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Thermoelectric magnetohydrodynamic flow in a
liquid metal-infused trench
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We derive a mathematical model for steady, unidirectional, thermoelectric
magnetohydrodynamic (TEMHD) flow of liquid lithium along a solid metal trench, subject
to an imposed heat flux. We use a finite-element method implemented in COMSOL
Multiphysics to solve the problem numerically, demonstrating how the fluid velocity,
induced magnetic field and temperature change depending on the key physical and
geometrical parameters. The observed flow structures are elucidated by using the method
of matched asymptotic expansions to obtain approximate solutions in the limit where the
Hartmann number is large and the trench walls are thin.
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1. Introduction

The divertor is a vital component designed to absorb heat and waste products exhausted
from a tokamak nuclear fusion reactor. The divertor must survive continuous extreme
heat loads of around 10 MW m~2, and a promising proposal is to coat it with a layer
of flowing liquid lithium which can be constantly recycled. The liquid metal-infused
trenches (LiMIT) concept has been devised to exploit the large heat flux experienced by
the divertor to drive the lithium flow via thermoelectric effects. In this paper we derive
and solve a model for the resulting flow along a single lithium-filled trench. Our aim is to
determine how the flow properties depend on the applied magnetic field and heat flux, and
how they can be beneficially influenced by varying the trench geometry.

The mathematical foundations of thermoelectric magnetohydrodynamic (TEMHD) duct
flow were established by Shercliff (1979a,b). The proposal to use TEMHD effects to drive
liquid lithium flow in fusion applications was pioneered at the University of Illinois at
Urbana-Champaign (Jaworski 2009). The LiMIT concept (Ren ef al. 2014; Xu, Curreli &
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Figure 1. (a) Schematic of an array of trenches, indicating the orientation of the applied magnetic field.
(b) Schematic of the heat flux, magnetic field and induced thermoelectric current in a single trench.

Ruzic 2014; Fiflis et al. 2015) comprises of an array of parallel solid metal trenches that are
filled with liquid lithium and cooled from below. As illustrated in figure 1, the combination
of an applied magnetic field orthogonal to the trench walls and a temperature gradient
parallel to the walls generates a thermoelectric current which, in turn, gives rise to a
Lorentz force that drives the flow of lithium along the trench. The LiMIT concept has
been tested experimentally in fusion devices (for example Ren et al. 2014; Fiflis et al.
2015; Xu et al. 2015; Andruczyk et al. 2020; Zuo et al. 2020; De Castro et al. 2021), albeit
in the role of a ‘limiter’ rather than a divertor per se, and simulated numerically (Xu et al.
2014).

In this paper, we formulate a two-dimensional mathematical model for unidirectional
liquid lithium flow in LiMIT which permits large parameter sweeps to be performed
numerically and the trends to be understood using asymptotic analysis. In principle,
our modelling approach can be adapted to describe other liquid metal plasma-facing
components relying on TEMHD-driven flow, including free-surface ‘divertorlets’ (Fisher,
Sun & Kolemen 2020; Saenz et al. 2022) and also liquid—metal concepts involving
interfaces with porous media (Khodak & Maingi 2021). The divertorlet concept has
some similarities to the LiMIT concept, except that the channels are aligned parallel to
the toroidal magnetic field and an external current is applied to generate the required
thermoelectric forcing.

Our model resembles classical models for magnetohydrodynamic (MHD) flow of liquid
metal in ducts and channels, which have been of great theoretical interest ever since
the 1950s (Shercliff 1953). Much of the early progress in MHD duct flow was based
on asymptotic analysis in the limit of large Hartmann number Ha (see, for example,
Walker, Ludford & Hunt (1971) and Hunt & Moreau (1976)). The basic structure in a
rectangular duct consists of a core plug flow, with Hartmann layers of width O(Ha™')

on walls orthogonal to the applied magnetic field and side layers of width O(Ha~'/?) on
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Name Symbol SI unit Lithium SS 316 Tungsten
Electrical conductivity o Sm™! 3.46 x 10° 1.04 x 10° 8.23 x 10°
Thermal conductivity k Wm™ K=l 4.80x 10! 1.79 x 10! 1.40 x 107
Magnetic permeability w N A2 1.26 x 1076 1.28 x 1076 1.26 x 1076
Seebeck coefficient s VK! 2.4 % 1073 —2.69x 107 558 x107°
Mass density o kgm™3 5.05 x 10% — —
Kinematic viscosity v m? s~! 1.06 x 10~° — —
Surface tension y Nm™! 3.81 x 107! — —

Table 1. Mean values of relevant thermophysical properties for lithium, stainless steel and tungsten over
temperatures in the range [200 °C, 400 °C], aside from the Seebeck coefficient which has been averaged over
T € [200°C, 277 °C] due to lack of measurement data at higher temperatures (Kriessman 1953; Davison 1968;
Choong 1975; Ho & Cho 1977; White & Collocott 1984; Itami, Shimoji & Shimokawa 1988; van der Marel
et al. 1988; Fiflis et al. 2013; Tolias & EUROfusion MST1 Team 2017).

walls parallel to the applied field (Temperley & Todd 1971). It is also well known that the
conductivity of the duct walls can have a significant influence and give rise to velocity jets
in the side layers (Hunt 1964).

More recently, advances in computational methods have made it possible to simulate
MHD duct flow with novel geometries, including a fan-shaped insert (Kim, Lee & Lee
1997), sudden expansions (Mistrangelo & Biihler 2007) and other obstacles (Dousset
2014).

In §2, we state the leading-order dimensionless governing equations and boundary
conditions for steady, unidirectional flow of liquid lithium down a LiMIT-type trench.
We also provide some preliminary numerical solutions for parameter regimes relevant to
both theoretical and experimental set-ups. In § 3, we use asymptotic analysis in the limit
of large Hartmann number to obtain approximate solutions to the problem when the trench
walls are thin. In § 4, we perform several parameter sweeps to demonstrate how the flow
properties depend on the geometrical and physical variables of interest. Finally, we provide
a summary and discussion of our findings in § 5.

2. Mathematical model
2.1. Parameter values

Values and definitions of typical relevant thermophysical properties are given in table 1.
The liquid metal inside the trench is taken to be lithium, and two candidate materials are
considered for the trench itself: stainless steel 316 and tungsten.

The set-up of a single periodic cell in an array of rectangular trenches is illustrated in
figure 2. The geometry is characterised by the trench width W, the heights tp and H of
the base and the wide walls, the wall half-thickness g and the height 7 of the liquid layer
above the trench. The dimensionless analogues of these quantities are scaled with W, i.e.
W, tg, H, ts, tr) = W(Qw, ¢, H, 7, f). Following this scaling, we retain the parameter w
for the dimensionless trench half-width to allow ourselves the freedom to vary the width
easily in the calculations below (thus taking WV to be a typical but not necessarily exact
value for the trench width).

Typical trench geometrical parameters are shown in table 2, along with typical values of
the applied magnetic field and heat flux, and the relevant dimensionless parameters. Three
different cases are considered. The ‘default’ parameter regime has a typical geometrical
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Figure 2. Diagram summarising the coordinate system and the dimensional geometrical parameters
associated with a rectangular trench (in red) with their dimensionless analogues (in black).

Typical values

Name Symbol Formula Default SLiDE  ST40
Dimensional trench width (mm) w 1 3 0.5
1 1 1
Dimensionless trench half-width w — = = =
2 2 2
t 1
Dimensionless sidewall thickness T WS 0.15 3 0.2
1 1
Dimensionless base thickness < % 0.15 3 0.2
. . . H
Dimensionless wall height H W 1 1 2
Di ionless film thicki f a 0.1 ! 0.2
imensionless film thickness — . — .
w 12
Downward slope angle (rad) 0 — 0.1 0 0.316
Applied magnetic field angle (rad) ¥ — 0 0 0
@
Solid-to-fluid electrical conductivity ratio X 0—2 2.3786  0.3006 2.3786
o
k@
Solid-to-fluid thermal conductivity ratio K = 29167 03729  2.9167
Applied magnetic field (T) B — 1 0.07 3
Applied heat flux (MW m~2) Q — 1 10 10
Reciprocal of Hart b L[t 0012 0058  0.0081
eciprocal of Hartmann number € — . . .
P BWY o2
KgWsing | p*
Gravitational parameter r Le7ysng [P 0.03 0 0.0047
Q(st—-5%)\ vot

Table 2. Default model parameter values, as well as typical values seen in the experimental set-up SLiDE, and
proposed values for the ST40 tokamak (P.F. Buxton, private communication 2023). The superscripts & and &
refer to values for the liquid lithium and the solid metal, respectively.
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set-up, with thermophysical properties relevant to a tungsten divertor, and is used as a base
case in the computations performed below. The ‘SLiDE’ parameter regime is one relevant
to the solid-liquid divertor experiment set-up, which involves a stainless steel divertor
(Ruzic et al. 2011; Xu et al. 2013; Ren et al. 2014). The ‘ST40’ parameter regime is named
after Tokamak Energy’s spherical tokamak device, which uses a tungsten divertor, with
impinging heat fluxes and applied magnetic fields relevant to a fusion reactor (McNamara
et al. 2023). In all three cases the applied magnetic field is effectively horizontal, but
the effects of the field being applied at a non-zero angle v to the horizontal will also be
examined in § 4.4.

2.2. Governing equations

Here we briefly state the basic equations governing liquid—metal TEMHD flow. In the
non-relativistic limit where the displacement current is negligible, the magnetic flux
density B satisfies Gauss’ and Ampere’s Laws, namely

V.B=0, VxB=ul, 2.1a,b)

where J is the electrical current density and w is the magnetic permeability. Since the
magnetic susceptibilities of lithium, SS 316 and tungsten are all very small (see table 1), we
treat ;4 as a constant throughout. The incompressible Navier—Stokes equations, including
the Lorentz body force, may thus be expressed in the form

V.u=0, (2.2a)

ou 1

p (E + (u- V)u) — —Vp+ pvV2u+ pg+ —(V x B) x B, (2.2b)
n

where u and p denote the liquid velocity and pressure, while p, v and g denote the

density, kinematic viscosity and gravitational acceleration (all assumed constant). Finally,

we assume that internal viscous and Ohmic heating are negligible compared with large

externally applied heat flux Q, so the temperature 7 satisfies the heat equation

oT
pc E-l—u-VT =-V.q, (2.3)

where c is the heat capacity and ¢ the heat flux.
Thermoelectric effects enter through Ohm’s and Fourier’s constitutive laws (Shercliff
1979a), which are modified to

J=0c(E+uxB-SVT), q=—-kVT+ST1J, (2.4a,b)

respectively, where E is the electric field, o is the electrical conductivity, k is the
thermal conductivity and § is the Seebeck coefficient of the medium. The additional
thermoelectric terms (proportional to S) can be derived from the Onsager reciprocal
relations in thermodynamics (Callen 1948), and physically they arise as a result of the
Seebeck, Peltier and Thomson effects (Shercliff 1979a).

The relative importance of the final term in (2.4b) is measured by the dimensionless
grouping oS?WQ/k?, which is always small (of order 1072), so this term is neglected
henceforth. Moreover, taking the curl of (2.4a) to eliminate the electric field also
eliminates the Seebeck term, so the induction equation

0B 2
E:Vx(uxB)—l—nVB (2.5)
is unaffected (where n = 1/(o ) is the magnetic diffusivity). However, thermoelectric

effects enter the model through the boundary conditions at the interface between the liquid
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lithium and the solid trench, where the Seebeck coefficient is discontinuous. Since the
liquid velocity is zero at this interface, continuity of the tangential electric field leads to
the boundary condition

[nx (nV x B4+ SVT)]T =0, (2.6)

where [-]T denotes the jump in a quantity across the solid—liquid interface, whose unit
normal is #. Thus, a magnetic field can be generated by a temperature gradient parallel to
the interface.

2.3. Modelling assumptions

We proceed to set out a model of steady unidirectional flow of liquid lithium along a single
trench within a periodic array. We assume that the geometry and the flow are all uniform
along the trench, with velocity given by

u(x) = w(x, y)k, 2.7

in the coordinate system depicted in figure 2. We consider a uniform applied magnetic
field B¢ inclined at an angle v to the x-axis, which induces a field » along the trench, i.e.

B(x) = B* (icosy +jsiny) + b(x, y)k. (2.8)

As usual in unidirectional flow, the pressure p in general varies linearly with distance
along the trench. However, since we assume the free surface is uniform in the z-direction,
it follows that the down-trench pressure gradient must be zero. The variations in
pressure due to the induced magnetic field are measured by the modified Weber number
We = (v/n)(pWU?/y), where y is the surface tension and U/ is a typical scale for the
velocity, which will be chosen below. Since this parameter is small in all of the cases
considered here, we can take the pressure to be purely hydrostatic and, hence, the free
surface to be flat (as depicted in figure 2).

The plasma above the trench is assumed to provide a uniform heat source Q at the
free surface, while the cooling pipes below the trench are effectively treated as a perfect
heatsink, so the base of the trench is held at a fixed temperature Ty. According to the
references cited in table 1, the physical parameters o, k and v could vary by up to 50 %
over the temperature ranges of interest. Nevertheless, in the first instance we assume that all
material properties are constants, i.e. that any temperature dependencies may be neglected.

2.4. Non-dimensionalisation

The problem is non-dimensionalised as follows, with dimensionless variables denoted
with hats. We scale all lengths with the width of the trench WV, that is,

x,y) =W (%, 9). (2.9)

As noted in § 2.1, although the dimensionless trench width may be set to unity without
loss of generality, it is convenient to allow it to vary, and we denote it by 2w. Since the
pressure gradient along the trench must be zero, given our modelling assumptions, the only
remaining unknowns are the temperature 7" and the velocity w and induced magnetic field
b along the trench. The temperature is scaled using the imposed heat flux Q, while w and
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b are scaled using a typical velocity ¢/ which will be selected below. We thus set

WA - . .
T="T)+ <Qk_2> T, w=Uw, b=eRmB, (2.10a—c)
where € < 1 and Rm < 1 are the reciprocal Hartmann number and magnetic Reynolds
number, respectively, given by

1 1 oV

€E=—— = —— —,

Ha BWYo?

The appropriate velocity scale is found to be proportional to the difference in Seebeck
coefficient between liquid and solid, namely

)
U= k2Ba

This scaling reflects the way the flow is driven by the heat flux Q applied to the free
surface, through the Seebeck effect, while increasing the applied magnetic field too much
slows down the flow, as observed qualitatively by Xu et al. (2014).

The dimensionless versions of the governing equations and boundary conditions,
evaluated in each domain and on each boundary, are summarised in figure 3. For simplicity,
we restrict attention to trenches with reflectional symmetry about X = 0. The problem
contains several more dimensionless parameters, namely

Rm = UWnot. 2.11a,b)

(2.12)

2 .
o WVesing o 9% k.= ke (2.13a—c)
v og kg
The solid-to-liquid electrical conductivity ratio is denoted by Xgg, so the regimes
Yege < 1 and XYgg > 1 correspond to the limits of perfectly electrically insulating or
conducting trench walls, respectively. A similar analogy holds for the thermal conductivity
ratio Kgg. Both of these constants are O(1) in practice. The dimensionless constant I”
measures the importance of gravity in driving the flow along the trench. It is generally
small (see table 2) but not completely negligible, so we retain this term for the time being.

Under the assumptions set out in § 2.3, the induction equation (2.5) and momentum
equation (2.2b) in the liquid reduce to (2.18a) and (2.18b) (in figure 3), respectively.
Because we have neglected the thermoelectric heat flux and viscous dissipation, the
thermal problem decouples from the rest of the equations. The temperature T satisfies
Laplace’s equation in the lithium and the trench wall, with standard continuity conditions
at the interface between them, and is driven by a dimensionless unit heat flux at
the free surface. Indeed, the whole system is driven by this heat flux, which is the
only inhomogeneous term in the problem. The resulting temperature gradient induces a
magnetic field through the Seebeck boundary condition at the solid-liquid interface, and
the induced field in turn generates the flow along the trench.

As in previous MHD modelling of liquid—metal flow in fusion applications (e.g. Lunz &
Howell 2019), the boundary condition (2.15a) (in figure 3) on the induced magnetic field
assumes that the region above the trench is effectively a vacuum. From the scalings (2.10),
we estimate the thermoelectric current density generated in the lithium by

€Qo® (S’3 — S@)
k2

In comparison, Jaworski, Khodak & Kaita (2013) suggests a typical steady state current
density of order 10 kA m~2 entering from the plasma in a fusion device, with transient

1004 A2-7
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Figure 3. A summary of the steady, unidirectional TEMHD trench problem, assuming symmetry
about x = 0.

currents of up to 100 kA m~2 possible during disturbances such as so-called edge-localised
modes. It is therefore reasonable to neglect such effects in our steady state model, though
they could be included in future refinements, especially if we want to consider time
dependence and linear stability (Fiflis et al. 2016).

Due to the ease of design and manufacture, we focus on rectangular trenches in
this paper. The geometry of such a trench can be characterised by several geometrical
parameters, which are shown visually in figure 2 and whose typical values are listed in
table 2.

2.5. Numerical solutions

The problem shown in figure 3 was solved numerically using finite element methods
implemented in COMSOL Multiphysics simulation software. The numerical simulations
were tested for convergence with respect to mesh refinement and robustness with respect
to small changes in the physical parameters. The solutions were found to be well converged
provided the mesh was sufficiently refined in boundary layers and near sharp corners
in the fluid and solid domains. With the leading-order problem shown in figure 3,
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it was possible to complete a simulation on a desktop computer obtaining the temperature,
induced magnetic field and the fluid velocity in approximately 5-10 s.

Plots of the temperature, velocity and magnetic field in the three different parameter
regimes described in §2.1 are shown in figure 4. In all three cases, the temperature
appears to be approximately a linear function of y, reaching its peak at the free surface
where the external heat flux is applied, although with some variation in the X-direction
near the walls due to the change in thermal conductivity. Meanwhile, the velocity plots
(figure 4b,e,h) show an obvious boundary layer structure which arises because the MHD
problem (shown in figure 3) becomes singular as € — 0. There are Hartmann boundary
layers of width O(¢) at the vertical walls, as well as a weaker ‘side’ layer of width O(e'/?)
near the horizontal boundaries at the base and the tops of the walls (see, for example,
Temperley & Todd (1971) for explanations of these scalings with respect to the Hartmann
number). Outside these layers, it appears that the velocity inside the trench approaches a
constant as € — 0. The boundary layers can also be seen in the induced magnetic field
plots (figure 4c, f,i), which show a magnetic field dipole. The boundary layer structure will
be further elucidated in § 3.

Another important feature particularly evident in figure 4(b,h) is the appearance of a
conducting-base velocity jet near the bottom of the trench. This jet arises due to the fact
that the electrically conducting base is in direct contact with a vacuum, which forces the
electrical current loops to close partially in the fluid. The velocity jet appears near the wall
that is parallel to the applied magnetic field, as observed by Hunt (1964).

Regarding the SLiDE set-up, we note that the velocities shown in figure 4(e) are much
faster than observed in practice (Xu et al. 2013) and that the maximum temperature shown
in figure 4(d) is close to the boiling point of lithium (1615 K). In practice a temperature
limit of ~450°C (&720 K) is often imposed to prevent excessive lithium evaporation
(e.g. Smolentsev 2021). This behaviour occurs because the magnetic field in this case is
relatively weak (0.07 T) while the impinging heat flux is fusion-relevant (10 MW m~2),
both of which increase the velocity scaling in (2.12). However, we note that the heat flux
in the SLiDE experiments is confined to a narrow electron beam rather than being applied
uniformly along the trench, as assumed in our model.

2.6. Thin wall approximation

In general, analytical progress can be made with the steady problem summarised in figure 3
only when the trench sidewalls and base are thin. In the limit where the wall thickness ©
and base thickness ¢ tend to zero, the governing equations need to be solved only in the
liquid domain, with the walls and base represented by effective boundary conditions, as
illustrated in figure 5. Here we introduce several further dimensionless parameters, namely

€ el/? 1 KSq
KB=—-7,

= , CB= , ks= , (2.22a—d)
S B S
2eeT 2geS Kggat S

cs

in which the superscripts ‘S’ and ‘B’ denote the parameter values on the sidewalls and
the base, respectively. At present, the sidewalls and base of the trench are made of the
same material; however, the most interesting distinguished limit occurs when the above
constants are all O(1) while €, T and ¢ tend to zero.

We note that the temperature in the thin-wall problem is still decoupled from the MHD

problem. In the regime where Kcsczz is large, the solution to the temperature problem in
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Figure 5. Summary of the thin-wall problem for a rectangular trench.

figure 5 is given by

AQ on n .1
TG =9+ —, (2.23)
KB

which is a linear function of y, in approximate agreement with the full numerical
solutions shown in figure 4. In general, however, the temperature must still be determined
numerically, so in the subsequent analysis we solve the remaining MHD problem, treating
the liquid temperature as an in principle known function.

3. Asymptotic analysis
3.1. Outer regions and boundary layers

We use matched asymptotic expansions to analyse the thin-wall two-dimensional TEMHD
trench problem set out in figure 5 in the limit as € — 0. To simplify matters, we
take ¢ = 0, so that the applied magnetic field is strictly in the toroidal direction in a
tokamak configuration. The bulk flow inside the trench (0 < y < H) is primarily driven
by thermoelectric effects in the boundary layer of thickness O(¢) at the trench wall X = w.
The velocity in the outer region above the trench (y > H) is driven by gravity, and is an
order of magnitude larger. These two regions are matched through a crossover region near
$ = H of thickness O(e!/?), and there is also a ‘side’ layer near the base $ = 0 of thickness
O(¢'/?). We will state the leading-order problems satisfied in these two layers, although
they are not in general amenable to analytical solution. We do not consider the further
inner regions near the corners of the domain, first noted by Todd (1967), as they do not
affect the leading-order outer solution.
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3.2. Outer problem above the trench

Above the trench walls, by integrating the Navier—Stokes equation in figure 5 from X = 0
to X = w, we find

d (... .. To A A
d_&f w(x,y)dx:T(H+f—y) inH<y<H+f. 3.1
0

From this solvability condition, we deduce that w must be order 1/¢ above the trench. To
match with an O(1) velocity field w inside the trench, we must have

w
NSV A R . -
/w(x,y)dx:ZQ;—H)(H+2f—y)+C inH <y <H-++f, (3.2)
0

where C is an order-one constant.
We also have that w is independent of X to leading order, and thus

v?/(fc,jz)wé@—H)(H+2f—}A’)+O(1) inH <9 <H+f. (3.3)

By seeking further terms in an asymptotic expansion, one can show that the induced
magnetic field 5* above the trench is zero to all algebraic orders in €, whilst the corrections
to the velocity are all constants.

3.3. Outer problem in the trench

The governing equations in the bulk of the trench are shown inside the shadowed box in
figure 5. At leading order, solutions to this problem inside the trench are given by

W, 9 ~ wo®), bRE,P) ~—-I'x in0<3<H. (3.4)

The outer problem on its own does not completely determine the form of wq(y), which
must therefore be found by matching with the Hartmann layer at the trench wall.

3.4. Inner problem near the right wall
Letting x = w — eXr, with w(Z, y) = Wwr(Xr, y) and bR (%, y) = Elg (X, ), one obtains the
leading-order problem

258 «
bro R0

— 2 =0 inXg>0, 0<H<H, (3.5a)
Xz 9Xg
524 b .
RO _TRO _ g inkg >0, 0<$<H, (3.5b)
Xz 9Xg
Wro=0 onXzp=0, 0<3$<H, (3.5¢)
oby ~Q Tt 5 .
——— t+csbgog= —(w,y) onXg=0, 0<y<H, (3.5d)
Xp ' ay
along with leading-order matching conditions
Wr0(XR. §) = Wo() as Xg — oo, (3.5¢)
by o(Xr. ) = —I'w as Xg — o0. (3.5f)
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The problem (3.5) has solution

B2 Rp) = —— afs( 0)+wles ) e Xk — ol (3.6a)
»Y) = — (o, wl’'c — ol .6a
ROE Y= T e \ 99 s
R PO 1 aTe %
R0 (R, ) = —— [ S @, 0) +oles | (1-e7), (3.60)
' 1+cs \ 0y
which also determines the leading-order outer velocity in the trench, namely
o (V) 1 L (@,0) + ol (3.60)
w = — , cs ) .6¢c
0 I+es\ gy O/ T@nes

This simple formula for the bulk velocity demonstrates the importance of the temperature
gradient in driving TEMHD flow. As will be demonstrated below, the expression (3.6¢)
shows good agreement with numerical results for the bulk velocity, even when the sidewall
thickness 7 is not especially small. Equation (3.6¢) also resembles that obtained in
Xu et al. (2015) in the limit of large Ha.

3.5. Composite approximations

The solutions we have obtained thus far allow us to create composite expressions which
provide good approximations to the velocity, magnetic field and temperature profiles
inside the trench, even when the walls are no longer thin, provided we are not close to
any horizontal boundary layers near the top or bottom of the trench. In 0 < y < H and
0 <X < w— t we have

1 [oT% %
w(x, y) ~ ; ( —(w—1,9) + (0 — I)ch> (1 —2e~@=0)/€ cogh (f)> ,
+cs \ 9y €

3.7a)

PRUFZES 2 8?2 3 —(w—T)/€ o; x ~
b*(x,y) ~ —(w—1,y)+(—1)cs )€ sinh|{ — ) — I'x. (3.7b)
l+cs \ 3y €

From (3.7h), one can construct an approximate expression for the overall induced magnetic
field, including that inside the solid, assuming that it is approximately linear inside the
trench wall, i.e.

132(2,9) for0<x<ow-—r,

W@—u@(

A

bz, 9) ~ w—% (3.8)

) foro—17 <X <w.

Furthermore, we can use the solution for the temperature, given by (2.23), to construct an
approximate vertical temperature profile in the middle of the trench. This approximation
is given by
= ifo<y=q
T,y ~ 1 fee _ (3.9)
)7+KT— ifc <y<H+S,
(3T

and applies when Kég is small.
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3.6. Inner problem near the base

Upon rescaling § = €!/2 Y, with w(x, $) = Wa(X, ¥) and b3, y) = l;§ (%, Y5), we obtain
leading-order problem

248 R
by IWwpyo

< 2 =0 in¥3>0, 0<i<ow, (3.10a)
3Y}% ox
924 b .
YEO 4 TBO L r 0 in¥5>0, 0<i<o, (3.10b)
Yz 9%
with boundary conditions
b . .
Wpo=—22 —cpbS =0, on¥z=0, (3.10¢)
Ys ’
M R
Va”f*" =bh%, =0, onk=0, (3.10d)
B :

and far-field conditions

. 1 faT® ~q . e
w0 — T ( % (w, 0) + a)FCS> , bB’O — —I'x asYp — 00, (3.10e)

as well as the matching condition
A ro _ OT® A
(1 +cs)wp,o + csbp g = 8_5) (0,0) atx=ow. (3.101)

The effective boundary condition (3.10f) is derived by analysing the ‘inner bottom
right-hand corner’ problem below in § 3.7.

The problem (3.10) appears to be analytically intractable in general, but we show in the
Appendix how it may be solved in some limiting cases, and that the resulting solutions
display typical physical phenomena, including wall jets and the possibility of return flow.

3.7. Inner problem in bottom right-hand corner

After rescaling both X = w — eXg and y= €2y, with W, y) = Wer(Xgr, Y5) and
b,y = bﬁR(XR, Yp), we obtain the leading-order problem

2’\3 A A Ag
bpro  dWwpro _ 9*Wero  pro
axX2 IXR X3 IXR

0, inXg>0, Yz>0, (3.11a)

along with boundary and matching conditions

ab ) 972 A
Wero =0, — a?{R’O +eshipo = %5 @0, onXx=0, (3.11b)
R

War0(Xg, Y5) — W 0(w, V5), 2§R70(}}R, Y5) — 13§R,0(w, Y5) asXg — oo (3.11c)
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and
Wero =0, onYg=0, (3.12a)
b . .
BRO 4 cpbS =0, on¥p=0. (3.12b)
Yp ’
The solution to problem (3.11) is given by
War,0(Xg, Y5) = Wp0(w, ¥p) (1 - C_XR> : (3.13a)
bir oXr. Y5) = by o (@, Yp) + W 0(w, Yp)e *F, (3.13b)
where the boundary condition (3.115) is satisfied provided
A /\g A 7 g
(1 + cs) wp.o(w, Yp) + csby o (@, Yp) = 5 (@,0). (3.14)

Thus, as promised, we obtain the matching condition (3.10f) required to solve the inner
problem near the base.

The solution (3.13) depends only parametrically on Y, and therefore cannot in general
satisfy the final boundary conditions (3.12). This observation indicates the presence of a
further inner layer inside the corner region. We do not present the governing equations in
this inner—inner region, as they do not appear to be analytically tractable and do not affect
the outer solution, at leading order at least (Cook, Ludford & Walker 1972).

4. Parameter sweeps
4.1. Parameter values and geometrical ratios

We now carry out some parameter sweeps on the full steady trench problem shown in
figure 3, keeping all parameter values fixed at the ‘default’ values in table 2, unless
specified otherwise. The numerical solutions shown (solid) include comparison with
predictions (3.7)—(3.9) provided by the asymptotics (dashed). To facilitate varying the
trench geometry while avoiding unphysical parameter regimes, we introduce various
physically relevant geometrical ratios: the aspect ratio r4 = H/w; the overfilling ratio
rr = of /(0 — t)(H — ¢); the sidewall fraction rg = t/w; the base fraction rp = ¢/H.
In performing parameter sweeps, we show the effect of changing each parameter on the
horizontal and vertical velocity profiles, as well as the horizontal magnetic field profiles.
In this context, by ‘horizontal’ and ‘vertical’ profiles, we mean one-dimensional slices
through the bisecting lines y = %(H + ¢) and x = 0, respectively. The vertical magnetic

field profiles are omitted because b0, y) is identically zero. The temperature is plotted
only in cases where it is affected by the parameter being swept over.

4.2. Changing the horizontal dimensions T and w

The effects of changing the sidewall thickness T while keeping the total trench width w
fixed are shown in figure 6(a—c). The horizontal velocity profiles (figure 6a) demonstrate
the anticipated flow structure, with the velocity approximately uniform outside Hartmann
layers at the trench walls Increasing t has the effect of both increasing the net wall
conductivity and squeezing the fluid into a narrower channel, and thus decreases the
maximum velocity of the fluid enclosed between the walls. For t = 0.35, the Hartmann
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Figure 6. Numerical plots of (a,d) horizontal velocity profiles halfway up the trench wall, (b,e) vertical
velocity profiles along the y-axis and (c,f) horizontal magnetic field profiles halfway up the trench wall, for
dimensionless sidewall thickness 7 € {0.005, 0.05, 0.1, ..., 0.45, 0.495} (in (a—c)) and dimensionless trench
width w € {0.4,0.6, ..., 1.8, 2} (in (d—f)).

layers appear to merge and create an approximately parabolic velocity profile. The dashed
curves show that the numerical results are in excellent agreement with the asymptotic

prediction (3.7a).
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The horizontal magnetic field profiles in figure 6(c) show approximate piecewise linear
behaviour, which becomes steeper and more pronounced when the walls become thinner,
resulting in a stronger electrical current density passing through them, since their electrical
conductivity remains constant. Outside the Hartmann layers, the induced field is very small
as expected, given the small value of I" here, namely 0.0299.

Figure 6(b) shows that the boundary layer at the bottom of the trench becomes
thinner and less curved as the wall thickness increases, suppressing the velocity jet. The
asymptotic prediction (3.7a) works well inside the trench and away from the bottom
boundary layer. Above the trench, the velocity seems to approach a constant value
somewhat lower than that inside the trench. Making the walls thicker causes the speed
of the flow above the walls to decrease because of the increased drag due to the tops of the
trench walls. Also, the ‘crossover region’ near the tops of the walls becomes narrower and
less curved as the sidewalls are brought closer together.

Figure 6(d—f) shows the effects of varying the dimensionless trench width « whilst
keeping the sidewall thickness 7 fixed. In figure 6(d), we see that the approximately
uniform core velocity predicted by the asymptotics (dashed curves) stays almost constant,
as now only the trench width is varying, but not the effective wall conductivity. However,
the numerical solutions (solid curves) show that the velocity inside the trench continues to
increase slightly with increasing w, with a central bulge in the velocity profile. Figure 6(e)
shows the cause of this discrepancy: as the trench becomes wider, the conducting-wall
jet near the base becomes elongated, thus being captured by the central horizontal line
y = %(H + ¢). The intensity of the magnetic field dipole shown in figure 6(f) does not
vary as significantly as in figure 6(c), because the effective conductivity of the sidewalls
does not change as they move apart. However, the magnetic field gradient in the bulk
changes sign as w increases, again because of infiltration by the bottom boundary layer.

4.3. Changing the vertical dimensions ¢ and H

The effects of changing the base thickness ¢ and wall height H are demonstrated in
figure 7, assuming that the free surface thickness f is kept constant. The horizontal velocity
plots in figure 6(a,d) show that the bulk velocity approaches a limiting value as either
¢ — 0 or H— o0, and in either case the asymptotic and numerical predictions are in
generally good agreement. However, as either ¢ — H or H — ¢, the velocity profile
features local maxima near the trench walls, caused by the conducting-base jet intersecting
the central horizontal line y = %(H + ¢), thus revealing a velocity profile characteristic of
conducting-wall MHD duct flow (Hunt & Leibovich 1967). The asymptotic approximation
(3.7a) breaks down in either of these limits where the base becomes close to the top of the
walls, and the velocity ultimately collapses to zero as the TEMHD effect vanishes along
with the sidewalls. Moreover, the boundary layers near the bottom and top of the trench
merge and annihilate one another.

In figure 6(b), we see that making the base thicker shifts the velocity profile upwards,
slightly strengthening the conducting-base jet and thus increasing the average flow speed,
provided it is less than approximately 90 % of the wall height. Increasing H has a similar
shifting effect on the velocity profile near the top as shown in figure 6(e). In both cases,
the bulk velocity profile demonstrates a uniform shape away from the jet and the top of the
wall, and in this region the asymptotics and numerics show good agreement.

In figure 6(c,f), we see that the numerical solutions agree well with the asymptotic
prediction that the induced magnetic field is close to zero outside the Hartmann layers,
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Figure 7. Numerical plots of (a,d) horizontal velocity profiles halfway up the trench wall, (b,e) vertical
velocity profiles along the y-axis and (c,f) horizontal magnetic field profiles halfway up the trench wall,

for dimensionless base thickness ¢ € {0.01,0.1,0.2, ...,

H€{0.2,04,...,1.8,2) (in(d-)).

0.9, 0.

99} (in (a—c)) and dimensionless wall height

except when the base and top of the walls are brought very close together and the
corresponding boundary layers start to affect the outer flow.
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4.4. Geometrical parameter space

We now examine the effects on the global flow properties of varying the trench geometry.
We consider three averaged quantities that describe the global flow characteristics, namely
the average flow rates above and below the trench walls, defined by

. 1 H+f w
Ga= / / WG 5) di g, @.1a)
20f Ju —w
R 1 H w—T
by = WG 5) di dj, @.1p)
2w—1)H—-9) /; ./—w+z

respectively, and the average surface temperature, defined by

N w

Tp = / T, H +f) di. (4.1¢)
—

For the LiMIT concept to be successful, reasonably high flow rates both above and within

the trench should be maintained, whilst the surface temperature should not get too high.

We start by varying the horizontal wall dimensions w and rg = 7/w in figure 8(a—c).
Figure 8(a) demonstrates that the average velocity above the walls is largely unaffected
by the trench width, but increasing the trench wall thickness, and thus the effective
conductivity, significantly reduces the flow rate. The velocity inside the trench is
maximised for a relatively thin trench with a sidewall fraction of around 10 %, as shown
in figure 8(b). When the sidewall fraction is less than approximately 5 %, the average
velocities above and below the trench walls take similar values. Otherwise, however, the
two average velocities can differ markedly, so that the flow speed inside the trench cannot
readily be inferred by observation of the free surface. As figure 8(c) shows, making the
trench wider does not greatly affect the average surface temperature. However, making the
walls thinner does result in a hotter free surface, because there is a smaller volume of solid
wall through which heat can conduct (recall that the solid thermal conductivity is roughly
three times that of the liquid). On the other hand, making the trench walls too thick results
in very little flow either above or below the walls.

Next, we turn our attention to figure 8c(d—f) in figure 8, where the effects of varying the
wall height H and the base fraction rp are examined. The velocities above and below the
walls appear to show similar distributions. However, figure 8(d) reveals a curved band of
optimal values for the flow above the trench, where there is only relatively moderate flow
inside the trench. On the left-hand side of this curved region, we see that very little flow
is generated by a trench with a very high base and walls resembling short stumps. On the
other hand, an optimal value of the flow below the walls in figure 8(e) is achieved when
the trench is tall, but with a relatively thin base.

This latter regime is also where the free surface is hottest, as shown in figure 8( f), due to
there being less conducting wall for heat flux to pass through. In practice, we suggest that
trench dimensions along the optimal band in figure 8(d) represent a good trade-off between
increasing the average velocities above and below the walls, and reducing the temperature
of the free surface. This region of parameter space corresponds to a configuration with a
thick divertor plate and only slightly higher trench walls.

4.5. Changing the film thickness f and the trench angle 0

The effects of varying the film thickness f and the trench slope angle 6 are shown in
figure 9. Recall that the trench slope angle 6 enters the problem through the gravitational
parameter I defined by (2.13).
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Figure 8. The dependence of the average velocity above and inside the trench ((a,d) and (b,c), respectively)
and the average free-surface temperature (c,f) on the trench width @ and sidewall fraction rg (a—c) and on the
trench height H and base fraction rp (d—f), for w € [0.4, 2], H € {0.2, 2} and rg, rg € [0.01, 0.99]. Schematics
of the trench geometry are shown in the corners of each plot.
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Figure 9. Plots showing the effect of varying (a) the film thickness f, (b) the trench slope angle 8, on the
vertical velocity profile.

In figure 9(a) we see that overfilling the trench has a marked impact on the nature of
the flow above the walls without significantly affecting the flow inside the trench. The
velocity above the trench may be much larger than that inside, and approximately quadratic
in y, with its maximum at the free surface, in qualitative agreement with the asymptotic
prediction (3.3). Recalling that 8 = 0.1 in these solutions, we infer that even moderate
trench slope angles can result in large flow rates above the walls. In practice, the intention
is to use thermoelectric effects as the principal driver of the flow rather than relying on
gravity, not least because similar divertor plates may be used at the top of the tokamak,
where gravity acts in the opposite direction. In any case, we hypothesise that a situation
where the liquid above the trench flows several times faster than that inside the trench may
be susceptible to free-surface instability and thus should be avoided in practice.

As figure 9(b) shows, the velocity profile between the walls is mostly unaffected by the
slope angle 6, because TEMHD is the dominant driving mechanism there. On the other
hand, increasing 6 increases the flow speed above the trench walls, and in the case where
f = 0.1 as plotted, while making & < 0 slows down the flow above the trench and can lead
to backflows. The fluid above the walls experience both the drag from the TEMHD-driven
flow inside the trench and the gravitational forcing, and when 8 < 0 these effects act in
opposite directions. From the numerical simulations and asymptotic estimates, one can in
principle determine how much the trench should be filled for a given slope angle, so that
velocities above and below the trench remain approximately equal.

4.6. Varying the applied field B¢

In figure 10, we explore the effects of varying the reciprocal Hartmann number €. Recall
that 1/e€ is proportional to the applied magnetic field strength 3¢, while the gravitational
parameter I" is independent of B“. Provided the material and geometrical properties are
kept constant, varying € is thus mathematically equivalent to varying B“. However, when
considering the practical implications of the results, we must recall that the velocity scaling
(2.12) contains a factor of 1/B%. We therefore also plot the results using dimensional
variables to determine what would be observed in practice as the magnetic field strength
is increased.
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Figure 10. Plots illustrating the behaviour of dimensionless solutions in (a—c) for € € {0.5,0.2, 0.1, 0.05,
0.02,0.01, 0.005, 0.002, 0.001}, and the dimensional solutions in (d-f) for B“ € {0.1,0.2,0.5,1,2,
5,10} T.
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In figure 10(a), we clearly observe the singular behaviour of the horizontal velocity
profiles as € — 0, where the velocity approaches a constant value, determined by
the vertical temperature gradient, outside Hartmann layers whose width is of O(e).
In figure 10(b), we observe that the conducting-wall jet at the base becomes narrower and
stronger as € decreases. Meanwhile, the velocity above the trench walls decreases with
decreasing €. We also see in figure 10(c) that, as € decreases, the induced magnetic field
approaches a piecewise linear function of X, negligible inside the fluid but with a finite
gradient inside the walls. In all cases, the asymptotic predictions (dashed curves) become
increasingly accurate with decreasing €, as expected.

However, when considering dimensional quantities, increasing the magnetic field
strength B¢ has a retarding effect not apparent in figure 10(a—c). In figure 10(d), we
see that increasing the magnetic field strength does create boundary layers near the
walls, but simultaneously decreases the maximum velocity. This effect is also captured
in figure 10(e) where, even though the velocity jet near the trench base still appears, it is
much less prominent. Figure 10(f) shows that increasing the applied magnetic field also
has a suppressing influence on the induced magnetic field. This perhaps counterintuitive
behaviour is consistent with our scaling (2.10¢) for the induced magnetic field, which is
proportional to 1/5%.

4.7. Changing v, the applied field inclination

Although the applied magnetic field is likely to be horizontal in practice, due to the toroidal
symmetry of a tokamak, for completeness we illustrate the effect of the applied field angle
¥ on the velocity and the induced magnetic field in figures 11 and 12, respectively. The
most obvious observation from figures 11(f) and 12(f) is that the flow and magnetic field
are reversed, as expected, when ¥ = m and the applied magnetic field is pointing from
right to left, rather than left to right.

In figure 11(a) with ¢ = 1/6, the typical Hunt velocity jet shifts over to the bottom
left-hand corner, and the thickness of the boundary layer near the base decreases. We
notice that this conducting jet appears to be stretched out in the direction of the magnetic
field, and a small stagnant region also emanates from the top right-hand corner. It appears
that the flow profiles are being distorted along dividing subcharacteristics, since the
leading-order TEMHD trench problem (see figure 3) becomes hyperbolic in the limit
€ — 0. This phenomenon, where the velocity gradient appears to become discontinuous
across dividing characteristics passing through the corners, was described by Alty (1971)
and Morley & Roberts (1996).

In figure 11(b), with increasing 1, the velocity becomes close to zero near the
subcharacteristic passing through the top right-hand corner, in a neighbourhood of which
the flow begins to reverse. In figure 11(c), with ¢ = = /2, there is a perfectly symmetrical
velocity dipole with the liquid in the right-hand half of the trench flowing at an equal and
opposite speed to that in the left-hand half, and the average velocity is equal to zero. The
same behaviour as in figure 11(a,b) is demonstrated in figure 11(d,e), albeit with reversed
direction. In any case, it appears that the net velocity in the trench is maximised when the
applied magnetic field is orthogonal to the temperature gradient, as expected.

Turning our attention to figure 12, we notice that the induced field is close to zero outside
a triangular region near the bottom right-hand corner in figure 12(a,b). The dividing line
follows a subcharacteristic inclined at an angle ¥ to the horizontal, which encloses a region
of high induced field strength, counteracting the dipole formed by the rest of the magnetic
field profile. In figure 12(c), the applied field is parallel to the trench walls, where the
induced magnetic field exhibits side layers of thickness of O(e!/?). These layers have a
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stronger electrical current through the walls, and hence a stronger Lorentz force which
drives the fluid at a higher speed in both the left- and right-hand sides of the trench,
although in opposite directions.

5. Conclusions

In this paper, we performed a hybrid numerical/asymptotic analysis of steady
unidirectional TEMHD flow inside a trench akin to those seen in LiMIT. We obtained
asymptotic solutions for the velocity, magnetic field and temperature in the limit of large
Hartmann number and thin trench walls, demonstrating how temperature gradients drive
fluid flow. We obtained numerical solutions to the problem in different parameter cases
corresponding to both laboratory and fusion-relevant applications, and these demonstrated
very good agreement with the asymptotic predictions.

Several interesting future avenues for research have arisen as a result of the modelling
work we have presented. One could attempt to model the cooling tubes beneath the trench
in more detail, e.g. by replacing the Dirichlet boundary condition on the temperature on
the base with a Robin boundary condition. We considered only steady solutions in this
paper, but unsteady effects may be important in practice, for example during start-up of a
tokamak, when the applied magnetic field is ramped up from zero to a several teslas over
a number of minutes. Also of practical interest is the effect on the flow in the trench
of plasma instabilities such as edge-localised modes, which can cause large localised
transient spikes in heat flux and/or applied field, as well as significant current into the
free surface from the plasma. The practical applicability of our work could be improved
by including temperature dependence in the material properties of lithium which, as noted
in § 2.3, can vary appreciably (though not dramatically) over relevant temperature ranges.

We have focused on rectangular trenches in this modelling work, because they are
the most straightforward to design and manufacture. However, three-dimensional printing
capabilities can in principle produce novel trench shapes, including cross-sections that
vary along the trench. It would be interesting to pose a shape optimisation problem,
for example, to maximise the average flow speed inside the trench, given engineering
constraints on the wall and base properties.

We have assumed that the physically imposed properties, including the impinging heat
flux and applied magnetic field, are all uniform in the flow direction along the trench. In
practice, the impinging heat flux is likely to be concentrated around a strip near the centre
of the trench (described by a Gaussian in Xu et al. (2014)), and the applied magnetic field
is also likely to vary slightly along the trench in inverse proportion to distance from the
symmetry axis. The next step is to relax the assumption of unidirectional flow and take into
account variations along the trench. Since the trench can be assumed to be much longer
than it is wide, a slowly varying version of the model can be derived by considering a
sequence of two-dimensional slices, each of which resembles the purely two-dimensional
problem analysed in this paper. The aim would be to obtain a shallow-water type theory
(as in, e.g. Fiflis et al. 2016; Lunz & Howell 2019; Lunz 2020), in which the applied field,
heat flux and film height all vary parametrically with distance z along the trench.
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Appendix. Solution of bottom boundary-layer problem

Here we show how the solution to the problem (3.10) may in principle be expressed
using infinite series. We first decompose (3.10) into two independent problems, each of
which has only one inhomogeneous boundary condition, by writing the liquid velocity
and induced magnetic field in the forms

A 1 AT [1] ~12] o D
g0k ¥5) = ——— (5= (@, 0) + ol es | (14w 7)) + Il o),
l4+cs \ 0y ’
(Ala)
52 o ) = —— (2 .0y + wres ) B, Ty + T (=2 + 522 7
5.0 YB) = e P (,0) +wlcs | b o (X, Yp) + I' | =X + b o7 (X, Yp) | .
(Alb)
We then need to solve the homogeneous partial differential equations (j = 1, 2)
82];2[/'] BVAVU] 92w ~[/] 8[;2[j] R
5.0 B0 _ T80 L TBO g infp>0, 0<i<w  (A20)
Y3 X Y3 %
subject to the boundary conditions
A~ [J]
aw
— 20—yl =0, on x=0, (A2b)
ox
L/1 53[]] -
(I + cs)w +csbgy =0, onx=w, (A2c)
W, bﬁ[g] 50, as¥p— oo (A2d)
and
552U _
W = —o1), 8;“ — byl = —5ycpt, on ¥ =0. (A2¢)
B

In either of the two cases, the solution to the problem may be expressed in the form

o0
wl[gj]o(x, f’B) = Re |:Z L[,Ej]e*“”YB cosh M%){| , (A3a)

n=0
by, ¥5) = —Re [Z Ulile=rnT8 sinh 123 } , (A3b)

n=0
where
L o4+ (n+L)in with ¢ = arctanh (3 (Ad)
= — — 17T W1 — arctan .
Hn="J& "o 1+ cs
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Figure 13. The contributions 1 4 fvg]o and VA"E;Z]O to the fluid velocity plotted versus Y3 at the centre of the
trench in Case (I): ¢cg — 0.

The complex coefficients U, are determined in principle from the final inhomogeneous
boundary condition (A2e), i.e.

> 1, ifj=1
1 2A ] =1,
Re [Z U cosh ,unx:| = {0’ =2, (A5a)
n=0
o0
- . 0, ifj=1,
Re |:; (n + cB) Z,{IEJ] sinh ,U,,%x:| = {—CB)AC, =2 (A5b)

It is not straightforward to evaluate the coefficients U4, in general. We present below two
limiting cases in which they can be found analytically using Fourier series.

A.l. Case(I): cs — 0

For O(1) conductivity ratio, this first case corresponds to the industrially relevant regime
where the Hartmann layer is much narrower than the trench sidewall. In this limit, we have
¢ — 0, and the coefficients in the series solution (A3) are given by

2= iy (n+3) = A6
” <n—|—%)n (n—l-%)n#—cm/%
i(—1)"(2w)¥2cp

( <n+%)n+63m> (n+%)2n2'

Ul = (A6b)

The contributions 1 + vAvg]O and %[92]0 to the fluid velocity in this limit are plotted in
figure 13. Here we set w = 1, without loss of generality, and plot the velocities evaluated

at the trench centreline X = 0 versus the scaled vertical coordinate Yg.
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Figure 14. The contributions 1 + WE;]O and fvg]o to the fluid velocity plotted versus ¥ at the centre of the

trench in Case (I): cg — 0.

Figure 13(a) shows the contribution to the velocity generated by the temperature
gradient through the Seebeck effect, while figure 13(b) shows the contribution due to the
gravitational forcing along the trench. In both cases, we observe the the expected jet caused
by conductivity of the trench base, with the velocity significantly over-shooting its far-field
limit as well as a noticeable return flow.

A.2. Case (Il): cg —> o0

This case corresponds to the regime where the trench base is much thinner than the side
boundary layer, which is of order €'/2. Although it is less likely to be practically relevant,
for completeness we note that the coefficients in this limiting case are given by

cosh¢  sinh¢ )

_ 2(=1)"icosh¢
Haw

Haw

U’EI] , UIEZ] — 2(_1)n+1i ( (ATa,b)

The resulting solutions for the velocity contributions are plotted in figure 14. Again
we observe wall jets near the trench base, with behaviour qualitatively similar to that in
figure 13.
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