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A CONSTRUCTIVE SOLUTION TO A 
TOURNAMENT PROBLEM 

BY 

R. L. GRAHAM AND J. H. SPENCER 

Introduction. By a tournament Tn on n vertices, we shall mean a directed graph 
on n vertices for which every pair of distinct vertices form the endpoints of exactly 
one directed edge (e.g., see [5]). If x and y are vertices of Tn we say that x dominates 
y if the edge between x and y is directed from x to y. In 1962, K. Schlitte [2] raised 
the following question: Given k>0, is there a tournament Tn(k) such that for any 
set S oî k vertices of TMk) there is a vertex y which dominates all k elements of S. 
(Such a tournament will be said to have property Pk.) 

In [3], P. Erdôs showed by probabilistic arguments that for each k9 such a 
Tn(k) must exist. Thus, it is meaningful to define f(k) to be the minimum value of 
n(k) for which such a Tnik) exists. More precisely, Erdôs showed that 

(1) f(k) <k22k(log2 + e) 

for any e > 0 provided k is sufficiently large. In the other direction Szekeres and 
Szekeres [6] established 

(2) /(*) > (k+2)2k'^l. 

In this note, we give for each k an explicit construction of a tournament Tn(k) 

which has property Pk. Although the best bound we currently have on the value of 
n{k) needed by our construction shows that n(k) may be as large as k222k~2, in 
fact, for small values of k, our tournaments are minimal. 

Construction of the tournament. Let p be a prime congruent to 3 modulo 4 and 

let {0, 1, . . . , p — 1} = V be the set of vertices of Tp. Define the edges of Tp by direct

ing an edge from / toy iff i—j is a quadratic residue of p, i.e., iff I 1 = 1, where 

we use the familiar Legendre symbol (cf. [4]). Since /?=3 mod 4 then I » = — 1 

so that any two distinct vertices are joined by exactly one edge and Tp is a well-
defined tournament. 

THEOREM. Ifp>k222k~2 then Tp has property Pk. 

Proof. It is easily seen that Tp has property Pk iff for all al9...9aksV9 
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there exists an xeV such that ( l) = l for 1 </</c. Set x O ^ I I 

[March 

and let 

A={au . . . , ak} denote a set of k arbitrary fixed elements of V. Define g(A) by 

(3) X = 0 j=l 

If we can show g(A) is always >0 then the theorem is proved; for, in this case, 
there is a choice x = x0$A such that n?=i [1 +x(*o~ %)]>0 and, hence, x(*o —fy) 
^ - 1 for 1 <j<k. Since x0 ^ -4, then x^ — a^O and x(*o — ty)^0. Thus, x(*o —fy) 
= 1 for 1 <j<k and by the previous remark, we would be done. 

We next show g{A) > 0. Define h(A) by 

(4) 

Thus, 

(5) 

x = 0j = l 

g(A) = h(A)- i n n + ^ - 4 
i = 0 1 = 1 

Expanding the inner terms in (4) we obtain 

(6) 

h{A) = V% 1+ 2 2 X(x-ay)+ "Ï 2 x(.x-ah)x(x-ah)+' 
x = 0 x=0 j = l x = 0 Ji<j2 

p - 1 

+ 2 2 X(*-^i)---X(*-0/.)+' 

p - 1 

+ 2 2 x(x-ah)...x(x-ajkl 
x = 0 h<"'<Jk 

The first two terms of (6) are p and 0 respectively. To estimate the remaining 
terms we rely on the following powerful result of D. A. Burgess [1]: 

(7) 
p - 1 

2 x(x-ah)...x(x-au)\ < ( j - l ) V > 

for ah,..., ah distinct. Thus, we have 

(8) \'f I x(p-ah)---x(x-aA<(k\(s-l)Vp 

and therefore 

(9) \KA)-p\ < V p 2 a (*)(*-1). 

A straightforward calculation shows 

(10) i 2 Q ( ^ - l ) = (Â:-2)2k-1 + l 
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so that we have 

(11) h{A) > jp-[(A:~2)2fc~1 + l]V^. 

Now consider the expression 

i = 0 ; = 1 

which occurs in (5). If h(A)-g(A)^0 then for some i0 the product 
m = i [l+x(^0~ay)] *s n o n z e r o . Thus, for ally, x(^io"~^)^ ""̂  s o ^ a t f°r a^ 
JT '̂O» x{aiQ"ai) — ^' But ^ s implies x(aj'~aio)=z — 1 f°r all./#/o a nd consequently 

(i2) n i[i+xfe-^)] = {2,-i T̂ n , „t„ „v. _ / ° fori # /0 

for i = /0-

Therefore, in any case, we have 

(13) h(A)-g(A) < 2k~\ 

Applying (11) we obtain 

(14) g(A) > /7 -P-2)2 f c - 1 + l]V^-2 fc-1. 

It is easily checked that for p>k222k~2
9 the right-hand side of (14) is >0. This 

proves the theorem. 

Concluding remarks. The value k222k ~ 2 is nearly the square of the nonconstructive 
upper bound (1) of Erdôs. Specific constructions show that much smaller values p 
suffice to endow Tp with property Pk. For example, T7 has property P2 and T19 

has property P3. In [6] it is shown that/(2) = 7 and/(3) = 19 so that these tourna
ments are minimal. Also, it is true that T67 has property P4. Since (2) gives f(4) > 47 
it is possible that T67 is also minimal. 

If q is an odd power of a prime congruent to 3 modulo 4 then Tq can be defined 
with vertices as elements of GF(q) and an edge directed from i toj iff i—j is a square 
in GF(q). It can be shown for example that T27 has property P3. However, no ex
amples are known for which the number of vertices of a Tq with property Pk is 
smaller than a suitable Tp. 
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