UNION CURVES OF A HYPERSURFAGE

C. E. SPRINGER

1. Introduction. A curve on an ordinary surface is a union curve ${ }^{1}$ if its osculating plane at each point contains the line of a specified rectilinear congruence through the point. The author ${ }^{2}$ has obtained the differential equations of union curves on a metric surface in ordinary space and has exhibited certain generalizations for union curves of known results concerning geodesic curves on a surface. It is the purpose of the present paper to develop the differential equations of the union curves of a hypersurface V_{n} immersed in a Riemannian manifold V_{n+1} of $n+1$ dimensions. The osculating plane to a curve on a surface is generalized to a totally geodesic surface the straight lines of which are geodesics in the space V_{n+1}. A formula is given for the union curvature vector of a curve in V_{n}.
2. Vector field in V_{n}. If $y^{a}(a=1, \ldots, n+1)$ denote the coordinates of a point in V_{n+1}, and $x^{i}(i=1, \ldots, n)$ the coordinates of a point in V_{n}, the equations of the hypersurface V_{n} may be written in the form

$$
\begin{equation*}
y^{a}=y^{a}\left(x^{1}, \ldots, x^{n}\right) \tag{1}
\end{equation*}
$$

For points in the V_{n} the functional matrix $\left\|\partial y^{a} / \partial x^{i}\right\|$ is of rank n. Let the metric of V_{n} be denoted by $g_{i j} d x^{i} d x^{j}$ and that of V_{n+1} by $a_{\alpha \beta} d y^{a} d y^{\beta}$. These metrics are assumed to be positive definite. It follows that

$$
\begin{equation*}
a_{\alpha \beta} y^{a}, i y^{\beta}, j=g_{i j}, \tag{2}
\end{equation*}
$$

where $y^{a},{ }_{i}$ denotes the covariant derivative of y^{a} with respect to x^{i}. (Greek indices always have the range $1, \ldots, n+1$ and Latin indices the range $1, \ldots, n$.) If N^{a} denote the components of a unit vector in V_{n+1} normal to V_{n}, then

$$
\begin{equation*}
a_{a \beta} y^{a},{ }_{, i} N^{\beta}=0 \quad(i=1, \ldots, n) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{a \beta} N^{a} N^{\beta}=1 \tag{4}
\end{equation*}
$$

If a vector field in V_{n} has components U^{a} in the y 's and components u^{i} in the x 's, then the relation

[^0]\[

$$
\begin{equation*}
U^{a}=y^{\beta},{ }_{i} u^{i} \tag{5}
\end{equation*}
$$

\]

must obtain. If q^{a} are the contravariant components in the y 's of the derived vector relative to V_{n+1} of a vector of the field along a curve C in V_{n}, and if p^{i} are the contravariant components in the x 's of the derived vector relative to V_{n} of the same vector along C, it can be shown ${ }^{3}$ that

$$
\begin{equation*}
q^{a}=\Omega_{i j} u^{i} \frac{d x^{j}}{d s} N^{a}+y^{a},{ }_{i} p^{i} \tag{6}
\end{equation*}
$$

where $\Omega_{i j} d x^{i} d x^{j}$ is the second fundamental form for V_{n}.
3. Totally geodesic surface in V_{n+1}. As an analogue for the osculating plane in ordinary space a totally geodesic surface in V_{n+1} is introduced. It is determined by the tangent to the curve C with equations $x^{i}=x^{i}(s)$ in V_{n}, s denoting arc length, and by the first curvature vector in V_{n+1} of the curve C. Let λ^{a} be the contravariant components in the y^{\prime} 's of a unit vector in the direction of a curve of a congruence of curves, one curve of which passes through each point of V_{n}. The vector with components λ^{a} is, in general, not normal to V_{n}, and may be specified by

$$
\begin{equation*}
\lambda^{a}=t^{i} y^{a},_{i}+r N^{a} \tag{7}
\end{equation*}
$$

where t^{i} and r are parameters. Because λ^{a} represent a unit vector $a_{a \beta} \lambda^{a} \lambda^{\beta}=1$, and it follows by use of equations (3), (4), (7) that

$$
t_{i} t^{i}=1-r^{2}
$$

If the geodesic in V_{n+1} in the direction of the curve of the congruence with direction λ^{a} is to be a geodesic of the totally geodesic surface, then it is necessary that λ^{a} be a linear combination of $y^{a},{ }_{i} u^{i}$ and q^{a}. Hence,

$$
\begin{equation*}
t^{i} y^{a},{ }_{i}+r N^{a}=v y^{a},{ }_{i} u^{i}+w q^{a} \tag{8}
\end{equation*}
$$

wherein v and w are to be determined, the u^{i} of equations (5) are now $d x^{i} / d s$, and q^{a} are given by

$$
\begin{equation*}
q^{a}=\Omega_{i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s} N^{a}+y^{a}, i p^{i} \tag{9}
\end{equation*}
$$

and p^{i} are given by

$$
p^{i}=\frac{d^{2} x^{i}}{d s^{2}}+\left\{\begin{array}{c}
i \tag{10}\\
j k
\end{array}\right\} \frac{d x^{j}}{d s} \frac{d x^{k}}{d s}
$$

If K_{n} is written for $\Omega_{i j} \frac{d x^{i}}{d s} \frac{d x^{j}}{d s}$, which is the normal component of the curvature vector of the curve C in V_{n+1}, equations (8) take the form

[^1]\[

$$
\begin{equation*}
t^{i} y^{a},{ }_{i}+r N^{a}=v y^{a},{ }_{i} \frac{d x^{i}}{d s}+w\left(\mathrm{~K}_{n} N^{a}+y^{a},_{i} p^{i}\right) \tag{11}
\end{equation*}
$$

\]

Multiplication of equations (11) by $a_{a \beta} y^{\beta}{ }_{, j}$, summation with respect to a, and use of equations (2), (3) yield the n equations

$$
\begin{equation*}
g_{i j} t^{i}=v g_{i j} \frac{d x^{i}}{d s}+w_{i j} p^{i} \tag{12}
\end{equation*}
$$

If equations (11) are multiplied by $a_{a \beta} N^{a}$, summation on a and use of (4) give the relation

$$
\begin{equation*}
r=w \mathrm{~K}_{n} \tag{13}
\end{equation*}
$$

The solution of (12) for v is effected by multiplying by $\frac{d x^{j}}{d s}$ and summing on j. Because $g_{i j} p^{i} \frac{d x^{j}}{d s}=0$, it follows that

$$
\begin{equation*}
v=g_{i j} t^{i} \frac{d x^{j}}{d s} \tag{14}
\end{equation*}
$$

Therefore, on using the values of v and w from (13) and (14), the n equations (12) take the form

$$
\begin{equation*}
g_{i j} t^{i}=g_{i j} \frac{d x^{i}}{d s} g_{l m} t^{d} \frac{d x^{m}}{d s}+\frac{r}{\mathrm{~K}_{n}} g_{i j} p^{i} \tag{15}
\end{equation*}
$$

Multiplication of equations (15) by $g^{j k}$, summation on j, and the replacement of t^{k} / r by l^{k} lead to

$$
\begin{equation*}
p^{k}-\mathrm{K}_{n}\left(l^{k}-g_{i m} l^{i} \frac{d x^{m}}{d s} \frac{d x^{k}}{d s}\right)=0 \quad(k=1, \ldots, n) \tag{16}
\end{equation*}
$$

wherein p^{k} are given by equations (10).
4. Union curves in V_{n}. For a congruence specified by the parameters l^{k}, the solutions of the n equations (16) determine the union curves in V_{n} relative to that congruence. The parameter r can not vanish under the assumption that the direction λ^{a} is not in the V_{n}. The left members of equations (16) may be denoted by η^{k}, which we shall call the contravariant components of the union curvature vector in V_{n+1}. A union curve of V_{n} with respect to a congruence determined by the parameters l^{k} may therefore be defined as a curve along which the union curvature vector is a null vector.

By use of (10) and the fact that $g_{i j} d x^{i} d x^{j}=d s^{2}$, equations (16) can be written in the form

$$
\begin{equation*}
\eta^{k} \equiv p^{k}-\mathrm{K}_{n} \nu^{k}=0 \tag{17}
\end{equation*}
$$

where the vector ν^{k} is defined by

$$
\nu^{k}=g_{i j} \frac{d x^{i}}{d s}\left(l^{k} \frac{d x^{j}}{d s}-l^{j} \frac{d x^{k}}{d s}\right) .
$$

From equations (17) it follows that if the curve C is an asymptotic curve in V_{n}, in which case $\mathrm{K}_{n}=0$ along the curve, then for a union curve ($\eta^{k}=0$), $p^{k}=0$ and the curve is a geodesic. Hence, if a union curve is an asymptotic curve, it is a geodesic. Furthermore, if a union curve is a geodesic, then it is either an asymptotic curve or the vector of components ν^{k} is a null vector.

The magnitude K_{U} of the vector η^{k} is given by $\mathrm{K}_{U}{ }^{2}=g_{i j} \eta^{i} \eta^{j}$. From equations (7) it is seen that the angle ϕ between the vectors λ^{a} and N^{a} in V_{n+1} is given by $\cos \phi=r$, and because $t^{k} / r=l^{k}$ and $t_{i} t^{i}=1-r^{2}$, it follows that $g_{i j} l^{i} l^{j}=\tan ^{2} \phi . \quad$ The angle a between the vector l^{k} and the tangent vector to C is given by $\cos a=g_{i k} l^{i} \frac{d x^{k}}{d s}$. In terms of ϕ and a, the magnitude K_{U} of the union curvature vector can be shown to be given by

$$
\mathrm{K}_{U}=\mathrm{K}_{g}-\mathrm{K}_{n} \tan \phi \sin a
$$

where K_{g} is the geodesic curvature of the curve C in V_{n}. It is to be observed that if $\phi=0$, the union curve is a geodesic.

University of Oklahoma

[^0]: Received July 5, 1949. Presented to the American Mathematical Society, April 30, 1949.
 ${ }^{1}$ P. Sperry, Properties of a certain projectively defined two-parameter family of curves on a general surface, Amer. J. of Math., vol. 40 (1928), p. 213.
 ${ }^{2}$ C. E. Springer, Union curves and union curvature, Bull. Amer. Math. Soc., vol. 51 (1945), pp. 686-691.

[^1]: ${ }^{3}$ C. E. Weatherburn, Riemannian Geometry and the Tensor Calculus (Cambridge University Press, 1938).

