Bull. Austral. Math. Soc. Vol. 59 (1999) [297-304]

COINCIDENCES AND FIXED POINTS IN LOCALLY G-CONVEX SPACES

P.J. WATSON

A new coincidence point theorem is proved for a pair of multivalued mappings operating between G-convex spaces. From this theorem, a generalisation of the classical Fan-Glicksberg fixed point theorem is established.

1. INTRODUCTION

In recent years many researchers have been interested in various notions of convexity on topological spaces which do not rely on a linear structure of the underlying space. The first work in this direction may be Aronszajn and Panitchpakdi [1] where the authors introduced a convexity structure on metric spaces; *hyperconvex* metric spaces. Subsequently this property has been found to be important in the study of nonexpansive mappings, see [6, 14, 15].

Some time later Horvath [9, 10, 11] defined a convexity structure in topological spaces and proved several important results in the theory of nonlinear analysis. The structure determining convexity in this space is a multivalued monotone operator mapping the finite subsets to contractible subsets of the topological space. Note that a contractible set in a topological space is one in which the identity map, restricted to the set in question, is homotopic to a constant map. This structure replaces the convex hull in vector spaces. Such a space has since been called an *H*-convex space (or simply *H*-space) by Bardaro and Ceppitelli [2] where amongst other results, a KKM type theorem is established.

The so-called G-convex spaces were introduced in [12] to allow for a convexity structure that need not have contractible values. These spaces generalise the notion of H-convexity (see Definition 1 below) as well as hyperconvexity. We refer to [18, 6] for further discussion on the relations between these concepts of convexity.

This study examines the existence of coincidence points for multivalued operators acting between different G-convex spaces. The first result, Lemma 1, is a fixed point result for the composition of a single valued continuous function and a multivalued operator with G-convex values. A selection theorem proved in [16], Theorem 2.1 below, is fundamental

Received 17th September, 1998

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

P.J. Watson

in the proof, and its use replaces linear approximation arguments used when the ambient space is linear (see for example [8, Lemma 2]). From this, a coincidence point theorem is proved and then a fixed point theorem which generalises the classical Fan-Glicksberg fixed point theorem. This study concludes with a fixed point theorem in which the compactness condition on the space is relaxed.

It should be noted that Yuan [18] has generalised the Fan-Glicksberg fixed point theorem for multifunctions with acyclic values, and in Ding and Tarafdar [4], a coincidence point theorem has been proved (in H-spaces) for a pair of multifunctions, one of which has acyclic values. The emphasis of this work is to study multifunctions with G-convex values instead of acyclic values. Therefore the results established here are proved by different means and they do not compare with the results in [18, 4].

2. G-CONVEX SPACES

First we elucidate the notations and definitions used in this paper. Let X be a set. 2^X denotes the family of all nonempty subsets of the space X and $\mathcal{F}(X)$ denotes the family of nonempty finite subsets of X. Δ_n is the standard *n*-dimensional simplex with vertices e_0, \ldots, e_n where $e_0 = 0$ and e_i , for $i = 1, \ldots, n$, is the *i*-th unit vector in \mathbb{R}^n ; that is, $\Delta_n = \operatorname{co} \{e_0, \ldots, e_n\}$. If a_0, \ldots, a_n are points in some vector space X, then $a_0 \ldots a_n$ will denote the simplex with vertices a_0, \ldots, a_n . Let X and Y be topological spaces. A multifunction $T: X \to 2^Y$ is said to be upper semicontinuous if $T^{-1}(C) = \{x \in X: T(x) \cap C \neq \emptyset\}$ is closed in X whenever C is closed in Y.

The following definition originally appeared in [12].

DEFINITION 1. A generalised convex, or G-convex space $(X, D; \Gamma)$ is a topological space X, a nonempty subset D of X and a function $\Gamma : \mathcal{F}(X) \to 2^X$ with the following properties:

- 1. for any $A, B \in \mathcal{F}(X)$ with $A \subset B$, we have $\Gamma(A) \subset \Gamma(B)$;
- 2. for any $A \in \mathcal{F}(X)$ with elements a_0, \ldots, a_n there exists a continuous function $\psi : \Delta_n \to \Gamma(A)$ such that for each $0 \leq i_0 < \cdots < i_k \leq n$ it follows that

$$\psi(\operatorname{co} \{e_{i_0}, \cdots, e_{i_k}\}) \subset \Gamma(\{a_{i_0}, \cdots, a_{i_k}\}).$$

 (X, Γ) is an *H*-space when D = X, condition 1 is satisfied and the operator Γ has contractible values. It has been shown in [10, Theorem 1] that such an operator satisfies condition 2.

A subset K of a G-convex space $(X,D;\Gamma)$ is said to be G-convex if, for any $A \in \mathcal{F}(K \cap D)$, $\Gamma(A) \subset K$. Note that the intersection of G-convex sets remains G-convex. The G-convex hull of a subset Y of a G-convex space, denoted G-co (Y), is defined to be the intersection of all G-convex sets containing the set Y. So the G-convex hull of Y is the smallest G-convex set containing Y, which is evidently G-convex. Further properties Fixed points

of G-convex spaces and sets can be found in [12] and [16]. In this study, the set D in the definition of G-convex will be all of X and $(X, X; \Gamma)$ will be denoted $(X; \Gamma)$.

The following definition relates the G-convex sets with the topology of X, and it generalises the concept of a locally convex topological vector space.

DEFINITION 2. A G-convex space $(X; \Gamma)$ is said to be a locally G-convex uniform space if X is a uniform space with uniformity \mathcal{U} having base β of open symmetric entourages such that each $W \in \beta$ satisfies the property that

$$W(x) = \left\{ y \in X : (x, y) \in W \right\}$$

is G-convex.

An arbitrary entourage satisfying this property will be said to be G-convex.

An alternative definition of local G-convexity is to assume that for any $W \in \beta$, $W(K) = \{x \in X : (y, x) \in W \text{ for some } y \in K\}$ is G-convex whenever K is G-convex. A locally G-convex space satisfying this property has fewer G-convex sets than one satisfying Definition 2. This follows as Definition 2 implies each singleton is G-convex (simply note $\{x\} = \bigcap_{V \in \beta} V(x)$ and the intersection of G-convex sets is G-convex), whereas the second notion does not necessarily imply this. Although the alternative definition gives rise to a more general space, it may be the case that there are fewer multifunctions with G-convex values (for example, single valued functions may not have G-convex values). Thus we restrict our analysis to locally G-convex spaces as in Definition 2. Note that both concepts coincide if the G-convex space $(X; \Gamma)$ is such that $\Gamma(x) = \{x\}$ for all $x \in X$.

It is well know that in uniform spaces, the closure of a set $K \subset X$ is given by

$$\overline{K} = \bigcap \left\{ V(K) : V \in \beta \right\}$$

where β is any base for \mathcal{U} . It follows that in locally G-convex uniform spaces, the closure of a G-convex set, being the intersection of G-convex sets, is G-convex.

The following selection theorem is a weaker formulation of [16, Theorem 2.4], though sufficient for our purpose.

THEOREM 2.1. Let X be a compact topological space and $(Y; \Gamma)$ a G-convex space. Suppose $T: X \to 2^Y$ satisfies

- 1. T(x) is G-convex for all $x \in X$;
- 2. for each $x \in X$ there exists $y \in Y$ such that $x \in int(T^{-1}(y))$.

Then there exists $A \in \mathcal{F}(Y)$ and continuous functions $g : \Delta_n \to Y$ and $\phi : X \to \Delta_n$, where n + 1 = |A|, such that the composition $f = g \circ \phi$ is a continuous selection of T; that is, $f(x) \in T(x)$ for all $x \in X$.

3. A COINCIDENCE THEOREM

The first result is the G-convex version of [8, Lemma 2] and is similar to the fixed point theorems of Eilenberg and Montgomery [5], Gorniewicz [7] and Shioji [13], although

P.J. Watson

the setting is a locally G-convex space and the multifunction has G-convex values rather than contractible or acyclic values.

LEMMA 1. Let $(X; \Gamma)$ be a compact locally G-convex uniform space. Suppose $p: X \to \Delta_n$ is continuous and $q: \Delta_n \to 2^X$ is upper semicontinuous with compact G-convex values. Then $p \circ q: \Delta_n \to 2^{\Delta_n}$ has a fixed point.

PROOF: For k = 1, 2, ..., denote by S^k the k-th barycentric subdivision of the simplex Δ_n . For each k define a multivalued mapping $T_k : \Delta_n \to 2^X$ by

$$T_k(v) = G \operatorname{-co} \left\{ \bigcup_{i=0}^r q\left(a_k^i\right) \right\}$$

where a_k^i , for $i = 0, ..., r, 0 \leq r \leq n$, are the vertices of the simplex in S^k of least dimension containing the point v. The values of T_k are clearly G-convex.

We prove condition 2 of Theorem 2.1 is satisified for T_k . So we show each $v \in \Delta_n$ belongs to the interior of $T_k^{-1}(y)$ for some $y \in X$. To this end, let $v \in \Delta_n$ be arbitrary. For $a_k^0 \ldots a_k^r$ the simplex in S^k of least dimension containing v, choose $\varepsilon > 0$ such that $\varepsilon < \operatorname{dist}(v, \Lambda_k)$ for all simplexes $\Lambda_k \in S^k$ with $v \notin \Lambda_k$. We claim the open ball $B_{\varepsilon}(v)$ in Δ_n is a subset of

$$\Phi = \bigcup \left\{ \Lambda_k^n \in S^k : a_k^0 \dots a_k^r \text{ is a face of } \Lambda_k^n \text{ and } \dim \Lambda_k^n = n \right\}.$$

To see this, suppose z is not an element of Φ . Then $z \in \Delta_n \setminus \Lambda_k^n$ for all n-dimensional $\Lambda_k^n \in S^k$ having $a_k^0 \dots a_k^r$ as a face. Hence z belongs to an n-dimensional simplex $\widehat{\Lambda}_k^n$ and $a_k^0 \dots a_k^r$ is not a face of $\widehat{\Lambda}_k^n$. Either $a_k^0 \dots a_k^r \cap \widehat{\Lambda}_k^n = \emptyset$ or not. In the first case it immediately follows that $v \notin \widehat{\Lambda}_k^n$ so $z \notin B_{\epsilon}(v)$ from the definition of ϵ . If $a_k^0 \dots a_k^r \cap \widehat{\Lambda}_k^n \neq \emptyset$ then the intersection is a face common to both. As $a_k^0 \dots a_k^r$ is not a face of $\widehat{\Lambda}_k^n$, the intersection must be a simplex of dimension strictly less than r. As r is the smallest integer such that $v \in a_k^0 \dots a_k^r$ then $v \notin \widehat{\Lambda}_k^n$ so again $z \notin B_{\epsilon}(v)$.

Thus the inclusion $B_{\varepsilon}(v) \subset \Phi$ has been established. This implies that for each $w \in B_{\varepsilon}(v)$, $T_k(v) \subset T_k(w)$ by the definition of T_k and Φ . By choosing $y \in T_k(w)$, it follows that $B_{\varepsilon}(v) \subset T_k^{-1}(y)$ and condition 2 of Theorem 2.1 is satisfied.

By Theorem 2.1 there exists a continuous selection f_k of T_k . The composition $p \circ f_k : \Delta_n \to \Delta_n$ is continuous and so by Brouwer's fixed point theorem, there exists $v_k \in \Delta_n$ such that $v_k = p(f_k(v_k))$. Let $x_k = f_k(v_k)$. As X is compact we may assume the net x_k converges to $x_0 \in X$. As p is continuous, $v_k = p(x_k) \to p(x_0) = v_0$. We claim $x_0 \in q(v_0)$ so that v_0 is a fixed point of the multivalued composition $p \circ q$.

As $q(v_0)$ is closed it is enough to show $x_0 \in V(q(v_0))$ for any V in any base for the uniformity \mathcal{U} . So let V be a fixed element of some base for the uniformity. As all the closed symmetric entourages form a base for \mathcal{U} , there exists a closed symmetric entourage $W \subset V$. Similarly as all the open symmetric G-convex entourages form a base for the

Fixed points

uniformity, there exists an open symmetric G-convex $W_1 \subset W$. Therefore $W_1(q(v_0))$ is an open G-convex neighbourhood of $q(v_0)$. By upper semicontinuity of q, there exists a neighbourhood $N(v_0)$ such that $q(v) \subset W_1(q(v_0))$ for all $v \in N(v_0)$.

For each barycentric subdivision S^k of Δ_n there exists an *n*-simplex $a_k^0 \dots a_k^n$ containing the point v_k and moreover $a_k^i \to v_0$ for each $i = 0, 1, \dots, n$ as $k \to \infty$. For k sufficiently large, $a_k^i \in N(v_0)$ for each $i = 0, 1, \dots, n$ and

$$x_k = f_k(v_k) \in G$$
-co $\left\{ \bigcup_{i=0}^n q\left(a_k^i\right) \right\}$.

As $W_1(q(v_0))$ is G-convex and $a_k^i \in N(v_0)$ it follows that

$$x_k \in G$$
-co $\left\{ \bigcup_{i=0}^n q\left(a_k^i\right) \right\} \subset W_1(q(v_0)) \subset W(q(v_0)).$

This implies $x_0 \in W(q(v_0)) \subset V(q(v_0))$ as W is closed and $q(v_0)$ is compact. As V is arbitrary, $x_0 \in q(v_0)$.

Using this, the following coincidence point theorem is established.

THEOREM 3.1. Let $(X; \Gamma)$ be a compact locally G-convex space and $(Y; \Sigma)$ an arbitrary G-convex space. Suppose $F: X \to 2^Y$ is such that

- 1. F(x) is G-convex for all $x \in X$;
- 2. $F^{-1}(y)$ contains an open set O_y (which may be empty for some y);
- 3. $\bigcup_{y \in Y} O_y = X.$

Then for each upper semicontinuous $g: Y \to 2^X$ with compact G-convex values there exists a coincidence point; that is, a point $x_0 \in X$ such that

$$F(x_0) \cap g^{-1}(x_0) \neq \emptyset.$$

PROOF: By Theorem 2.1 there exists $n \in \mathbb{N}$ and continuous maps $h: \Delta_n \to Y$ and $\phi: X \to \Delta_n$ such that $f = h \circ \phi$ is a continuous selection of F. The composition $g \circ h: \Delta_n \to 2^X$ is upper semicontinuous with compact G-convex values. From Lemma 1 there exists $v_0 \in \Delta_n$ with $v_0 \in \phi(g(h(v_0)))$. Letting $y_0 = h(v_0)$, we have $y_0 \in h(\phi(g(y_0)))$; that is, $y_0 = h(\phi(z)) = f(z)$ for some $z \in g(y_0)$. Hence $y_0 \in F(z) \cap g^{-1}(z)$ as required.

4. FIXED POINTS

As an application of Theorem 3.1, the Fan-Glicksberg fixed point theorem is generalised to locally G-convex spaces as follows.

THEOREM 4.1. Let $(X; \Gamma)$ be a compact locally G-convex uniform space. Then any upper semicontinuous $g: X \to 2^X$ with closed G-convex values has a fixed point.

P.J. Watson

PROOF: For $W \in \beta$ arbitrary, so W is an open symmetric G-convex entourage, define a multifunction $F_W : X \to 2^X$ by $F_W(x) = W(x)$. It is clear that F_W has Gconvex values. Also $F_W^{-1}(y) = W^{-1}(y) = W(y)$ as W is symmetric. By Theorem 3.1 there exists $x_W \in X$ such that $g(x_W) \cap F_W^{-1}(x_W) \neq \emptyset$. Let z_W be an element of this intersection. Thus $x_W \in F_W(z_W) \subset F_W(g(x_W)) = W(g(x_W))$.

For each $W \in \beta$, let $H_W = \{x \in X : x \in \overline{W}(g(x))\}$ which is nonempty by the above arguments. Moreover H_W is closed. Indeed, let $\{x_\delta\}$ be a net in H_W converging to x_0 . Then there exists a net $\{u_\delta\}$ such that $x_\delta \in \overline{W}(u_\delta)$ and $u_\delta \in g(x_\delta)$. As X is compact, without loss of generality we may assume $u_\delta \to u_0 \in X$. As g is upper semicontinuous, it has a closed graph so $u_0 \in g(x_0)$. Also $(x_\delta, u_\delta) \in \overline{W}$ so $(x_0, u_0) \in \overline{W}$, that is, $x_0 \in \overline{W}(u_0) \subset \overline{W}(g(x_0))$ and H_W is closed.

As any finite intersection of elements in β is again an element of β , the compactness of X implies $\bigcap \{H_W : W \in \beta\} \neq \emptyset$. For x_0 a member of this intersection, $x_0 \in \overline{W}(g(x_0))$ for all $W \in \beta$. We claim x_0 is a fixed point of g. As in the proof of Lemma 1, it is enough to show $x_0 \in V(g(x_0))$ for any V in an arbitrary basis for the uniformity \mathcal{U} . So let V be arbitrary but fixed. We may choose a closed symmetric entourage W_1 and a $W_2 \in \beta$ such that $W_2 \subset W_1 \subset V$. Then $x_0 \in \overline{W_2}(g(x_0)) \subset W_1(g(x_0)) \subset V(g(x_0))$, which completes the proof.

This result extends [17, Theorem 2.1] to G-convex spaces as well as considering upper semicontinuous rather that continuous multifunctions.

When the domain X is not compact, under stronger conditions for the mapping $g: X \to 2^X$ we have:

THEOREM 4.2. Let $(X; \Gamma)$ be a locally G-convex space, $D \subset X$ closed and G-convex, and $g: D \to 2^D$ upper semicontinuous with compact G-convex values. If for some $e \in D$ the following implication holds:

 $(V = G \operatorname{-co} g(V) \text{ or } V \subset g(V) \cup \{e\}) \Rightarrow V$ is relatively compact

for any subset V of D,

then g has a fixed point.

PROOF: In the proof we employ some ideas from the paper of Daneš [3]. Define a net $\{y_n\}$ as follows: $y_0 = e$ and $y_{n+1} \in g(y_n)$. Let $Y = \{y_n : n \ge 0\}$. Then $Y \subset g(Y) \cup \{e\}$ so by assumption, Y is relatively compact. The set Z of limit points of Y is therefore nonempty and moreover $Z \subset g(Z)$. Indeed, for arbitrary $z_0 \in Z$, there exists a subnet $y_{n_i} \to z_0, y_{n_i} \in Y$. By construction of the net Y, we have $(y_{n_i}, y_{n_i-1}) \in \text{Graph}(g|_{\overline{Y}})$ which is compact by the compactness of \overline{Y} and upper semicontinuity of g. Therefore $(y_{n_i}, y_{n_i-1}) \to (z_0, z_1)$ for some $z_1 \in Z$. This means $z_0 \in g(z_1)$ and so $Z \subset g(Z)$.

Let Ω be the family of all subsets $K \subset D$ such that $Z \subset K$ and $G \operatorname{co} g(K) \subset K$. Then $\Omega \neq \emptyset$ as $D \in \Omega$. Let $V = \bigcap \{K : K \in \Omega\}$, which is nonempty as $Z \subset V$.

Fixed points

Also $G \operatorname{cco} g(V) \subset G \operatorname{cco} g(K) \subset K$ for all $K \in \Omega$. Therefore $G \operatorname{cco} g(V) \subset V$ and since $G \operatorname{cco} g(V) \in \Omega$ is clear, then $V \subset G \operatorname{cco} g(V)$. Thus $V = G \operatorname{cco} g(V)$ so by assumption, V is relatively compact. Applying now Theorem 4.1 with $X = \overline{V}$, we conclude the mapping g has a fixed point.

References

- [1] N. Aronszajn and P. Panitchpakdi, 'Extensions of uniformly continuous transformations and hyperconvex metric spaces', *Pacific J. Math.* 6 (1956), 405-439.
- [2] C. Bardaro and R. Ceppitelli, 'Some further generalisations of the Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities', J. Math. Anal. Appl. 132 (1998), 484-490.
- [3] J. Daneš, 'Some fixed point theorems', Comment. Math. Univ. Carolin. 9 (1968), 223-235.
- [4] X.P. Ding and E. Tarafdar, 'Some coincidence theorems and applications', Bull. Austral. Math. Soc. 50 (1994), 73-80.
- S. Eilenberg and D. Montgomery, 'Fixed point theorems for multivalued transformations', *Amer. J. Math.* 68 (1946), 214-222.
- [6] K. Goebel and W. A. Kirk, Fixed point theory in metric spaces (Cambridge University Press, Cambridge, 1990).
- [7] L. Gòrniewicz, 'A Lefschetz-type fixed point theorem', Fund. Math. 88 (1975), 103-115.
- [8] C.W. Ha, 'On a minimax inequality of Ky Fan', Proc. Amer. Math. Soc. 99 (1987), 680-682.
- [9] C. Horvath, 'Some results on multivalued mappings and inequalities with a generalised convexity structure', in *Nonlinear and convex analysis*, (B.L. Lin and S. Simons, Editors) (Marcel Dekker, New York, 1987), pp. 96-106.
- [10] C. Horvath, 'Contractibility and generalised convexity', J. Math. Anal. Appl. 156 (1991), 341-357.
- [11] C. Horvath, 'Extension and selection theorems in topological spaces with a generalised convexity structure', Ann. Fac. Sci. Toulouse Math. 2 (1993), 253-269.
- [12] S. Park and H. Kim, 'Admissable classes of multifunctions on generalized convex spaces', Proc. Coll. Nat. Sci. SNU 18 (1993), 1-21.
- [13] N. Shioji, 'A further generalisation of the Knaster-Kutatowski-Mazurkiewicz theorem', Proc. Amer. Math. Soc. 111 (1991), 187–195.
- [14] R.C. Sine, 'Hyperconvexity and approximate fixed points', Nonlinear Anal. 13 (1989), 863-869.
- [15] P.M. Soardi, 'Existence of fixed points of nonexpansive mappings in certain Banach lattices', Proc. Amer. Math. Soc. 73 (1979), 25-29.
- [16] K-K. Tan and X-L. Zhang, 'Fixed point theorems in G-convex spaces and applications', in The Proceedings of the First International Conference on Nonlinear Functional Analysis and Applications, Kyungnam University, Masan, Korea 1, 1996, pp. 1-19.
- [17] E.U. Tarafdar, 'Fixed point theorems in locally H-convex uniform spaces', Nonlinear Anal. 29 (1997), 971-978.
- [18] G. X-Z. Yuan, 'Fixed Points of upper semicontinuous mappings in locally G-convex uniform spaces', Bull. Austral. Math. Soc. 58 (1998), 469-478.

Department of Mathematics The University of Queensland Queensland 4072 Australia e-mail: pjw@maths.uq.edu.au