A CONSTRUCTIVE SOLUTION TO A TOURNAMENT PROBLEM

BY
R. L. GRAHAM AND J. H. SPENCER

Introduction. By a tournament T_{n} on n vertices, we shall mean a directed graph on n vertices for which every pair of distinct vertices form the endpoints of exactly one directed edge (e.g., see [5]). If x and y are vertices of T_{n} we say that x dominates y if the edge between x and y is directed from x to y. In 1962, K. Schütte [2] raised the following question: Given $k>0$, is there a tournament $T_{n(k)}$ such that for any set S of k vertices of $T_{n(k)}$ there is a vertex y which dominates all k elements of S. (Such a tournament will be said to have property P_{k}.)

In [3], P. Erdös showed by probabilistic arguments that for each k, such a $T_{n(k)}$ must exist. Thus, it is meaningful to define $f(k)$ to be the minimum value of $n(k)$ for which such a $T_{n(k)}$ exists. More precisely, Erdös showed that

$$
\begin{equation*}
f(k) \leq k^{2} 2^{k}(\log 2+\varepsilon) \tag{1}
\end{equation*}
$$

for any $\varepsilon>0$ provided k is sufficiently large. In the other direction Szekeres and Szekeres [6] established

$$
\begin{equation*}
f(k) \geq(k+2) 2^{k-1}-1 \tag{2}
\end{equation*}
$$

In this note, we give for each k an explicit construction of a tournament $T_{n(k)}$ which has property P_{k}. Although the best bound we currently have on the value of $n(k)$ needed by our construction shows that $n(k)$ may be as large as $k^{2} 2^{2 k-2}$, in fact, for small values of k, our tournaments are minimal.

Construction of the tournament. Let p be a prime congruent to 3 modulo 4 and let $\{0,1, \ldots, p-1\}=V$ be the set of vertices of T_{p}. Define the edges of T_{p} by directing an edge from i to j iff $i-j$ is a quadratic residue of p, i.e., iff $\binom{i-j}{p}=1$, where we use the familiar Legendre symbol (cf. [4]). Since $p \equiv 3 \bmod 4$ then $\binom{-1}{p}=-1$ so that any two distinct vertices are joined by exactly one edge and T_{p} is a welldefined tournament.

Theorem. If $p>k^{2} 2^{2 k-2}$ then T_{p} has property P_{k}.
Proof. It is easily seen that T_{p} has property P_{k} iff for all $a_{1}, \ldots, a_{k} \in V$,

Received by the editors June 12, 1970.
there exists an $x \in V$ such that $\binom{x-a_{i}}{p}=1$ for $1 \leq i \leq k$. Set $\chi(a)=\binom{a}{p}$ and let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ denote a set of k arbitrary fixed elements of V. Define $g(A)$ by

$$
\begin{equation*}
g(A)=\sum_{\substack{x=0 \\ x \neq A}}^{p-1} \prod_{j=1}^{k}\left[1+\chi\left(x-a_{j}\right)\right] . \tag{3}
\end{equation*}
$$

If we can show $g(A)$ is always >0 then the theorem is proved; for, in this case, there is a choice $x=x_{0} \notin A$ such that $\prod_{j=1}^{k}\left[1+\chi\left(x_{0}-a_{j}\right)\right]>0$ and, hence, $\chi\left(x_{0}-a_{j}\right)$ $\neq-1$ for $1 \leq j \leq k$. Since $x_{0} \notin A$, then $x_{0}-a_{j} \neq 0$ and $\chi\left(x_{0}-a_{j}\right) \neq 0$. Thus, $\chi\left(x_{0}-a_{j}\right)$ $=1$ for $1 \leq j \leq k$ and by the previous remark, we would be done.
We next show $g(A)>0$. Define $h(A)$ by

$$
\begin{equation*}
h(A)=\sum_{x=0}^{p-1} \prod_{j=1}^{k}\left[1+\chi\left(x-a_{j}\right)\right] . \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
g(A)=h(A)-\sum_{i=0}^{k} \prod_{j=1}^{k}\left[1+\chi\left(a_{i}-a_{j}\right)\right] . \tag{5}
\end{equation*}
$$

Expanding the inner terms in (4) we obtain

$$
\begin{align*}
h(A)=\sum_{x=0}^{p-1} 1+\sum_{x=0}^{p-1} \sum_{j=1}^{k} \chi\left(x-a_{j}\right) & +\sum_{x=0}^{p-1} \sum_{j_{1}<j_{2}} \chi\left(x-a_{j_{1}}\right) \chi\left(x-a_{j_{2}}\right)+\cdots \\
\cdots & +\sum_{x=0}^{p-1} \sum_{j_{1}<\cdots<j_{s}} \chi\left(x-a_{j_{1}}\right) \ldots \chi\left(x-a_{j_{s}}\right)+\cdots \tag{6}\\
\cdots & +\sum_{x=0}^{p-1} \sum_{j_{1}<\cdots<j_{k}} \chi\left(x-a_{j_{1}}\right) \ldots \chi\left(x-a_{j_{k}}\right) .
\end{align*}
$$

The first two terms of (6) are p and 0 respectively. To estimate the remaining terms we rely on the following powerful result of D. A. Burgess [1]:

$$
\begin{equation*}
\left|\sum_{x=0}^{p-1} \chi\left(x-a_{j_{1}}\right) \ldots \chi\left(x-a_{j_{s}}\right)\right| \leq(s-1) \sqrt{p} \tag{7}
\end{equation*}
$$

for $a_{j_{1}}, \ldots, a_{j_{s}}$ distinct. Thus, we have

$$
\begin{equation*}
\left|\sum_{x=0}^{p-1} \sum_{j_{1}<\cdots<j_{s}} \chi\left(p-a_{j_{1}}\right) \ldots \chi\left(x-a_{j_{s}}\right)\right| \leq\binom{ k}{s}(s-1) \sqrt{p} \tag{8}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
|h(A)-p| \leq \sqrt{\bar{p}} \sum_{s=2}^{k}\binom{k}{s}(s-1) \tag{9}
\end{equation*}
$$

A straightforward calculation shows

$$
\begin{equation*}
\sum_{s=2}^{k}\binom{k}{s}(s-1)=(k-2) 2^{k-1}+1 \tag{10}
\end{equation*}
$$

so that we have

$$
\begin{equation*}
h(A) \geq p-\left[(k-2) 2^{k-1}+1\right] \sqrt{p} \tag{11}
\end{equation*}
$$

Now consider the expression

$$
\sum_{i=0}^{k} \prod_{j=1}^{k}\left[1+\chi\left(a_{i}-a_{j}\right)\right]=h(A)-g(A)
$$

which occurs in (5). If $h(A)-g(A) \neq 0$ then for some i_{0} the product $\prod_{j=1}^{k}\left[1+\chi\left(a_{i_{0}}-a_{j}\right)\right]$ is nonzero. Thus, for all $j, \chi\left(a_{i_{0}}-a_{j}\right) \neq-1$ so that for all $j \neq i_{0}, \chi\left(a_{i_{0}}-a_{j}\right)=1$. But this implies $\chi\left(a_{j}-a_{i_{0}}\right)=-1$ for all $j \neq i_{0}$ and consequently

$$
\prod_{j=1}^{k}\left[1+\chi\left(a_{i}-a_{j}\right)\right]= \begin{cases}0 & \text { for } i \neq i_{0} \tag{12}\\ 2^{k-1} & \text { for } i=i_{0}\end{cases}
$$

Therefore, in any case, we have

$$
\begin{equation*}
h(A)-g(A) \leq 2^{k-1} . \tag{13}
\end{equation*}
$$

Applying (11) we obtain

$$
\begin{equation*}
g(A) \geq p-\left[(k-2) 2^{k-1}+1\right] \sqrt{p}-2^{k-1} . \tag{14}
\end{equation*}
$$

It is easily checked that for $p>k^{2} 2^{2 k-2}$, the right-hand side of (14) is >0. This proves the theorem.

Concluding remarks. The value $k^{2} 2^{2 k-2}$ is nearly the square of the nonconstructive upper bound (1) of Erdös. Specific constructions show that much smaller values p suffice to endow T_{p} with property P_{k}. For example, T_{7} has property P_{2} and T_{19} has property P_{3}. In [6] it is shown that $f(2)=7$ and $f(3)=19$ so that these tournaments are minimal. Also, it is true that T_{67} has property P_{4}. Since (2) gives $f(4) \geq 47$ it is possible that T_{67} is also minimal.

If q is an odd power of a prime congruent to 3 modulo 4 then T_{q} can be defined with vertices as elements of $G F(q)$ and an edge directed from i to j iff $i-j$ is a square in $G F(q)$. It can be shown for example that T_{27} has property P_{3}. However, no examples are known for which the number of vertices of a T_{q} with property P_{k} is smaller than a suitable T_{p}.

Acknowledgement. The authors gratefully acknowledge the contributions of D. H. and Emma Lehmer, whose ideas formed the basis for the proof of the theorem.

References

1. D. A. Burgess, On character sums and primitive roots, Proc. London Math. Soc. (3) 12 (1962), 179-192.
2. P. Erdös, Applications of probability to combinatorial problems, Proc. of Colloq. on Combinatorial Methods in Probability Theory, August 1-10 (1962), 90-92.
3. -_ On a problem in graph theory, Math. Gaz. 47 (1963), 220-223.
4. W. J. LeVeque, Topics in number theory, Vol. I, Addison-Wesley, Reading, Mass., 1954.

4-С.м.в.
5. J. W. Moon, Topics on tournaments, Holt, New York, 1968.
6. E. Szekeres and G. Szekeres, On a problem of Schütte and Erdös, Math. Gaz. 49 (1965), 290-293.

Bell Telephone Laboratories Inc.,
Murray Hill, New Jersey
The Rand Corporation,
Santa Monica, California

