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A b s t r a c t . Lunar motion serves for a number of important tests of the relativity 
theory. Although the final quantitative results come out from the direct numerical 
treatment of the lunar laser ranging data, the analytical solutions yield important 
keys for understanding sensitivity of the lunar motion on diverse effects. In the 
last few years, important relativistic phenomena, notably the equivalence principle 
violation and the preferred direction effects, have been reexamined using detailed 
Hill-Brown type theories. Surprising amplification of the former effect, indicated 
also from the numerical tests, has been explained by intricate coupling with the 
tidal deformation of the lunar orbit. Similar treatment proved that the lunar mo­
tion hides potentially a high-quality test of the preferred frame effects. In both 
cases, fundamental resonances of the problem cause singular amplification of the 
effects for particular lunar-like orbits. 

1. Introduct ion 

Thanks to significant improvements in ranging precision during the last few 
years, the premier testing ground for the 1/c2 order structure of relativi­
stic gravity is presently the active lunar laser ranging (LLR) experiment 
(Dickey et al., 1994; Williams et al., 1996). LLR should for several years 
in the future continue providing some of the highest precision tests of both 
the foundations and structure of general relativity. To understand the sen-
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sitivity of the LLR da ta to the wide variety of possible relativistic effects 
which can occur in alternative theories of gravity, it is worthwhile to com­
pute analytically the relativistic orbital perturbations as a supplement to 
their determination by computer integration. 

Earlier calculation of these relativistic perturbations, in most cases eit­
her neglected the solar tidal acceleration and the eccentricity (Nordtvedt, 
1968c), or at best took the solar tide only partially into account (Nordt­
vedt, 1973; Will, 1981). The recently achieved precision of LLR experiments 
calls for reexamination of the relativistic effects by procedures which fully 
include these realities of the lunar orbit. 

Finally, it should be mentioned tha t the works of Lestrade and Chapront-
Touze (1982) and Brumberg and Ivanova (1985) are predecessors of studies 
discussed hereinafter. Although mathematically precise, they are difficult to 
apply for analysis of LLR results. For instance, both works do not capture 
the most important relativistic effect (the equivalence principle violation 
hypothesis), the former being even a priori restricted to general relativity. 
On the other hand, they encaptured the amplification properties of the 
synodic perturbations of the lunar motion, thus pointing out the importance 
of solving the relativistic lunar perturbations in the context of a three-body 
(Earth-Moon-Sun) problem. 

2. Suitable Coordinates in the Earth Vic in i ty 

Though the relativistic Sun-Earth-Moon 3-body problem is initially formu­
lated in solar system barycentric coordinates (£', r ' ) , the description of the 
motion of a body as close to the Earth as the Moon is better related to 
Earth-based observations when made in geocentric coordinates. Transfor­
mation is therefore made to a proper time variable of a clock (t) travelling 
with the Earth on its motion through the Sun's gravitational field (but un­
corrected for the Ear th ' s own gravitational potential), and to spatial coor­
dinates (r) which eliminate Lorentz transformation effects due to Earth 
motion and gravitational effects of the Sun's field (but which remain in ori­
entation locked to distant inertial space; Damour et al., 1991; Nordtvedt, 
1995): 

r' = ' ( 1 - T ^ ) - ? ( i ' - V V + r - V , , ) - 5 ( A " - 5 A r , ) ( 2 ) 

[notation used throughout this paper follows Nordtvedt, 1995]. The Moon's 
relativistic equation of motion relative to Earth can then be structured as: 
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with several of the relativistic effects being proportional to the ubiquitous 
theory-dependent factor r] = 4/3 — 7 — 3: 
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and 'geodetic precession' rate found by de Sitter (1916) reading: 

tods -H) GM 

c2R3 R x V 

(4) 

(5) 

(6) 

Here, (3 and 7 are the two chief P P N parameters characterizing possible de­
viations from general relativity (/? = 7 = 1 in Einstein's theory), m and M 
the Earth 's and Sun's masses, R heliocentric Earth position, and u = dr/dt, 
V = dR/dt, A = dV/dt. Vector f is defined below [Eq. (12)]. Further cor­
rections to the above quantities, as well as additional relativistic terms in 
the equation of motion are lumped together into the last acceleration term 
proportional to more unusual PPN coefficients otii ct2y Pw etc. which are all 
equal to zero in general relativity (Will and Nordtvedt, 1972). Since present-
day measurements of the lunar orbit yield the most precise confirmation 
of universality of gravitational free-fall, a possible composition-dependent 
factor A c o m p to the Earth and Moon's gravitational to inertial mass ra­
tio expressions which would be present in generic non-metric gravitational 
theories is included. 

3. General S c h e m e of t h e Per turbat ion T h e o r y 

Approximating the solar tidal acceleration by its leading order (in r/R) 
contribution, one arrives at a relativistically rescaled and perturbed 'Hill 
variational orbit problem': 
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dt2 r + ZnlKR.r-Q2,r+6S, (7) 

with the last term Sg representing the miscellaneous relativistic perturba­
tions of interest. The coupling strengths T, SI2 and ti2 include rescalings 
proportional to the Sun's potential: 

Gm 1 - T) 
GM 

\ 

n? n2 
l - ( 2 7 + l ) 

c2RJ ' 

GM 

c2R 
Q2

0 = n2 '>+*>£ 
with the Ear th ' s mean motion measured in geocentric time being: 

Q2 = 
GM 

R3 1 + (3 - T - 2/3) 
GM 

c2R 

(8) 

(9) 

(10) 

Neglecting the last term in (7), one has the equation of motion for Hill's 
(relativistically adjusted) variational orbit with solution: 

ro 
= p(t) I l + ^Ancos2nD ) + f ( t ) J T £ „ s i n 2 n £ > = £ ( t ) + H ( 0 , (11) 

n=l n=l 

in which D = (OJ — Q)t is the mean lunar synodic phase. The indicated unit 
vectors (/>, f) rotate uniformly with the Moon's mean sidereal motion to: 

dp dt 

Each infinitesimal perturbation of the form: 

(pcos{ut-ev)\
T (gp{v)\ 

g \rs\n{vt-eu)) " U ) / ' 

will then produce a linear response of the orbit: 

OO / „ 

•= ? (? 
cos(|i/t - 9U + 2nD\) 

sin(|i/t - B„ + 2nD\) 

V (X(\u + 2nD\)\ 

2nD\)J ' 

(12) 

(13) 

(14) 

with the perturbation amplitudes determined by 2 x 2 dynamical response 
matrices characteristic of the Hill orbit [X = (X, Y)T]: 

X(\u + 2nD\) = Rfli/ + 2nD\, v). g(i/) (15) 
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3.1. SYNODIC PERTURBATIONS 

The synodic orbital response to a synodic frequency perturbation of Hill's 
orbit is of major interest for testing relativistic gravity. Such a perturbation 
exists if the Earth and Moon accelerate at different rates toward the Sun 
(Nordtvedt, 1968a,b,c). Nordtvedt (1995), and Damour and Vokrouhlicky 
(1996a), employing related calculational procedures, have obtained this re­
sponse. Realizing tha t the Solar tide's dominant action on an orbital per­
turbation is to produce perturbations at frequencies 2D above and below 
the initial frequency, and tha t this directly regenerates a synodic frequency 
(D ± 2D —> D and 3D), Nordtvedt approximated the Hill variational orbit 
by its leading Fourier contribution and then solved the linearized (with re­
spect to the Hill orbit) and truncated equation of motion for the synodic 
response x (r = ro/5 + x2_^ + x ) : 

dt2 

with 

d2x 
x.Vgo - x .V (g2£ + x _ 6 Vgo) = 6g{D) (16) 

8o = - J r + Q _ J _ - $ . ? ) _ • , g 2 £ = - 3 J 2 ^ R R . r - i p ) , (17) 

and 

where 

x 2 £ = pAx cos 2D + t Bi sin 2D , (18) 

Q2 / 19 Q \ „ Q2 (\\ 59 Q \ 
Ai = — - l + _ _ + . . . , Bl = —( — + —- + ...) 

uz \ 6 u ) u2 \ 8 12 u / 

(19) 

The response matrix was found to be (numerator and denominator poly­
nomials will be corrected at higher order by including the neglected 3D 
response): 

R ( I ) , D ) = Urn [R( I / ,v ) + R (\u -2D\,u)]= _ - . J _ . _ - (20) 
i,-».r) L V / J K ( D ) -I- O 

\ 

K{D) + Q 

1 I 1 Z_- + 4 _?"-|- ••• ' L^Lu> 16_3- + ' - -

2 W f iS( f i / W ) „ _ ^ 4 _ 2 « + f ^ 
tjj 16 c_»2 ' w 4 w; 
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in which appear the matrix operators as representations of previously de­
fined differential equation operators (^-dependence on K is due to time 
derivative d2/dt2): 

d2 

K{v) = -^ - V g 0 , Q = V (g2/«, + x2£.Vgo) . (21) 

The denominator series £(ft/u>) = 1 - 7 ^ + ^ ^ - + . . . in (20) plays a 
fundamental role in amplifying synodic perturbations. 

Damour and Vokrouhlicky (1996a) used the algebraic manipulation pro­
gram MINIMS to solve the complete Hill orbit (all Fourier amplitudes ex­
pressed as infinite series in fi/w), and then similarly generated the orbit 's 
linear response to synodic perturbation. In response to a possible free-fall 
rate difference Sg(D) which could occur in non-metric gravitational theories 
or metric theories other than general relativity, they found the Earth-Moon 
distance perturbation given by the infinite series: 

3Sg\/ 17X7 1557fi2 \ „ /n fQ2\ 

(22) 
Nordtvedt 's response matrix produces a cosD perturbation which agrees 
to the indicated order, and the denominator polynomial of (20) captures 
the bulk of the total quantitative value of the slowly converging infinite 
series of Damour and Vokrouhlicky, their respective dynamical amplifica­
tion factors for the lunar orbit being 1.74 and 1.753. This represents over a 
40 percent enhancement of previous estimates. The analytic sensitivity of 
the lunar motion on any violation of the equivalence principle then reads 
6r = 2.943 x 1012 ACOmp c o s D centimeters, which turns out to be the tigh­
test test of the weak equivalence principle. If the weak equivalence principle 
is assumed (cor verified with correspondingly high precision in laboratory 
experiments), the absence of the residual synodic signal in the lunar motion 
constraints efficiently the strong equivalence principle (via the 'Nordtvedt 
effect'). The analytic sensitivity is then Sr — 13.1 rjcosD meters, which 
exactly corresponds to numerically detected sensitivity (Williams et al., 
1996). 

Both, Nordtvedt and Damour with Vokrouhlicky find a pole in the syn­
odic amplification defining a resonant orbit beyond the Moon [at (Q,/OJ)N — 
0.1627 and at (Q/CJ)DV — 0.1633] which has equal synodic (driving) and 
anomalistic (natural) frequencies. Damour and Vokrouhlicky (1996a) also 
noticed, tha t this critical orbit coincides with a branch orbit in the family 
of prograde periodic orbits of the Hill problem at which stability of both 
free and forced perturbations is lost (see also Henon, 1969). 

https://doi.org/10.1017/S025292110004656X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110004656X


RELATIVISTIC EFFECTS IN THE LUNAR MOTION 211 

3.2. 'SIDEBANDS' COUPLING THE FORCED AND FREE 
PERTURBATIONS 

Unforced, natural oscillations result from the homogeneous solution of the 
linearized equation of motion (16), and thereby determine (including relati­
v i s t s corrections) the Moon's anomalistic frequency UJQ in the limit of small 
eccentricity. In the presence of a forced orbital perturbation X{u) produced 
by perturbation g ( f ) , a matrix operator then exists, which changes other 
oscillations by frequencies ±i>: 

S(X) = - V [ X ( i / ) . V g o + g l / ] (23) 

The orbit 's natural oscillation then consists of a superposition of oscillations 
not only at frequencies wo, 2D — uo etc., but also at |wo ± v|, \2D — OJQ ± v\ 
etc. The linear and homogeneous equations for the coupled oscillations are 
then: 

K(w0)X(u>0) + QX(2£) - w0) + S [X(w0 + v) + X(w0 - v)] = 0 , 

K(2D - u;0)X(2Z) - u>0) + QX(w0) (24) 

+ S X ( 2 D - w 0 + !/) + X ( 2 i ) - w o - i / ) = 0 , 

K(u;0 ± U)X(OJQ ± v) + Q X ( 2 I ) - w0 T v) + S [X(WQ)] = 0 , 

K(2b-uo^v)X{2D-uoTv) + QMuo±v) + S \x(2D - u0)] = 0 . 

Neglecting the S operator, (24) gives the defining determinant condition 
for the anomalistic frequency: 

K M - Q -
1 

Q ^ = |K(wb)| = 0 , 

while the sidebands are given by expressions of the form: 

Xflwb ± v\) 
1 

K ( | w o ± i / | ) 
S [X(«d)] 

(25) 

(26) 

So, whenever a sideband frequency such as |u>o±f | is close to the anomalistic 
frequency, it 's 'free propagator ' l / K d w o i ^ l ) is near its pole which enhances 
that sideband amplitude. This has been found to occur, for example, in 
the case of forced relativistic perturbations of frequencies 2u and Q which 
acquire enhanced sidebands at frequencies 2u> — UJQ and w ± f i . In the former 
case the sideband is about a factor 5 larger than the direct perturbation 
(Nordtvedt, 1996a): 
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*&£i*UL_!i_. (27) 

3.3. SIDEREAL PERTURBATIONS 

Similarly, a direct perturbation occurring at the orbital sidereal frequency 
is strongly enhanced because tha t frequency lies so close to the anomalistic 
frequency (Nordtvedt, 1973, 1994, 1995). Such sidereal relativistic pertur­
bations occur in 'preferred frame' theories of gravity, and as well in scenarios 
of cosmic accelerators which might differentially accelerate bodies. Nordt­
vedt (1994, 1995) found the dominant response matrix for this case to be 
given by the nearly singular 'free propagator ' whose denominator determi­
nant was therefore appropriately expanded about its pole, giving at leading 
order: 

R ^ ) = K ^ ' ( 2 8 ) 

with 

\K(u)\ jL\K(Uo)\(«,-Uo) + 
(29) 

Similar t reatment of this problem by Damour and Vokrouhlicky (1996b) 
was again to consider the complete Hill orbit, sidereally driven, finding with 
the aid of the MINIMS algebraic manipulation program the infinite series 
expressions for the orbital response to such perturbations. Their results 
confirm the leading order l/(u; — uo) structure of tha t response. 

3.4. DE SITTER PRECESSION OF THE LUNAR ORBIT 

It is conceptually most revealing to evaluate relativistic corrections to the 
Moon's perigee precession rate by viewing the orbit in the local inertial 
frame which rotates at de Sitter's geodetic precession rate relative to distant 
inertial space. The Coriolis-like term in (3) is absent in such a frame, and the 
determinant condition (25) which determines anomalistic frequency then 
reads: 

(«-«W'-4-»(f<g-fl) + %(M_J*n_to)+----(») 
This expression is structurally identical to the corresponding Newtonian 
series expansion for perigee motion, but relativistically modified as follows: 
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(i) the solar tidal strengths ft2 and ft2 a r e rescaled by the Sun's gravitational 
potential as in (8) and (9), and (ii) the dynamical frequencies of the Sun's 
and Moon's motions experienced in de Sitter's rotating inertial frame are 
altered (Nordtvedt, 1996b): u -»• u - Q^s and ft ->• ft - ft^s-

Expressing (30) in the traditional variables yields: 

u} 4 a;2 32 u>3 \u4J [ 32 w2 \^ J. 

- M * [ 2 V - v + T t o + n » + 0 { i ? ) \ - ( 3 1 ) 

The three lines respectively exhibit the series expansions for the Newto­
nian and the de Sitter-induced precessions, and further precessions from 
relativistic rescalings of the solar tidal strengths. 

4. Conclusions 

The lunar orbit remains a very sensitive probe of the gravitational theo­
ries structure. Correct interpretation of the numerical results needs a high 
quality analytical insight into the relativistic perturbations of the lunar 
motion. They cannot be built only on the basis of a 'weakly perturbed' 
two-body problem (Earth-Moon), but must account of intricate coupling 
with solar tidal field. A general scheme for such calculations has been de­
veloped in the last few years, and a number of relativistic effects has been 
revisited. It has been proven tha t the equivalence principle violation for the 
synodic oscillation of the lunar orbit enhanced by more than 40% compared 
to previous results. Sidereal effects are also found to show significant am­
plification, which will potentially allow a new estimation of the preferred 
frame PPN parameter a\ (Miiller et ai, 1996). Finally, de Sitter precession 
of the lunar perigee is also enhanced, though in a lesser degree, by about 
4% if compared to its 'canonical value'. 
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