A CONSTRUCTIVE SOLUTION TO A TOURNAMENT PROBLEM

BY R. L. GRAHAM AND J. H. SPENCER

Introduction. By a tournament T_n on n vertices, we shall mean a directed graph on n vertices for which every pair of distinct vertices form the endpoints of exactly one directed edge (e.g., see [5]). If x and y are vertices of T_n we say that x dominates y if the edge between x and y is directed from x to y. In 1962, K. Schütte [2] raised the following question: Given k > 0, is there a tournament $T_{n(k)}$ such that for any set S of k vertices of $T_{n(k)}$ there is a vertex y which dominates all k elements of S. (Such a tournament will be said to have property P_k .)

In [3], P. Erdös showed by probabilistic arguments that for each k, such a $T_{n(k)}$ must exist. Thus, it is meaningful to define f(k) to be the minimum value of n(k) for which such a $T_{n(k)}$ exists. More precisely, Erdös showed that

(1)
$$f(k) \le k^2 2^k (\log 2 + \varepsilon)$$

for any $\epsilon > 0$ provided k is sufficiently large. In the other direction Szekeres and Szekeres [6] established

(2)
$$f(k) \ge (k+2)2^{k-1} - 1.$$

In this note, we give for each k an *explicit construction* of a tournament $T_{n(k)}$ which has property P_k . Although the best bound we currently have on the value of n(k) needed by our construction shows that n(k) may be as large as $k^2 2^{2k-2}$, in fact, for small values of k, our tournaments are minimal.

Construction of the tournament. Let p be a prime congruent to 3 modulo 4 and let $\{0, 1, \ldots, p-1\} = V$ be the set of vertices of T_p . Define the edges of T_p by directing an edge from i to j iff i-j is a quadratic residue of p, i.e., iff $\binom{i-j}{p} = 1$, where we use the familiar Legendre symbol (cf. [4]). Since $p \equiv 3 \mod 4$ then $\binom{-1}{p} = -1$ so that any two distinct vertices are joined by exactly one edge and T_p is a well-defined tournament.

THEOREM. If $p > k^2 2^{2k-2}$ then T_p has property P_k .

Proof. It is easily seen that T_p has property P_k iff for all $a_1, \ldots, a_k \in V$,

Received by the editors June 12, 1970.

there exists an $x \in V$ such that $\binom{x-a_i}{p} = 1$ for $1 \le i \le k$. Set $\chi(a) = \binom{a}{p}$ and let

 $A = \{a_1, \ldots, a_k\}$ denote a set of k arbitrary fixed elements of V. Define g(A) by

(3)
$$g(A) = \sum_{\substack{x=0\\x\notin A}}^{p-1} \prod_{j=1}^{k} [1 + \chi(x-a_j)].$$

If we can show g(A) is always >0 then the theorem is proved; for, in this case, there is a choice $x = x_0 \notin A$ such that $\prod_{j=1}^{k} [1 + \chi(x_0 - a_j)] > 0$ and, hence, $\chi(x_0 - a_j) \neq -1$ for $1 \le j \le k$. Since $x_0 \notin A$, then $x_0 - a_j \neq 0$ and $\chi(x_0 - a_j) \neq 0$. Thus, $\chi(x_0 - a_j) = 1$ for $1 \le j \le k$ and by the previous remark, we would be done.

We next show g(A) > 0. Define h(A) by

(4)
$$h(A) = \sum_{x=0}^{p-1} \prod_{j=1}^{k} [1 + \chi(x - a_j)].$$

Thus,

(5)
$$g(A) = h(A) - \sum_{i=0}^{k} \prod_{j=1}^{k} [1 + \chi(a_i - a_j)].$$

Expanding the inner terms in (4) we obtain

$$h(A) = \sum_{x=0}^{p-1} 1 + \sum_{x=0}^{p-1} \sum_{j=1}^{k} \chi(x-a_j) + \sum_{x=0}^{p-1} \sum_{j_1 < j_2} \chi(x-a_{j_1})\chi(x-a_{j_2}) + \cdots$$
(6)

$$\dots + \sum_{x=0}^{p-1} \sum_{j_1 < \dots < j_s} \chi(x-a_{j_1}) \dots \chi(x-a_{j_s}) + \cdots$$

$$\dots + \sum_{x=0}^{p-1} \sum_{j_1 < \dots < j_k} \chi(x-a_{j_1}) \dots \chi(x-a_{j_k}).$$

The first two terms of (6) are p and 0 respectively. To estimate the remaining terms we rely on the following powerful result of D. A. Burgess [1]:

(7)
$$\left|\sum_{x=0}^{p-1} \chi(x-a_{j_1}) \dots \chi(x-a_{j_s})\right| \leq (s-1)\sqrt{p}$$

for a_{j_1}, \ldots, a_{j_s} distinct. Thus, we have

(8)
$$\left|\sum_{x=0}^{p-1}\sum_{j_1<\cdots< j_s}\chi(p-a_{j_1})\ldots\chi(x-a_{j_s})\right| \leq \binom{k}{s}(s-1)\sqrt{p}$$

and therefore

(9)
$$|h(A)-p| \leq \sqrt{p} \sum_{s=2}^{k} \binom{k}{s} (s-1).$$

A straightforward calculation shows

(10)
$$\sum_{s=2}^{k} {\binom{k}{s}} (s-1) = (k-2)2^{k-1} + 1$$

so that we have

(11)
$$h(A) \ge p - [(k-2)2^{k-1}+1]\sqrt{p}.$$

Now consider the expression

$$\sum_{i=0}^{k} \prod_{j=1}^{k} [1 + \chi(a_i - a_j)] = h(A) - g(A)$$

which occurs in (5). If $h(A)-g(A) \neq 0$ then for some i_0 the product $\prod_{j=1}^{k} [1+\chi(a_{i_0}-a_j)]$ is nonzero. Thus, for all $j, \chi(a_{i_0}-a_j)\neq -1$ so that for all $j\neq i_0, \chi(a_{i_0}-a_j)=1$. But this implies $\chi(a_j-a_{i_0})=-1$ for all $j\neq i_0$ and consequently

(12)
$$\prod_{j=1}^{k} [1 + \chi(a_i - a_j)] = \begin{cases} 0 & \text{for } i \neq i_0 \\ 2^{k-1} & \text{for } i = i_0. \end{cases}$$

Therefore, in any case, we have

(13)
$$h(A)-g(A) \leq 2^{k-1}$$

Applying (11) we obtain

(14)
$$g(A) \ge p - [(k-2)2^{k-1}+1]\sqrt{p} - 2^{k-1}.$$

It is easily checked that for $p > k^2 2^{2k-2}$, the right-hand side of (14) is >0. This proves the theorem.

Concluding remarks. The value $k^2 2^{2k-2}$ is nearly the square of the nonconstructive upper bound (1) of Erdös. Specific constructions show that much smaller values p suffice to endow T_p with property P_k . For example, T_7 has property P_2 and T_{19} has property P_3 . In [6] it is shown that f(2) = 7 and f(3) = 19 so that these tournaments are minimal. Also, it is true that T_{67} has property P_4 . Since (2) gives $f(4) \ge 47$ it is possible that T_{67} is also minimal.

If q is an odd power of a prime congruent to 3 modulo 4 then T_q can be defined with vertices as elements of GF(q) and an edge directed from i to j iff i-j is a square in GF(q). It can be shown for example that T_{27} has property P_3 . However, no examples are known for which the number of vertices of a T_q with property P_k is smaller than a suitable T_p .

ACKNOWLEDGEMENT. The authors gratefully acknowledge the contributions of D. H. and Emma Lehmer, whose ideas formed the basis for the proof of the theorem.

References

1. D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179-192.

2. P. Erdös, Applications of probability to combinatorial problems, Proc. of Colloq. on Combinatorial Methods in Probability Theory, August 1-10 (1962), 90-92.

3. — , On a problem in graph theory, Math. Gaz. 47 (1963), 220-223.

4. W. J. LeVeque, *Topics in number theory*, Vol. I, Addison-Wesley, Reading, Mass., 1954. 4-C.M.B.

R. L. GRAHAM AND J. H. SPENCER

5. J. W. Moon, Topics on tournaments, Holt, New York, 1968.

6. E. Szekeres and G. Szekeres, On a problem of Schütte and Erdös, Math. Gaz. 49 (1965), 290-293.

Bell Telephone Laboratories Inc., Murray Hill, New Jersey The Rand Corporation, Santa Monica, California

48