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A result contained in a previous paper [1] of the author is

THEOREM 1. / / (G, K, H) is a T^-triple, G is finite, a is an involution
contained in G—N(K) and H n Ka = 1, then the factor group of G over its
centre is isomorphic to a group of similarities over a finite field.

Here we refine this result as follows

THEOREM 2. Under the hypotheses of Theorem 1, G is the direct product
of an abelian group and a group isomorphic to a group of similarities over a
finite field.

The converse of this theorem is also true as will be pointed out in
section 4.

The concept of a r3-triple is defined in the next section.

1. Notations and Definitions

H < G means that H is a normal subgroup of the group G; N(H) is
the normalizer of H; C(h) is the centralizer of h; \H\ is the order of H;
(G; H) is the index of H in G; ax = x~xax; Hx = x~xHx; if H < G, then
G\H is the factor group of H in G; Z(G) is the centre of G; G—H is the set
of elements contained in G but not in H; A x B is the direct product of the
groups A and B; if F is a field, then 5(2, F) is the group of similarity map-
pings z -> az-\-b, a =£ 0 over the field F.

DEFINITION. If K and H are subgroups of a group G, H < K and when-
ever a and ab are members of G—K there exists exactly one h e H with the
property ah — ab, then (G, K, H) is called a TYtriple and G is called a
rs-group.

2. Previous results

In order to avoid repetition we shall use some of the results of [1]
without proof. The most important of these is Theorem 1 stated at the
beginning of this paper but in addition we have
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PROPOSITION 2.1. Z(G) = if n if".

PROPOSITION 2.2. With F as defined in Theorem 1, H is isomorphic
to the group of mappings z -> az, a ^ 0, over F.

PROPOSITION 2.3. K = HxZ(G).

PROPOSITION 2.4. G is doubly transitive on the cosets of K in G.

PROPOSITION 2.5. N(K) = if.

PROPOSITION 2.6. |G| = \K\(\H\ + l).

All these propositions hold under the assumption of the hypotheses of
Theorem 1. In addition we will use the properties of the similarity groups
where necessary.

3. The proof of Theorem 2

Throughout this section we will assume that (G, if, H) is a T3-triple
satisfying the hypotheses of Theorem 1. We will denote the order of H by
w—1 and the order of Z(G) by m. From propositions 2.3 and 2.6 it then
follows that \G\ = n\K\ = mn(n—l).

LEMMA 3.1. if is abelian.

PROOF. By propositions 2.2 and 2.3 K is the direct product of two
abelian groups and is hence abelian.

LEMMA 3.2. If g eG then either
(l)geZ(G)or
(2) g has exactly one conjugate in K and has n conjugates in G, or
(3) g has no conjugate in K and has w—1 conjugates in G.

PROOF. We will show first that no element of G has two conjugates
in if.

Suppose gx e if, g* e if, gx =£ gv. Then g e if*"1 n ifv~\ If if*"1 ^ if""1,
then, by Proposition 2.4, g has a conjugate in if n if° which is the centre
of G (Proposition 2.1). Hence g is contained in the centre of G which is a
contradiction.

Alternatively ifx~l = if»"x so that x-xyeN(K) = if by Proposition
2.5. Nowg^eJf so that by Lemma 3.1 f^x)x~lp =gx. Hence gx =fv which
is a contradiction.

Hence no element of G has two conjugates in if.
Now, by the property Tz, if an element of G has a conjugate outside if

it has exactly \H\ = n—\ conjugates outside if. This proves Lemma 3.2.
By Theorem 1, GjZ{G) is isomorphic to a group 5(2, F). The group of
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translations z -> z-\~b is a normal subgroup of this group so that G has
a subgroup D which contains Z(G) and has the property that DjZ{G) is
isomorphic to this group of translations. Moreover DjZ{G) o GjZ{G) so
that D < G.

LEMMA 3.3. D consists of the centre of G together with all the elements of
G which leave no coset of K fixed.

PROOF. We note first that DjZ{G) consists of the elements of GjZ(G)
which leave no coset of KjZ(G) fixed, together with the identity Z(G) of
GjZ(G).

If g e G and g fixes a coset of K in G then the coset gZ(G) fixes a coset
of KIZ(G) in GIZ(G). Conversely if g fixes no coset of K in G, then gZ{G)
fixes no coset oiKIZ(G) in GjZ(G).

LEMMA 3.4. D is abelian.

PROOF. Suppose g e D—Z{G). Then by Lemma 3.2 g has n— 1 con-
jugates in G. But G has order mn(n—l) so that C(g) has order w«. Now
Z(G) Q C(g) so that C(g)jZ(G) is defined and is a subgroup of GjZ(G) of
order n. But the only subgroup of GjZ(G) having order n is DjZ(G) so that
C(g)IZ{G) = Z)/Z(G) and so C(g) = D.

Hence D~-Z{G) Q Z{D) and clearly Z(G) Q Z{D) which proves the
lemma.

LEMMA 3.5. Let a be a fixed element of H, a ^ 1, and let E be the set of

elements of G of the form x~1x<r, x e D. Then E is a complement of Z{G) in
D, i.e. D = Z(G) X E.

PROOF. D < G so that iixeD, also x" e D. Hence EQD.
If x-lx" e D and y~xya eD, then {x-1x«){y-1y«)-1 = (xy-1)-1 (xy-1)"

since D is abelian. Hence (x~xx<T)(y~1y'T)~1 e E so that E is a subgroup
of D.

If aj^x0" e Z(G) then a;̂  ea;Z(6:). Hence aZ(G) commutes with xZ(G)
in GjZ{G). Now aZ(G) is not a translation and hence commutes with no
translation of G/Z(G). Hence xZ(G) = .Z(G) i.e. x e Z(G). Thus x" = a; so
that a;-1 a;0" = 1. Hence Z(G) n £ = 1.

Suppose g e D. Then gZ{G) 6 DjZ(G) which is the group of translations
of GIZ(G). Hence there exists x e D such that

(xZ(G))-\xZ{G)Yz^ =gZ(G).

Then x^x" egZ{G) so that D = Z{G)E.
Clearly £<]£>(£> abelian) so that D = Z(G) X £.

LEMMA 3.6. £ < G.
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PROOF. Suppose x^x" e E, x e D, x^x" =fi 1 and suppose g e G.
By Lemma 3.5, x'^x" sD—Z{G) so that by Lemma 3.3, x~1x'r has no
conjugate in K. Hence, by the property T3 there exists h e H such that
(x-1xcr)h = (x-xxa)a. But H is abelian so that (x^x*)" = (xh)-1(xh)(T e E.
Thus {x-lx"Y e E so that E < G.

LEMMA 3.7. HE is a normal subgroup of G and is a complement of Z(G)
in G i.e. G = Z(G)xHE.

PROOF. E < G and H is a subgroup of G so that HE is a subgroup of G.
To prove that HE is a normal subgroup of G it will be sufficient to

show that HE contains every conjugate of every element of H.
Suppose h e H, h =£ l. Then by Lemma 3.2, h has n conjugates in G.

If x, y e E, x ^ y and hx = hv, then hxv~^ = h, so that (xy1)* = xy1.
Now, from Lemmas 3.3 and 3.5, xy-1 has no conjugate in K so that by the
property T3 there is a unique h±e H with the property (x?/-1)*1 = xy~x,
namely hx = 1. Hence h = 1 which is a contradiction. Hence conjugates
of h by different elements of E are different.

Now \D\ = mn and |Z(G)| = m so that by Lemma 3.5, |£ | = w. Hence
ii he H, h ^ 1, h has # conjugates in HE by elements of £ and by the
above this is the complete set of conjugates of h in G. Hence HE <\ G.

Clearly HE n Z{G) = 1 and \HE\ = n(n-l), \Z(G)\ = m so that
Z{G)HE = G.

Hence we have proved that G = Z(G) xHE.
This is sufficient to prove Theorem 2.

4. The converse of Theorem 2

It remains now to prove

THEOREM 3. Let F be a field and H the subgroup of 5(2, F) consisting of
similarities of the form z -> az, a ^ 0. / / A is an abelian group then
(A x S(2, F), A xH, H) is a Tz-triple and moreover satisfies the other
hypotheses of Theorem 1.

PROOF. We prove only that (AxS(2, F), AxH, H) is a r3-triple.
S(2, F) may be represented as the group of matrices of the form

(o i)» a, b e F, a ^ 0 in which case H may be taken as the subgroup of
matrices of the form (Q A, a e F, a ^ 0. AxS(2, F) may be then taken
as the set of pairs of the form (a, (Q J J with <x.eA, a, b e F, « / 0
and multiplication defined elementwise.

A necessary condition that («, (̂  jH and {B, (i ^\\ be conjugate is
easily seen to be a = /S and a = c.
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Suppose (a, (Q A\, (a, (Q A\ are conjugate and neither are con-
tained in AxH. Then i ^ O , d ^ 0. We must show that the equation

( •«(*(: !))-M:0) ('•(-))
has a unique solution for x. This is easily seen to be x = b~xd.
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