SOLUBLE SEMIGROUPS

PETER G. TROTTER

(Received 23 June 1969; revised 16 March 1970) Communicated by G. B. Preston

1

The cancellation law is a necessary condition for a semigroup to be embedded in a group. In general, this condition is not sufficient; necessary and sufficient conditions are rather complicated (see [1]). It is, therefore, of interest to find large classes of semigroups for which the cancellation law is sufficient to ensure embeddability in a group.

It is known (see [1]) that a commutative cancellative semigroup can be embedded in an abelian group. Nilpotent and soluble groups are closely related to abelian groups but are more complex structures. Mal'cev, in [2], considered the natural problem of defining nilpotent semigroups, so that with the cancellation law, such semigroups are embeddable in nilpotent groups. However, a satisfactory definition of soluble semigroups has not yet been given. This paper is concerned with the problem of finding a natural definition of soluble semigroups so that cancellative soluble semigroups can be embedded in soluble groups.

A semigroup S is called *left reversible* if the set $aS \cap bS$ is not empty for any a and b in S. G is the group of right quotients of S if G is a group containing S and every element of G is expressible in the form ab^{-1} with a and b in S. Right reversible semigroups, and groups of left quotients are defined correspondingly. We will make use of the following theorem: A cancellative semigroup S can be embedded in the group of right (*left*) quotients of S if and only if it is left (right) reversible. This theorem is due to Dubreil; a proof of it can be seen in ([1], Vol. 1, p. 36).

2

In [2], Mal'cev said that the semigroup S has a non-trivial law if its elements x_1, x_2, \cdots satisfy an identical relation

(1)
$$x_{i_1} x_{i_2} \cdots x_{i_s} = x_{j_1} x_{j_2} \cdots x_{j_t}$$

with $i_k \neq j_k$ for at least one k. Notice that if S is also a group, its elements satisfy the identical relation

114

Soluble semigroups

(2)
$$x_{i_1} \cdots x_{i_s} x_{j_t}^{-1} \cdots x_{j_1}^{-1} = 1$$

which is a group law by the usual definition. Mal'cev defined nilpotent semigroups to be semigroups which have a certain non-trivial law, but provided an example to show that solubility of semigroups cannot be characterised by a non-trivial law. We say that

$$(3) x_{i_1}\cdots x_{i_s} = x_{j_1}\cdots x_{j_h} y_{x_{j_{h+1}}}\cdots x_{j_t}$$

is an existence condition for the semigroup S if for any $x_{i_1}, \dots, x_{i_s}, x_{j_1}, \dots, x_{j_t}$ in S, there exists $y \in S$ so that (3) holds in S. If S is a group then any such existence condition holds trivially.

DEFINITIONS. A semigroup whose elements satisfy the existence condition $x_1x_2 = x_2yx_1$, $x_1x_2 = x_2x_1y$ or $x_1x_2 = yx_2x_1$ is called a *c*-, *right c*-, or *left c-semigroup* respectively. Suppose S is a *c*-, right *c*-, or left *c*-semigroup then define α_s , β_s , or γ_s to be the collection of all maps $K: S \times S \to S$ such that $x_1x_2 = x_2 K(x_1, x_2)x_1$, $x_1x_2 = x_2x_1 K(x_1, x_2)$, or $x_1x_2 = K(x_1, x_2)x_2x_1$ respectively for any $x_1, x_2 \in S$. We write for x_1, \dots, x_m in S

$$K(x_1, \cdots, x_m) = K(K(x_1, \cdots, x_{m/2}), K(x_{m/2+1}, \cdots, x_m))$$

where $m = 2^n$. The subsemigroups of S defined by

$$S_{R}^{(n)} = \langle \{K(x_{1}, \dots, x_{m}); x_{1}, \dots, x_{m} \in S, m = 2^{n}, K \in \alpha_{s}\} \rangle,$$

$$S_{R}^{(n)} = \langle \{K(x_{1}, \dots, x_{m}); x_{1}, \dots, x_{m} \in S, m = 2^{n}, K \in \beta_{s}\} \rangle \text{ and }$$

$$S_{L}^{(n)} = \langle \{K(x_{1}, \dots, x_{m}); x_{1}, \dots, x_{m} \in S, m = 2^{n}, K \in \gamma_{s}\} \rangle$$

are called the n^{th} derived, n^{th} right derived and n^{th} left derived semigroups respectively.

We make the following observations.

LEMMA 1. Suppose S is a right (left) c-semigroup then

- (a) S is left (right) reversible,
- (b) S is cancellative only if its first right (left) derived semigroup is a group.

PROOF. (a) Let $x_1, x_2 \in S$, then for some $K(x_1, x_2) \in S$ we have $x_1 S \supseteq x_1 x_2 S = x_2 x_1 K(x_1, x_2) S \subseteq x_2 S$.

(b) For any $x, y \in S$, xx = xxK(x, x) and by the cancellation law x = xK(x, x) = K(x, x)x. But then xy = xK(x, x)y and yx = yK(x, x)x, so yK(x, x) = K(x, x)y = y. Thus S contains an identity element. Since S is cancellative β_s contains only one element so

$$x_1x_2 = x_2x_1K(x_1, x_2) = x_1x_2K(x_2, x_1)K(x_1, x_2)$$
 and
 $x_2x_1 = x_2x_1K(x_1, x_2)K(x_2, x_1).$

[2]

Therefore

$$(K(x_1, x_2))^{-1} = K(x_2, x_1).$$

LEMMA 2. (a) S is a c-semigroup if and only if S is both a right and a left c-semigroup.

(b) If S is a cancellative c-semigroup then $S^{(1)} = \langle S_R^{(1)}, S_L^{(1)} \rangle$.

PROOF. (a) Let $x_1, x_2 \in S$ a *c*-semigroup. If $K \in \alpha_s$ then $x_1 x_2 = x_2 x_1 K(K(x_1, x_2), x_1) K(x_1, x_2)$ and $x_1 x_2 = K(x_1, x_2) K(x_2, K(x_1, x_2)) x_2 x_1$. Conversely, if $K_R \in \beta_s$ and $K_L \in \gamma_s$ then $x_1 x_2 = x_2 K_L(x_1, K_R(x_1, x_2)) K_R(x_1, x_2) x_1$.

(b) Since S is cancellative we have from the proof of (a) that $K(x_1, x_2) = K_L(x_1, K_R(x_1, x_2)) K_R(x_1, x_2)$ so $\langle S_R^{(1)}, S_L^{(1)} \rangle \supseteq S^{(1)}$. Likewise $S^{(1)} \supseteq S_R^{(1)}$ and $S^{(1)} \supseteq S_L^{(1)}$.

DEFINITION. Suppose S is a semigroup with an identity 1. S is soluble, right soluble, or left soluble of length n if S is a c-, right c-, or left c-semigroup and $S^{(n)}$, $S_R^{(n)}$ or $S_L^{(n)}$ respectively is 1.

Notice that if S is also cancellative there is only one K in α_s , β_s , or γ_s respectively. Further, for S a group $S^{(n)} = S_R^{(n)} = S_L^{(n)}$, and the above definition is the usual definition for a soluble group of length n.

THEOREM 1. A cancellative right soluble semigroup S of length n can be embedded in a soluble group G of length n.

PROOF. Let G be the right quotient group of S. We know that the elements of $S_R^{(1)}$ satisfy the law $K(Y_1, \dots, Y_m) = 1$ where $m = 2^{n-1}$ and $K \in \beta_s$. Since β_s has only one element and $G \supseteq S$ then $K(a, b) = a^{-1}b^{-1}ab$ for any $a, b \in S$. We will see that the elements of G satisfy the law $K'(x_1, \dots, x_{2m}) = 1$ for $K' \in \beta_G$; that is $K'(y_1, \dots, y_m) = 1$ where $y_i = K'(x_{2i-1}, x_{2i}), m \ge i > 0$. Let $x_{2i-1} = ab^{-1}$ and $x_{2i} = cd^{-1}$ where $a, b, c, d \in S$ then

$$y_i = (ab^{-1})^{-1}(cd^{-1})^{-1}ab^{-1}cd^{-1}$$

= $bd(d^{-1}a^{-1}da)(a^{-1}c^{-1}ac)(c^{-1}b^{-1}cb)b^{-1}d^{-1}$
= $bdX_ib^{-1}d^{-1}$ where $X_i \in S_R^{(1)}$.

Thus $b^{-1}d^{-1}y_idb = Y_i$ where $Y_i = K(b, d)X_i \in S_R^{(1)}$. We can therefore choose $p_i \in S$ for each integer $i, m \ge i > 0$, so that $p_i^{-1}y_ip_i = Y_i \in S_R^{(1)}$. Notice that for $r \in S$ and $Y \in S_R^{(1)}$, $r^{-1}Yr = YK(Y, r) \in S_R^{(1)}$. Thus writing $p = p_1p_2 \cdots p_{i-1}$, $q = p_{i+1}p_{i+2} \cdots p_m$ and $P = pp_iq$ we get

$$P^{-1}y_iP = q^{-1}p_i^{-1}p^{-1}y_ipp_iq = q^{-1}K(p_i, p)p^{-1}Y_ipK(p, p_i)q \in S_R^{(1)}.$$

But then

$$K'(y_1, \dots, y_m) = PK'(P^{-1}y_1P, \dots, P^{-1}y_mP)P^{-1}$$

= $PK(P^{-1}y_1P, \dots, P^{-1}y_mP)P^{-1} = PP^{-1} = 1.$

[3]

Soluble semigroups

A similar result holds if S is a cancellative left soluble semigroup of length n. We note the following:

LEMMA 3. A cancellative semigroup S is soluble of length n if and only if it is both right and left soluble of length n.

PROOF. Let S be a soluble semigroup. By Lemma 2 (b) $S^{(1)} \supseteq S_R^{(1)}$. Proceeding by induction we assume that $S^{(r)} \supseteq S_R^{(r)}$. Then $S^{(r+1)} = (S^{(r)})^{(1)} \supseteq (S_R^{(r)})^{(1)}_R = S_R^{(r+1)}$. Thus, if $S^{(n)} = 1$ then $S_R^{(n)} = 1$. Similarly $S_L^{(n)} = 1$. If S is both right and left soluble and G is its right quotient group then G is also its left quotient group. By Theorem 1, G is soluble of length n. Since $G \supseteq S$ then $G^{(n)} = S^{(n)} = 1$.

As a result of Theorem 1 and Lemma 3 we have:

THEOREM 2. A cancellative soluble semigroup S of length n can be embedded in a soluble group G of length n.

THEOREM 3. A soluble group G, generated by $a_1, a_2 \cdots$ is the right (left) quotient group of the smallest right (left) soluble semigroup S containing $a_1, a_2 \cdots$

PROOF. Let $K \in \beta_s$ and $x \in S$ then $a_i^{-1} x = ya_i^{-1}$ where $y = xK(x, a_i) \in S$. Thus every element of G is expressible in the form uv^{-1} with $u, v \in S$.

There is a simple connection between the groups G of Theorems 1, 2 and 3 and the first derived semigroups of the semigroups S mentioned in these theorems.

Suppose S is cancellative and right soluble, G is its group of right quotients, and H is any normal subgroup of G so that $H \supseteq S_R^{(1)}$. For $K \in \beta_s$ we have

$$S_{\mathbf{R}}^{(1)} = \langle \{K(a, b); a, b \in S\} \rangle$$
 and, since $G \supseteq S$, $K(a, b) = a^{-1}b^{-1}ab$.

The first derived group $G^{(1)}$ of G is generated by the set

$$\{(ab^{-1})^{-1}(cd^{-1})^{-1}ab^{-1}cd^{-1}; a, b, c, d \in S\} = \{dbK(b, d) K(d, a) K(a, c) K(c, b)b^{-1}d^{-1}; a, b, c, d \in S\}.$$

Clearly $H \supseteq G^{(1)} \supseteq S_R^{(1)}$, so $G^{(1)}$ is the least normal subgroup of G that contains $S_R^{(1)}$.

Suppose S is cancellative and soluble and G is its group of right quotients. For $K \in \alpha_s$, $K_R \in \beta_s$, and $K_L \in \gamma_s$, we have

$$S^{(1)} = \langle \{K(a, b); a, b \in S\} \rangle = \langle \{K_R(a, b), K_L(a, b); a, b \in S\} \rangle$$

by Lemma 2 (b). Since $G \supseteq S$, $K(a, b) = b^{-1} aba^{-1}$, $K_R(a, b) = a^{-1}b^{-1}ab$ and $K_L(a, b) = aba^{-1}b^{-1}$. Thus for $a, b, c, d \in S$ and $Y = K_R(d, a) K_R(a, c)K_R(c, b)$ we have

$$(ab^{-1})^{-1}(cd^{-1})^{-1}ab^{-1}cd^{-1} = bdYb^{-1}d^{-1} = K_L(b,d)YK(db,Y) \in S^{(1)}.$$

 $G^{(1)}$ is generated by the set

Peter G. Trotter

$$\{(ab^{-1})^{-1}(cd^{-1})^{-1}ab^{-1}cd^{-1}; a, b, c, d \in S\}$$

so $G^{(1)} \subseteq S^{(1)}$. But trivially $G^{(1)} \supseteq S^{(1)}$, so $G^{(1)} = S^{(1)}$.

EXAMPLES. (a) Let Z be the set of rational integers and

$$Q = \{1, i, j, k; i^2 = j^2 = -1, ij = -ji = k\}$$

then $S = \{mx; x \in Q, 0 \neq m \in Z\}$ is a subset of the quaternion ring. Suppose xy = pz where $x, y, z \in Q$ and $p \in Z$, then we define a multiplication of elements in S so that

 $(mx) \cdot (ny) = mnpz$ if mn is an odd integer = |mnp|z if mn is an even integer.

With this multiplication S is a semigroup that is neither commutative nor cancellative. Since $(mx) \cdot (ny) = (ny) \cdot (ru) \cdot (mx)$ only if $ru = \pm 1$, then the derived semigroup $S^{(1)} = \{1, -1\}$ and S is soluble of length 2. Notice that S is both right and left soluble.

(b) Consider the subsemigroup $S_1 = \{mx \in S; m \text{ is an odd integer}\}$. S_1 is a cancellative semigroup, the derived group $S_1^{(1)} = \{1, -1\}$ and S_1 is soluble of length 2. The multiplicative subgroup $G = \{(m/n)x; x \in Q, m, n \text{ odd integers}\}$ of the quaternion ring is the group of right (left) quotients of S_1 and is soluble of length 2.

(c) The set $S_2 = \{ \begin{bmatrix} 1 & x \\ 0 & y \end{bmatrix}$; $x, y \in Z, y \neq 0 \}$ with matrix multiplication is a cancellative right soluble semigroup of length 2, but is not left soluble.

References

- A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, vols. 1 and 2, (Amer. Math. Soc. Mathematical Surveys 7, Providence, 1961 and 1967).
- [2] A. I. Mal'cev, 'Nilpotent semigroups', Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Nauki, 4 (1953), 107-111.

Mathematics Department University of Tasmania Hobart, Tasmania