', Comment. Math. Univ. Carotin. 9 (1968), 223-235.
[4] X.P. Ding and E. Tarafdar, 'Some coincidence theorems and applications', Bull. Austral.

Math. Soc. 50 (1994), 73-80.
[5] S. Eilenberg and D. Montgomery, 'Fixed point theorems for multivalued transformations',

Amer. J. Math. 68 (1946), 214-222.
[6] K. Goebel and W. A. Kirk, Fixed point theory in metric spaces (Cambridge University

Press, Cambridge, 1990).
[7] L. Gorniewicz, 'A Lefcchetz-type fixed point theorem', Fund. Math. 88 (1975), 103-115.
[8] C.W. Ha, 'On a minimax inequality of Ky Fan', Proc. Amer. Math. Soc. 99 (1987),

680-682.
[9] C. Horvath, 'Some results on multivalued mappings and inequalities with a generalised

convexity structure', in Nonlinear and convex analysis, (B.L. Lin and S. Simons, Editors)
(Marcel Dekker, New York, 1987), pp. 96-106.

[10] C. Horvath, 'Contractibility and generalised convexity', J. Math. Anal. Appl. 156 (1991),
341-357.

[11] C. Horvath, 'Extension and selection theorems in topological spaces with a generalised
convexity structure', Ann. Fac. Sci. Toulouse Math. 2 (1993), 253-269.

[12] S. Park and H. Kim, 'Admissable classes of multifunctions on generalized convex spaces',
Proc. Coll. Nat. Sci. SNU 18 (1993), 1-21.

[13] N. Shioji, 'A further generalisation of the Knaster-Kutatowski-Mazurkiewicz theorem',
Proc. Amer. Math. Soc. I l l (1991), 187-195.

[14] R.C. Sine, 'Hyperconvexity and approximate fixed points', Nonlinear Anal. 13 (1989),
863-869.

[15] P.M. Soaxdi, 'Existence of fixed points of nonexpansive mappings in certain Banach
lattices', Proc. Amer. Math. Soc. 73 (1979), 25-29.

[16] K-K. Tan and X-L. Zhang, 'Fixed point theorems in G-convex spaces and applications', in
The Proceedings of the First International Conference on Nonlinear Functional Analysis
and Applications, Kyungnam University, Masan, Korea 1, 1996, pp. 1-19.

[17] E.U. Tarafdar, 'Fixed point theorems in locally //-convex uniform spaces', Nonlinear
Anal. 29 (1997), 971-978.

[18] G. X-Z. Yuan, 'Fixed Points of upper semicontinuous mappings in locally G-convex uni-
form spaces', Bull. Austral. Math. Soc. 58 (1998), 469-478.

https://doi.org/10.1017/S0004972700032901 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032901


304 P.J. Watson [8]

Department of Mathematics
The University of Queensland
Queensland 4072
Australia
e-mail: pjw@maths.uq.edu.au

https://doi.org/10.1017/S0004972700032901 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032901

