UNION CURVES OF A HYPERSURFACE

C. E. SPRINGER

1. Introduction. A curve on an ordinary surface is a union curve¹ if its osculating plane at each point contains the line of a specified rectilinear congruence through the point. The author² has obtained the differential equations of union curves on a metric surface in ordinary space and has exhibited certain generalizations for union curves of known results concerning geodesic curves on a surface. It is the purpose of the present paper to develop the differential equations of the union curves of a hypersurface V_n immersed in a Riemannian manifold V_{n+1} of n + 1 dimensions. The osculating plane to a curve on a surface is generalized to a totally geodesic surface the straight lines of which are geodesics in the space V_{n+1} . A formula is given for the union curvature vector of a curve in V_n .

2. Vector field in V_n . If y^a (a = 1, ..., n + 1) denote the coordinates of a point in V_{n+1} , and x^i (i = 1, ..., n) the coordinates of a point in V_n , the equations of the hypersurface V_n may be written in the form

(1)
$$y^{a} = y^{a} (x^{1}, \ldots, x^{n}).$$

For points in the V_n the functional matrix $||\partial y^{\alpha}/\partial x^i||$ is of rank *n*. Let the metric of V_n be denoted by $g_{ij}dx^i dx^j$ and that of V_{n+1} by $a_{\alpha\beta}dy^{\alpha}dy^{\beta}$. These metrics are assumed to be positive definite. It follows that

(2)
$$a_{\alpha\beta}y^{\alpha}{}_{,i}y^{\beta}{}_{,j}=g_{ij},$$

where y^{a} , *i* denotes the covariant derivative of y^{a} with respect to x^{i} . (Greek indices always have the range $1, \ldots, n+1$ and Latin indices the range $1, \ldots, n$.) If N^{a} denote the components of a unit vector in V_{n+1} normal to V_{n} , then

(3)
$$a_{\alpha\beta}y^{\alpha}{}_{,i}N^{\beta}=0 \qquad (i=1,\ldots,n),$$

and

(4)
$$a_{\alpha\beta}N^{\alpha}N^{\beta} = 1.$$

If a vector field in V_n has components U^a in the y's and components u^i in the x's, then the relation

Received July 5, 1949. Presented to the American Mathematical Society, April 30, 1949. ¹P. Sperry, *Properties of a certain projectively defined two-parameter family of curves on a general surface*, Amer. J. of Math., vol. 40 (1928), p. 213.

²C. E. Springer, Union curves and union curvature, Bull. Amer. Math. Soc., vol. 51 (1945), pp. 686-691.

C. E. SPRINGER

(5)
$$U^{a} = y^{\beta}_{,i} u^{i}$$

must obtain. If q^{a} are the contravariant components in the y's of the derived vector relative to V_{n+1} of a vector of the field along a curve C in V_n , and if p^{i} are the contravariant components in the x's of the derived vector relative to V_n of the same vector along C, it can be shown³ that

(6)
$$q^{a} = \Omega_{ij} u^{i} \frac{dx^{j}}{ds} N^{a} + y^{a}, i p^{i},$$

where $\Omega_{ij} dx^i dx^j$ is the second fundamental form for V_n .

3. Totally geodesic surface in V_{n+1} . As an analogue for the osculating plane in ordinary space a totally geodesic surface in V_{n+1} is introduced. It is determined by the tangent to the curve C with equations $x^i = x^i(s)$ in V_n , s denoting arc length, and by the first curvature vector in V_{n+1} of the curve C. Let λ^{α} be the contravariant components in the y's of a unit vector in the direction of a curve of a congruence of curves, one curve of which passes through each point of V_n . The vector with components λ^{α} is, in general, not normal to V_n , and may be specified by

(7)
$$\lambda^a = t^i y^a, i + r N^a,$$

where t^i and r are parameters. Because λ^{α} represent a unit vector $a_{\alpha\beta}\lambda^{\alpha}\lambda^{\beta} = 1$, and it follows by use of equations (3), (4), (7) that

$$t_i t^i = 1 - r^2.$$

If the geodesic in V_{n+1} in the direction of the curve of the congruence with direction λ^{α} is to be a geodesic of the totally geodesic surface, then it is necessary that λ^{α} be a linear combination of y^{α} , u^{i} and q^{α} . Hence,

(8)
$$t^i y^a, i + rN^a = vy^a, i u^i + wq^a$$

wherein v and w are to be determined, the u^i of equations (5) are now dx^i/ds , and q^{α} are given by

(9)
$$q^{a} = \Omega_{ij} \frac{dx^{i}}{ds} \frac{dx^{j}}{ds} N^{a} + y^{a},_{i} p^{i},$$

and p^i are given by

(10)
$$p^{i} = \frac{d^{2}x^{i}}{ds^{2}} + \begin{cases} i\\ jk \end{cases} \frac{dx^{j}}{ds} \frac{dx^{k}}{ds} \end{cases}$$

If K_n is written for $\Omega_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds}$, which is the normal component of the curva-

ture vector of the curve C in V_{n+1} , equations (8) take the form

458

⁸C. E. Weatherburn, *Riemannian Geometry and the Tensor Calculus* (Cambridge University Press, 1938).

(11)
$$t^{i} y^{a},_{i} + rN^{a} = vy^{a},_{i} \frac{dx^{i}}{ds} + w(\mathbb{K}_{n}N^{a} + y^{a},_{i}p^{i}).$$

Multiplication of equations (11) by $a_{\alpha\beta}y^{\beta}{}_{,j}$, summation with respect to α , and use of equations (2), (3) yield the *n* equations

(12)
$$g_{ij}t^i = vg_{ij}\frac{dx^i}{ds} + wg_{ij}p^i.$$

If equations (11) are multiplied by $a_{\alpha\beta}N^{\alpha}$, summation on α and use of (4) give the relation

(13)
$$r = w \mathbf{K}_n.$$

The solution of (12) for v is effected by multiplying by $\frac{dx^{j}}{ds}$ and summing on j. Because $g_{ij}p^{i}\frac{dx^{j}}{ds} = 0$, it follows that

(14)
$$v = g_{ij}t^i \frac{dx^j}{ds}.$$

Therefore, on using the values of v and w from (13) and (14), the n equations (12) take the form

(15)
$$g_{ij}t^i = g_{ij}\frac{dx^i}{ds}g_{lm}t^l\frac{dx^m}{ds} + \frac{r}{K_n}g_{ij}p^i.$$

Multiplication of equations (15) by g^{jk} , summation on j, and the replacement of t^k/r by l^k lead to

(16)
$$p^{k} - K_{n}\left(l^{k} - g_{im}l^{i}\frac{dx^{m}}{ds}\frac{dx^{k}}{ds}\right) = 0 \qquad (k = 1, \ldots, n),$$

wherein p^k are given by equations (10).

4. Union curves in V_n . For a congruence specified by the parameters l^k , the solutions of the *n* equations (16) determine the union curves in V_n relative to that congruence. The parameter *r* can not vanish under the assumption that the direction λ^{α} is not in the V_n . The left members of equations (16) may be denoted by η^k , which we shall call the contravariant components of the union curvature vector in V_{n+1} . A union curve of V_n with respect to a congruence determined by the parameters l^k may therefore be defined as a curve along which the union curvature vector is a null vector.

By use of (10) and the fact that $g_{ij}dx^i dx^j = ds^2$, equations (16) can be written in the form

(17)
$$\eta^k \equiv p^k - \mathbf{K}_n \nu^k = 0,$$

where the vector v^k is defined by

$$\nu^k = g_{ij} \frac{dx^i}{ds} \left(l^k \frac{dx^j}{ds} - l^j \frac{dx^k}{ds} \right).$$

From equations (17) it follows that if the curve *C* is an asymptotic curve in V_n , in which case $K_n = 0$ along the curve, then for a union curve $(\eta^k = 0)$, $p^k = 0$ and the curve is a geodesic. Hence, if a union curve is an asymptotic curve, it is a geodesic. Furthermore, if a union curve is a geodesic, then it is either an asymptotic curve or the vector of components ν^k is a null vector.

The magnitude K_U of the vector η^k is given by $K_U^2 = g_{ij}\eta^i\eta^j$. From equations (7) it is seen that the angle ϕ between the vectors λ^a and N^a in V_{n+1} is given by $\cos \phi = r$, and because $t^k/r = l^k$ and $t_it^i = 1 - r^2$, it follows that $g_{ij}l^il^j = \tan^2 \phi$. The angle *a* between the vector l^k and the tangent vector to C is given by $\cos a = g_{ik}l^i \frac{dx^k}{ds}$. In terms of ϕ and *a*, the magnitude K_U of the union curvature vector can be shown to be given by

$$K_{II} = K_a - K_n \tan \phi \sin a$$
,

where K_{q} is the geodesic curvature of the curve C in V_{n} . It is to be observed that if $\phi = 0$, the union curve is a geodesic.

University of Oklahoma

460